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Abstract 

The main theme of this thesis is that of wave reflection. All the 

problems that will be examined will be based on linear inviscid water 

wave theory and for the most part the problems will be two-dimensional. 

In chapters 2,3 and 4 the effects that various obstacles have on an 

incident wave will be discussed. A distinction is made between passive 

devices, devices that are fixed, and active ones, devices that are 

allowed to move subject to a restoring force in response to the incident 

wave. 

In chapter 2 the shallow water approximation is used to examine the 

qualitative reflection properties of submerged blocks. A comparison of 

results with those of other authors who have looked at similar problems 

shows that fixed submerged obstacles are not' particularly good at 

reflecting waves. 

If a body is allowed to move in response to an incident wave then 

perfect reflection can be achieved and this problem-is looked at in 

detail in chapters 3 and 4. Chapter 3 contains the general theory for 

this situation together with some applications of its use whilst in 

chapter 4 one particular shape of body is singled out for detailed 

study: a horizontal circular cylinder. Results, both theoretical and 

experimental, show that such devices can be very efficient wave 

reflectors. 

The final two chapters are not concerned with wave reflection but 

are further examples of applications of the techniques used in solving 

the problems in previous chapters. Both chapters are concerned with 

spherical geometries. 

In chapter 5 the problem of a submerged sphere making forced 

periodic oscillations in water of finite depth is considered using 

techniques introduced in chapter 4. In chapter 6a related technique is 

used to examine the problem of water in motion inside a hemisphere. 
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CIIdPTER 1 

Introduction 

1.1 Historical Review 

This thesis is concerned with problems arising from the interaction 

of surface gravity waves and rigid bodies. Surface gravity waves are 

extremely familiar to most people as they are the type of waves that one 

observes on the surface of seas and lakes. They are mainly generated by 

the action of the wind on the water surface and as their name suggests 

the main restoring force involved is gravity. Surface gravity waves 

have been the subject of extensive research over the last one and a half 

centuries and many excellent texts exist including Lamb (1932), Stoker 

(1957) and Whitham (1974). 

The mathematical study of wave-body interactions also has a long 

history, beginning over a century ago with the pioneering work of 

W. Froude and A. N. Krylov. It is only in the last few decades however 

that interest in the subject has become widespread. One reason for the 

increased interest in this area has been the need of offshore engineers 

and ship designers to be able to predict accurately the forces that will 

be exerted on structures placed in the sea by the waves. 

One method for calculating forces on structures due to waves is the 

semi-empirical formula known as Morison's equation (Morison et al. 

1950). The major drawback of this method is that it takes no account of 

the fact that when a body is placed in a wave field it diffracts the 

field. This effect becomes more noticeable the larger the body is and 



many structures, like ships or oil rigs, are big enough to make 

Morison's equation invalid. 

Not surprisingly the solution of the general problem of waves 

incident on a body which is moving in response to the waves is extremely 

difficult even if the geometry of the body is very simple. In order to 

simplify the problem one assumes that the fluid is inviscid and 

incompressible (these are very good approximations in the case of water 

waves) and that the flow is irrotational so that potential theory can be 

used. Furthermore it is usual to assume that the amplitude of the waves 

is much smaller than the wavelength and then to linearise the equations 

of motion and the boundary conditions of the problem. With these 

assumptions progress can be made. A fundamental simplification arises 

from the fact that due to the linearity of the resulting problem we can 

decompose the general problem of waves incident on a moving body into 

two much simpler problems; the radiation of waves by a body oscillating 

in a forced manner in otherwise still water and the diffraction (or 

scattering) of waves, by a fixed obstacle. As will be shown in §1.2 

these problems are not independent but are linked in many ways. 
A rigid body in three dimensions has six degrees of freedom and thus 

six possible modes of motion. The three translational modes are 

referred to as sway, surge and heave while the three rotational modes 

are referred to as pitch, roll and yaw. This is illustrated in figure 

(1.1.1). 

2 



surge 

roll 

lg pitch 

sway 

yaw 

heave 

Figure 1.1.1 

Thus the solution of a problem in which a wave is incident on a body 

which is completely free to move requires the solution of seven separate 

problems; six radiation problems corresponding to the six different 

modes of motion and a scattering problem. 
In two dimensions there are only three possible modes of motion; 

sway, heave and roll which provides some simplification. Another 

simplification arises from the fact that in two dimensions outgoing 

waves have constant amplitude as they travel away from a wave source 

whereas in three dimensions the amplitude decays like r-S2, where r 

is the horizontal distance from the wave source. This allows us to 

define reflection and transmission coefficients for the problem of waves 

incident on a body in two dimensions. They are the ratios of the 

amplitude of the reflected wave to that of the incident wave and the 

amplitude of the transmitted wave to that of the incident wave 

respectively. The general scattering problem in two dimensions was 

first looked at by Kreisel (1949). 

In order to make any progress analytically, simple geometries must 

be considered and in this thesis we will only be concerned with two 
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dimensional problems or problems with a spherical geometry. Another 

approach is to consider more complicated structures and to develop a 

numerical technique for the solution of wave body interaction problems. 

This is an area of extensive research at present but will not-concern us 

here. A review of numerical methods in use in this area can be found in 

Mei (1978). 

In 1929 Havelock solved the so called 'wavemaker' problem and 

provided formulas from which the velocity potential could be calculated 

if the horizontal fluid velocity was known on a vertical line (in two 

dimensions) or a vertical circular cylinder (in three dimensions). This 

provided the starting point for work carried out in the latter half of 

the 1940's by Dean (1945) and Ursell (1947) on the interaction of waves 

and vertical plates. Since then many problems involving waves and 

plates have been studied. One case that has not been considered 

previously is the two-dimensional problem of a vertical plate, hinged at 

the sea bed, not extending to the free surface and performing rolling 

oscillations about its hinge. This problem is solved in chapter 3 using 

the method of matched eigenfunction expansions. 

The next geometry to receive attention was that of a horizontal 

circular cylinder in two dimensions. Much use will be made of this 

geometry in this thesis and so a detailed account of the history of 

problems involving waves and horizontal circular cylinders will be given 

here. 

The most remarkable result concerning horizontal circular cylinders 

in two dimensions was discovered by Dean (1948) who used a conformal 

mapping technique to solve the problem of wave scattering by a submerged 

cylinder with the approximation that the water was infinitely deep. Ue 

showed that such a body reflects no waves! The effect of finite depth 

on this result will be discussed in chapter 4. Ursell (1950) studied 

the same problem in a more rigorous fashion and supplied a uniqueness 
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proof for the solution. The method used by Ursell was that of multipole 

expansions which will be used throughout chapters 4 and 5 of this 

thesis. Aultipoles are singular solutions of Laplace's equation which 

satisfy the free surface and bottom boundary conditions and behave like 

outgoing waves far from the singular point. Ursell generated these 

multipoles by repeated differentiation of a wave source with respect to 

the source point. Thorne (1953) provided an alternative technique for 

generating multipoles using complex integration. 

Prior to this work Ursell (1949) solved the problem of the radiation 

of waves by a half-immersed cylinder oscillating in heave (i. e. 

vertically) in infinitely deep water. The method of solution here was 

similar to the multipole method discussed above but instead of using 

multipoles, which behave like outgoing waves far from, the source point, 

he used a combination of a single wave source and a set of wave free 

potentials, which as their name suggests make no contribution far from 

the source point. Work, both analytic and experimental, on the 

scattering of waves by a half immersed cylinder was performed by Dean 

and Ursell (1959). Yu and Ursell (1961) extended the work of Ursell 

(1949) to solve the problem of radiation of waves by a half-immersed 

cylinder in finite depth. 

Ogilvie (1963) extended the work of Ursell (1950) to calculate the 

first order and mean second order forces on a submerged cylinder. This 

paper also provided the impetus for Evans et al. (1979) who investigated 

the possibility of using a submerged cylinder as a wave energy device. 

Levine (1965) investigated whether or not the phenomenon of zero 

reflection, discovered by Dean (1948), was still true if the waves was 

obliquely incident on the cylinder and he found, using an integral 

equation technique, that it was not. The same method was used by 

Schnute (1971) to examine the scattering of waves by two fixed parallel 
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cylinders (with different radii and immersion depths), again in 

infinitely deep water. 
Some of the complications that arise when considering two cylinder 

problems can be simplified by assuming that the cylinders are identical 

in both radius and immersion depth, a case which is clearly relevant to 

catamaran-type hulls. Wang and Wahab (1971) used multipole expansions 

to examine the heaving of two half-immersed cylinders and, more 

recently, Wang (1981) solved the problem of the radiation of waves by 

two identical submerged cylinders oscillating in both sway and heave. 

The more general problem of the radiation of waves by a group of any 

number of cylinders, with different radii and immersion depths, was 

solved by McIver (1985) using the multipole method. 
In all the work on cylinders discussed so far, except that of Yu and 

Ursell, the water depth has been assumed to be infinite. The extension 

to the finite depth case of the work of Ursell (1950) and Wang (1981) is 

presented in chapter 4. Some results for the scattering of waves by a 

single submerged cylinder in finite depth are given in Naftzger and 

Chakrabarti (1979) who used a numerical technique based on the boundary 

element method developed by John (1950). In their paper they also 

showed results for the scattering of waves by a half immersed cylinder 

in finite depth and by a semicircular hump on the bottom. 

Another geometry for which progress can be made is a spherical one. 

Havelock (1955) solved the problem of the radiation of waves by a 
half-immersed sphere in infinite depth making small vertical 

oscillations. The method of solution is similar to that used by Ursell 

(1949) for the half-immersed cylinder. IIulme (1982) gave a much 
improved solution based on the same method and also extended the results 

to include the case of sway. In an appendix to a paper on wave-power 

absorption by a submerged sphere Srokosz (1979) solves the problem of 

the radiation of waves by a submerged sphere in infinite depth in both 
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the heave and sway cases using the multipole expansion method. The 

extension of this work to finite depth is presented in chapter 5. Hulme 

(1985) has also solved the problem of wave radiation by a submerged 

torus making heaving oscillations. 
The scattering of waves by two-dimensional rectangular obstacles, 

both on the bottom or immersed through the free surface, has been looked 

at by Newman (1965), who-assumed that the obstacle was long compared to 

wavelength, Mel et al. (1969), who used a variational technique, and 

McIver (1985) who used the method of matched eigenfunction expansions to 

solve the full linear problem. Black et al. (1971) used the same 

techniques as Mei et al. (1969) to solve the problem of wave radiation 

by such obstacles. They also considered the three-dimensional problem 

of the radiation of waves by oscillating vertical cylinders. The method 

of McIver (1985) is used in chapter 3 to solve the full linear problem 

of wave radiation by a block on the bottom in heave and in sway. The 

heaving of a vertical cylinder was solved using the same method in 

McIver and Evans (1984), following ideas in Thomas (1981) who considered 

a vertical cylindrical duct as a wave-power absorber. 

In general the problems discussed in chapters 2,3 and 4 are not 

looked at from the point of view of being able to predict wave forces 

acting on fixed bodies, but rather from the point of view of examining 

the wave reflection properties of the bodies in question. Thus we will 
be primarily interested in the reflection and transmission coefficients. 

However one of the simplest ways to calculate these coefficients is to 

solve two radiation problems, one for heave and one for sway, and then 

use the Newman relations, Newman (1975), which connect the radiation and 

scattering problems. These relations are discussed in §1.2 below. Thus 

much of the work will involve the solution of radiation problems and the 

calculation of wave forces on bodies due to their own motion. The wave 
force on a body due to its own motion is'conventionally decomposed into 
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two components, one in phase with the velocity of the body called the 

damping coefficient and one in phase with the acceleration called the 

added mass coefficient (or added inertia in the case of rotational 

motion). These quantities will also be necessary in calculating the 

reflection and transmission properties of a tethered buoyant cylinder 

in §4.6. 

There has been a continued interest in wave reflection for many 

years due to the need to protect coastal or offshore installations or to 

limit wave motions in harbours by the design of suitable breakwaters. 

Many different types of wave reflector have been considered. Most 

obvious is a solid wall extending from the sea bed through the free 

surface which clearly reflects all the incoming waves. Such a 

construction is often not feasible due to cost or water depth and it is 

often undesirable since it does not allow the passage of vessels over it 

and may cause unwanted environmental effects such as the build up of 

sediment in a harbour. The effect of other fixed obstacles, such as 

trenches or blocks on the bottom or naturally ocurring sandbars, have 

been considered by other authors, for example Kirby and Dalrymple 

(1983), Mei et al. (1969), Mel et al. (1988) and Davies (1982). These 

fixed obstacles, while not suffering from the drawbacks of the wall 

breakwater mentioned above, turn out to be not very good at reflecting 

waves, though at certain resonant frequencies a group of sandbars can 

produce strong reflection. 

In this thesis we look at the possibility of using devices which are 

allowed to move in response to the waves, while subject to a restoring 
force, as wave reflectors. This is the subject of chapter 3 and a 
further application is given in §4.6. The idea for this work came from 

Guevel et al. (1985) who were in fact looking at the reflection of waves 
from a fixed submerged horizontal plate. However in order to solve this 

problem they formulated it as if the water under the plate was simply 
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oscillating back and forth and this led them to consider the problem of 

wave reflection by moving bodies. The general theory for this problem 

is given in §3.2 and it is subsequently applied to three different 

obstacles; a vertical plate hinged at the sea bed and not extending to 

the free surface, a rectangular block on the bottom and a submerged 

circular cylinder. Leach et al. (1985) solved the problem of wave 

reflection by a vertical plate hinged at the bottom subject to a 

restoring force but in their case the plate extended through the free 

surface. 
All the problems considered so far concern bodies placed in water 

and their interaction with waves. Many of the techniques that can be 

used to solve such problems can also be used to examine the problem of 

the wave motion of fluids inside containers. The problem here is to 

work out the natural frequencies of oscillation of fluid in a partially 

filled container. This is another area that has received extensive 

study over the years. Most of the early results on the subject can be 

found in Lamb (1932). Interest in the problem grew after the second 

world war as the problem . of transportation of fluids became more 

important. During the 1960's NASA did a lot of research into the 

problem to aid the design of rocket fuel containers. A comprehensive 

review of the subject is provided by Moiseev (1964), Moiseev and Petrov 

(1965) and Fox and Kuttler (1983). Most of the container geometries 

that have been studied analytically in the past have been 

two-dimensional where complex analysis can be used, see for example 

Craggs and Duck (1978). 

In chapter 6 methods which are the internal equivalent of those used 

by Ilulme (1982) for the heaving half-immersed sphere are used to solve 

the problem of the sloshing of fluid inside a sphere in the case when 

the sphere is half full. The sloshing of fluid inside a sphere has been 

considered previously by Budiansky (1960) who used an integral equation 
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method and more recently by McIver (1988) who uses a sophisticated 
integral equation technique and gives results for various fill depths. 

The method of solution used in chapter 6 is much simpler but is only 

applicable to a half full sphere. 
The lowest modes (i. e. modes with the lowest frequency) of 

oscillation of a fluid in a tank are the most easily observed and are 

the most significant in terms of effect. The higher modes can often be 

obtained with sufficient accuracy by using short wave asymptotics. 

Methods developed by Allier (1974) and Davis (1974) for the 

two-dimensional case of the semicircular canal have been used by Davis 

(1975) to provide asymptotic values for the natural modes of oscillation 

of a half-full sphere. 

1.2 Hydrodynamic Relations for Wave Body Interactions 

Cartesian coordinates x, y, z are chosen with x, z horizontal and 

y vertically downwards, with the undisturbed free surface corresponding 

to y=0. Fluid occupies the region 0<y<h. The fluid is assumed 

to be inviscid and incompressible. Under the assumptions of linearised, 

irrotational water wave theory there exists a velocity potential (x, t) 

satisfying 

V2 =0 in the fluid (1.2.1) 

=0 on y=h (1.2.2) 

all 
= on 0 (1.2.3) a -t 

y Y= 

where H(x, t) is the free surface elevation measured downwards from 
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y=0, and 

pý - pgti= -pa on y=0 (1.2.4) 

where pa is the pressure just above the free surface. The terms on 

the left hand side of equation (1.2.4) represent the dynamic and 

hydrostatic pressure respectively. 

If the motion is assumed to be simple harmonic in time with angular 

frequency w then this boundary-value problem can be simplified by 

introducing time-independent quantities 0 and q defined by 

f(x, t) = Re[o(x)e'"] 
(1.2.5) 

H(x, t) = Re[«x)e'WL). 

It is further assumed that-. pa is a constant and thus, by 

incorporating this term into -i, it can be replaced by zero. Then 

V2ý =0 in the fluid (1.2.6) 

p=0 
on y=h (1.2.7) 

a + KO =0 on y=0 

where K= w2/g. The dynamic pressure is given by equation (1.2.4): 

P(x) = -ipmo(x). (1.2.9) 
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A simple two-dimensional solution of these equations describing a 

progressive wave travelling in the ±x direction is 

q=Ae:; 'KX (1.2.10) 

where x is the real positive solution of 

K=x tanh ich. 

This corresponds to a velocity potential 

O(x y) = igA cosh K(y - h) 
'm cosh k 

(1.2.11) 

(1.2.12) 

The general problem to be considered is that of a wave incident upon 

a body. The body will diffract the incident wave to produce a scattered 

wave field and it will also be set in motion by the wave, resulting in a 

radiated wave field. These will be represented by the time-independent 

potentials Os and OR respectively. 
The equation of motion of the body will be assumed to be linear and 

boundary conditions on the body will be applied on the fixed equilibrium 

position of the body, SB. For the case of the scattered potential this 

condition is simply 

ýS 
=0 on SH. (1.2.13) 

The most general motion of a rigid body in three dimensions involves 

six degrees of freedom. In order to simplify the following discussion 

we will write x1 = x, x2 = y, x3 = z. Sway, heave and surge correspond 

to motions along the x, y, z axes respectively, whilst pitch, yaw and 

roll correspond to rotations about these axes. 
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The normal velocity of a point on the surface of the body is 

Vn = Re{[(U1jU2, U3) + (JL1, Q2, R3)Xr]. n e"} (1.2.14) 

where U1, U2, U3 are the components of the sway, heave and surge and 
, L1,92,, `3 are the components of pitch, yaw and roll. The vector r is 

the position vector of the point on the surface with the origin at the 

centre of rotation and n is the unit normal. If we write 

U, = 
il, i=4,5,6 

n, = cos(n, x, ) i=1,2,3 (direction cosines) 

n, = (r x n), i=4,5,6 

the body boundary condition becomes 

MR 
= 1E1U, 

n, on SB. (1.2.15) 

If OR is decomposed into six potentials, one for each mode of motion, 

by 
ý6+ OR U1 O1 

ls1 

then equation (1.2.15) becomes 

n= n1 

(1.2.16) 

on SB. (1.2.17) 

The force on a body in waves is made up of two components. " The 

first is the hydrostatic force which is extremely important in the case 

of floating bodies. Since we will only be considering submerged bodies 
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in this thesis where the hydrostatic forces are irrelevant these forces 

will not be discussed here. The reader is referred to Newman (1977) for 

a description of hydrostatic forces and their role in wave-body 

interactions. The second component of the force is that due to the wave 

motion, the so-called hydrodynamic force. The generalised hydrodynamic 

force on the body in the ith direction is, with n pointing into the 

body, 

where 

F, (t) = Re[X( " e"] (1.2.18) 

Xý`ý_-i pw 
1 

SB 
0 n, dS . 

(1.2.19) 

(For i=4,5,6 this is clearly a moment. ) Decomposing X''I in the 

obvious way gives 

XI" = -ipm 
fsB Os n, dS (1.2.20) 

X1 ̀) =E UiTj t (1.2.21) 
J=1 

Where Tj, = -ipw J SB 
ýj n, dS. (1.2.22) 

The complex matrix T can be divided into two real matrices, one in 

phase with the acceleration of the body which is called the added mass 

matrix bt and one in phase with the velocity which is called the 

radiation damping matrix B: 

T=-(ß+im1[). (1.2.23) 
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These matrices are frequency dependent but independent of the velocity 

of the body. In many cases it is convenient to non-dimensionalise B 

and bt to give the matrices g and v respectively. If in is a 

typical mass then 

B+ iwb[ = imw(, U - i_v) . 
(1.2.24) 

Green's theorem can be used to derive various relations between the 

hydrodynamic quantities discussed above. If 0 and 0 are harmonic in 

the volume V surrounded by the surface S then 

IS [0 ýI, 
-0 

Yn] dS =0- (1.2.25) 

For our purpose S is taken to be the free surface, SF, the body 

surface, S3j the sea bed, y=h, and a large vertical cylinder, S., far 

enough from the body for the far field asymptotic behaviour of the 

potentials to be applied. In two-dimensional problems S. is replaced 

by two vertical lines. 

Because of the boundary conditions on SF and y=h equation 

(1.2.25), when applied to any of the potentials discussed above, reduces 

to 

11 ll] 
ds. (1.2.26) JS. [0 ýn 

-0 
ýII) dS = -IS. 

[0 2-0 ýn 

In three dimensions any radiation potential, that is, one which 

represents an outgoing wave far away from the body, satisfies the 

Sommerfeld radiation condition 

r"2 (ý + in, ¢, -º 0 as r --º co (1.2.27) 
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where r= (x2 + z2)L2. The equivalent condition in two dimensions is 

ixo -º 0 as I xI -º ý. (1.2.28) 
A 

(See Mei (1983) §7.4.1). In this case the integral over S. can then 

be simplified by replacing än by ino. By choosing both 0 and 0 

to be radiation potentials this integral vanishes and we are left with 

j 
SB0, 

nj dS =J SBoj 
n, dS. 

It follows that the matrices B and Dt are symmetric. If we choose 0 

to be a radiation potential and take 0=ý, its complex conjugate, we 

can derive the relation 

BiI = Pwx 
fs 

co 
O1ýj dS. (1.2.29) 

In two dimensions a radiation potential, 0, can be assumed to satisfy 

¢N A± e"'" cosh h) 
cosh as x --a ±oo (1.2.30) 

for some P. Equation (1.2.29) can then be written 

Bii = ýg M (AiAJ 

Here cg is the group velocity given by 

m 2, ch cý _T 
(i 

+ sinh 

As a special case 

(1.2.31) 

Bit _ Lug cm (IA-l' + (1.2.32) 
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A physical interpretation of the damping coefficient is thus 

straightforward; it is a measure of the wavemaking ability of the body. 

More specifically, for a single mode of motion, the damping coefficient 

is proportional to the energy in the waves radiated away from the body 

and is never negative. 

The added mass coefficient has no such simple physical 

interpretation. For deeply submerged bodies it can be interpreted as 

the fluid mass accelerated by the body and is positive, but for bodies 

close to the free surface the effect of the free surface can be such 

that the added mass is negative over a range of frequencies as in McIver 

and Evans (1984). 

For the remainder of this section we will confine our attention to 

the two-dimensional case. If q$ ) and 0(2 are both scattering 

potentials we have 

fSlo 10 ( 1) 2`Z' - o`Z' en ý1ý1 dS = 

The potentials 0(1) and 0(2) can be characterised, using a 

notation due to Kreisel (1949), by 

¢(i) = {A,, B,; C,, D, } 

indicating that 

0c>> N (Ate-1KX + Be') tKXigA cosh x -__4) as x -º -w w cosh K 
(1.2.34) 

N (Cºe-'KX + DteýKXý igA coscosi 
Kh 

as x -4 +co 

17 



Equations (1.2.33) and (1.2.34) then give, after some simple algebra, 

A, B2 - B, A2 = C, D2 - D, C2. (1.2.35) 

The scattering of a plane wave from x= +oo is characterised by 

{1, R1}T1jO} _ 0"1 

whilst if the wave is from x= -ý we have 

{0, T2jR2,1} . ý(2) 

(1.2.36) 

(1.2.37) 

We can apply the result given by equation (1.2.35) to these two 

potentials, giving 

T1 = T2 (1.2.38) 

showing that the direction of the incident wave has no effect on the 

transmitted wave regardless of the shape of the body. If , instead of 

0(Z) as given by equation (1.2.37), ý(') is used the equation 

(ft, I2 + ITI2 =1 (1.2.39) 

is obtained. Equation'(1.2.39) is an expression of the" conservation of 

energy. Similarly, using q$(2) and ý(2), we can derive the equation 

Jß212 + IT12 =1 
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which in turn shows that 

JR1j = JR21. (1.2.40) 

If ¢ is a radiation potential whose behaviour at tco is given by 

equation (1.2.30) then ß(2) _¢-ý is a scattering potential 

characterised by 

{A-, -A-; A+, -A+}. 

Equation (1.2.33) can then be applied to this potential and another 

given by either equation (1.2.36) or (1.2.37). This results in the 

Newman relations (Newman (1975)) : 

A- + RA' + TA; =0 (1.2.41) 

A' + R2A' + TA' = 0. (1.2.42) 

If the body is symmetric and is making symmetric oscillations then 

Ri = R2 and A+ = A- which implies that 

R+T= -A'/A` . 
(1.2.43) 

If a symmetric body is making antisymmetric oscillations the relation 

between the complex amplitudes of the radiated waves at ±00 is then 

A` = -A- and so, in this case, 

ß-T= -A'/A' . 
(1.2.44) 

Finally if 0 and 0 in equation (1.2.26) are chosen to be 
.a 

scattering potential due to an incident wave from x= +Go and a 
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radiation potential for a particular mode then it can be shown from 

equation (1.2.20) that the exciting force, Xý", is given by 

XP" = 2pwAA, cg. (1.2.45) 

This result is known as the Haskind relation (Haskind (1959)). 

In this section we have examined the general theory of wave body 

interactions and in particular some of the consequences of equation 

(1.2.26). For a more complete discussion, including the extension to 

three dimensions of many of the results, see, for example, Mei (1983) 

chapter 7, or Newman (1976). 
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CHAPTER 2 

Wave reflection from fixed submerged obstacles 

2.1 Introduction 

Before considering the problem of wave reflection from bodies which 

move in response to the incident wave, the problem of reflection by 

passive devices, devices which are fixed, will be considered. The main 

reason for doing this is to get an idea of the sort of reflection and 

transmission coefficients that can be achieved just by inserting some 

fixed obstacle into the water. 
A fixed barrier stretching from the free surface to the sea bed 

reflects all the incoming waves but does not allow boats to pass over 

it. A compromise is necessary and for this reason, whatever device is 

being considered, a reasonable clearance will be left above it. 

Another restriction that will be imposed is that the depths far 

upstream and downstream of the device are the same. Thus situations 

like flow over a step will not be considered. 
Newman (1965) considered the problem of the reflection and 

transmission of waves past long obstacles, i. e. long compared with 

wavelength. One result shown in his paper corresponds to experiments 

performed by Takano (1960). The obstacle considered is a rectangular 

block of length 8.86h0 where ho is the, water depth above the block. 

The water on either, side of the block is assumed to be infinitely deep. 

Even though the obstacle is very large the transmission coefficients 

that are achieved are all in the range 0.7 < ITI < 1. 
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These sort of values for DTI are fairly typical of other passive 

devices. Mei and Black (1969) and Black, Mei and Bray (1971) looked at 

the full linear problem of radiation and scattering by rectangular 

blocks, both on the sea bed and immersed through the free surface, using 

a variational technique. This problem will be looked at in detail in 

chapter 3. Here we just note that the values obtained for the 

transmission coefficient for small to moderately large blocks are again 

all above about 0.7. 

A different sort of fixed obstacle was considered by Kirby and 

Dalrymple (1983). Here, instead of a block, a trench was considered. 

In the case of waves normally incident on the trench the results are 

similar to those for the block for obstacles of approximately the same 

dimensions. For obliquely incident waves much greater reductions in 

transmission can be achieved, say DTI = 0.1, if the trench-parallel 

wavenumber component exceeds the wavenumber for freely propagating waves 

in a trench. This three dimensional effect is important but not 

relevant to the present study. 
In this chapter one particular sort of device will be considered: 

the rectangular block. The full linear problem is solved in chapter 3; 

here the problem of waves incident on a rectangular block in shallow 

water will be examined. This problem is much simpler than the full 

linear problem and the results can be used to look at-the situation with 

two rectangular obstacles on the sea bed separated by a gap. The use of 

the shallow water approximation for problems with depth discontinuities 

is not likely to give very accurate results as was originally pointed 

out by Lamb (1932) §176 so in §3.5 the shallow water theory is compared 

to the full linear theory to see how applicable it is in these 

circumstances. 
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2.2 Rectangular Obstacle, Shallow Water Theory 

One of the simplest configurations that can be examined is that of a 

wave incident on a rectangular obstacle under the assumption of shallow 

water theory. The basic assumption of this theory can be expressed in 

three equivalent forms: the pressure is hydrostatic, the horizontal 

velocity does not vary with depth, or the depth is much smaller than the 

wavelength (see Stoker 1957). A rigorous derivation of the shallow 

water equations can be found in, for example, Peregrine (1972). Here we 

will anticipate the final dispersion relation and assume that 

Kh «1. (2.2.1) 

To see how this assumption affects the boundary value problem given by 

equations (1.2.6)-(1.2.8) it is convenient to non-dimensionalise the 

independent variables by 

Kx_ = x' ; Ky = y,. 

Then v"O =o 

(2.2.2) 

(2.2.3) 

ýa. 
=0 on y'=Kli (2.2.4) 

y 

py 
.+0=0 on y'=0. (2.2.5) 

Equation (2.2.3) implies that 

fKh py 1 
[r-2 2 2J 

dy' 

Since the horizontal fluid velocity, dx , is assumed to be independent 
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of y this is equivalent to 

02ý2 
+1 

[oýý] Kh =0 (2.2.6) ýýýo 

Using equations (2.2.4) and (2.2.5) gives 

2 

iox'2 + 
i6i: O(x', 0) =0 

Taylor's theorem implies that if 0< y' < Kh 

O(X', Y') = O(X', O) + 0(Kh) . 

(2.2.7) 

Thus; - for small Kh, 0 can be regarded as a function of x' alone - 

satisfying the simple ordinary differential equation 

2 
+1 _ý. 0 

In terms of the dimensional variables this is 

z-2 }20 =o 

where c2h =K= wZ/g . 

(2.2.8) 

Thus if Kh «1 it follows that ?h«1 and so h«A, which is the 

condition for shallow water theory. 

Solutions for 0 are thus of the form 

ý= AetKx + Be-"x . 
(2.2.9) 

24 



A progressive wave travelling in the ±x direction is given by 

Ae+ºKX 

The problem of interest here is that of a wave incident, say from 

x= -oo, on a rectangular obstacle. The problem is most easily described 

by means of a diagram: 

= e- iKX + Re'Kx Te-, Kx 
y-0 

y=hi 

x=-a x=0 x=a -h y 

Figure 2.2.1 

A solution of this problem requires the solution of four 

simultaneous equations corresponding to matching pressure and mass flux 

on x= ±a which is straightforward, if lengthy. It is more 

instructive to use a trick which can greatly simplify the algebra for 

such problems. 

The trick relies on the fact that the problem described by figure 

(2.2.1) is just the 'sum' of the symmetric and antisymmetric problems 

defined by figures (2.2.2) and (2.2.3). 

tKx 
Y=O 

tKx I -I tKx Rie 

e- + RletKX I A1 cos rc1x 10=e+ 

x=- a X=O 

y=h1 

x=a y=h 

Figure 2.2.2 
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= e-iKX + RZe1KX A2 sin K1x =-e'K" - R2e-tKx 
Y=0 

T///ý/// --------- Y=h1 
ýýi, 

y=h x=0 x=a -h 

Figure 2.2.3 

The wavenumber K1 satisfies 'ih1 = K. A comparison with the original 

problem shows that 

R= (R1 + R2) ;T= J(R1 - R2) (2.2.10) 

The solution to each of these problems requires the solution of a 

pair of simultaneous equations since we need only consider half the 

fluid domain, say x>0. In the symmetric case, corresponding to 

figure (2.2.2) these equations, which ensure the conservation of 

pressure and mass flux across x= ±a, are 

At cos K, a = e'Ka + R1e"8 (2.2.11) 

-/cA, sin rc, a = i, c1(e'Ka - Rte- 'Ka) 
. 

(2.2.12) 

The fact that 'cih, = rc2h =K has been used here and is used hereafter 

in order to remove h and h, from the equations. Equations (2.2.11) 

and (2.2.12) can be solved for R, to give 

R1 = e2 tKa i/ci cot xi a+K 

i, c1 cot k1 a- IC 
(2.2.13) 
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In a similar manner the antisymmetric case leads to 

R2 =e 2t Ka 
ix, tan hi a- /c 

i/ci tan /ci a+ /c 
(2.2.14) 

It is convenient to define 

D= 2iici1 cos 2, c1a - 
(k2 

+ ii) sin 2, c1a 

so that R and T can be written, using equation (2.2.10), 

R= (c2 

- ýc) sin 2,1a e21Ka /D (2.2.15) 

T= 2iicic1 e21Ka /D . (2.2.16) 

It is a simple matter to check that these values satisfy the 

conservation of energy condition, IRJ2 + ITJ2 = 1. 

The reflection and transmission coefficients can be considered to be 

defined by figure (2.2.1) in which a wave with velocity potential e-'" 

is incident on the block. The position of the block on the x-axis is 

thus important as the phase of the incoming wave relative to the block 

will be altered if the block is in a different position. A simple 

coordinate transformation shows that if, instead of lying between 

x= -a and x=a, the obstacle lies between x=b and x= b+2a the 

new reflection and transmission coefficients, 8 and i, are given by 

R= Re`IK(b«a) (2.2.17) 

=T (2.2.18) 

where R and T are given by equations (2.2.15) and (2.2.16). 
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2.3 Two Rectangular Obstacles, Shallow Water Theory 

The following configuration will be considered: 

e-tKX + ftetKX 
Ii Ae-tKx + Be1Kx 'i Te-tKX 

Y=o 

/---- -- -- ii F// 1---- -----y=h1 

ý----y=h2 ,, =h x=- a x=0 x=a x=b x=c =h 

Figure 2.3.1 

In order to solve the problem of two rectangular obstacles using 

shallow water theory we could proceed by defining five potentials 

corresponding to the five different regions of the problem and then 

match pressure and mass flux across the lines x= -a, x=a, x=b and 

x=c. This would lead to an 8x8 system of equations which would 

require a lot of effort to solve. 

It is much simpler however, to relate the wave amplitudes in the 

three regions with depth h to the reflection and transmission 

coefficients for the. single obstacles, say R1, T1 and R2, T2 . Note 

that T1 and T2 are equally applicable to waves incident on the 

obstacles from either side (see equation (1.2.38)), whereas R1 and R2 

refer to waves incident from x= -oo. The coordinate system is chosen 

with the first obstacle symmetric about x=0 so that R1 is also the 

reflection coefficient for the first obstacle for waves incident from 

x= +Go. 

There are two waves incident on the first obstacle: the incident 

wave, a-'Kx, from x= -oo and Be"' from the right. These give rise 

to two waves radiating from the body, Re"' to the left and Ae-'K" 

28 



to the right. Thus 

R= R1 + BT1 (2.3.1) 

A= T1 + BR1 . (2.3.2) 

Similarly for the second obstacle 

B= AR2 (2.3.3) 

T= AT2 . (2.3.4) 

Solving these four equations gives 

RZRi - Ti 
1- 11i 2 

T1 T2 T=1= TIT-. 

2.4 Results 

(2.3.5) 

(2.3.6) 

In this chapter the shallow water approximation has been used to 

examine the reflection of waves from either one or two rectangular 

obstacles on the sea bed. The solutions to both of these problems 

therefore assume (see §2.2) that 

Kh«1. 

It is not clear how stringent this condition is or indeed how valid 

the results are for values of Kh which clearly violate this condition. 
In §3.5 results for a single obstacle in shallow water will be compared 

UNrv R ATY 
OF BR4: STOO 
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with results from the full linear theory where it will be seen that 

agreement is not that good. However at this stage it is instructive to 

plot the results for these shallow water approximations over quite a 

wide range of values of Kh as this gives a good indication of the 

qualitative properties of the results. 

Figure (2.4.1) shows the transmission coefficient as a function of 

non-dimensional wavenumber, Kh, for various single obstacles. The 

figure shows that, as one would expect, reflection is increased if the 

obstacle is larger, though even when the obstacle has a height equal to 

4/5 of the depth the transmission coefficient never drops below 0.75. 

The figure also shows a comparison with an obstacle twice as long and 

still with a height of 0.8 times the depth. This is simply equivalent 

to a scaling of the x coordinate and so in this case the Kh axis 

appears to have been squashed up. (Doubling lengths is equivalent to 

dividing Kh by four since Kh = ic2h2 = 472h2/A2. ) 

If two identical blocks are spaced apart on the bottom then, as is 

shown in figure (2.4.2), the transmission coefficient is lower than in 

the case of a single obstacle. It should be noted however that in the 

long wave region, i. e. small Kh, where the shallow water theory is 

expected to be most accurate the performance of the double obstacle as a 

reflector is, if anything, worse than that of the single obstacle. 

A noticeable feature of figure (2.4.1) is that the curves for the 

two obstacles of different lengths but the same height seem to 

complement each other, i. e. where one has a maximum in transmission the 

other has a minimum. It is clear, by scaling the x coordinate, that a 

block three times the length of the original will not increase the 

maximum reflection but the complementary nature of the obstacles with 

lengths h and 2h suggests placing these spaced apart by some 

distance. The results are shown in figure (2.4.3) for various gap 
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Figure 2.4.1. IT) plotted against Kh for 4 single blocks. 
"" hi/h=0.7, a/h=0.5; h1/h=0.5, a/h=0.5; --- h1/h=0.2, 

a/h=0.5; -"-"- h1/h=0.2, a/h=1. 

Figure 2.4.2. ITS plotted a ainst Kh. single block, h, /h=0.5, 
a/ =0.5; --- two blocks, h, 

7h=h2/h=0.5, 
a/h=0.5, b/h=2.5, c/h=3.5. 
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J 
1.6 

Kh 

Figure 2.4.3. IT( plotted against Kh for two blocks, of length h 
and 2h, with 4 different gap widths. In all cases h1/h=h2/h=0.2. 

gap/h=0; --- gap/h=0.5; ". "". gap/h=1; -"-"- gap/h=10. 

gap/h 

Figure 2.4.4. (TI plotted against ga. p/h for two blocks, of length h 
and 2h, at 4 different frequencies. In all cases h1/h=h2/h=0.2. 

Kh=0.1; --- Kh=0.2; ..... Kh=0.3; -"-"- Kh=0.5. 
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widths and it is clear that by incorporating this gap we have 

substantially improved the reflective properties. The optimal gap width 

is clearly a function of Kh and figure (2.4.4) shows the variation of 

transmission coefficient with non-dimensional gap width for various 

values of Kh. The figure shows that the gap width is more important 

for some wavenumbers than for others and for this configuration it 

hardly matters at all when Kh = 0.5. 

2.5 Conclusion 

The simplest way in which to obtain wave reflection is to place some 

fixed obstacle in the water. This problem has been briefly addressed in 

this chapter, in particular the question of whether large reductions in 

transmission can be achieved with reasonably small obstacles has been 

considered. 
In order to get some qualitative idea of how fixed obstacles might 

perform as wave reflectors the shallow water approximation was used to 

solve the problem of wave incident on one or two rectangular obstacles- 

on the sea bed. The results for a single block show that such an 

obstacle is not a good wave reflector. This is in agreement with 

previous work on rectangular obstacles, whether blocks or trenches, 

see §2.1. 

A device consisting of two blocks separated by a gap was shown to 

perform slightly better as a wave 'reflector though even with two large 

blocks (4/5 of the depth in height) transmission coefficients of less 

than I are only obtained at a very few frequencies. 
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CIIAPTEß 3 

Wave reflection from submerged obstacles that are 

allowed to move in response to the waves 

3.1 Introduction 

In this chapter, and again in chapter 4, the two-dimensional problem 

of wave reflection by submerged bodies moving in response to an incident 

wave subject to a restoring force is considered. The general theory has 

recently been developed by D. V. Evans using an approach similar to that 

used in Evans (1976) for the problem of wave energy absorption by a-- 

damped oscillating body. In that paper it was shown that a submerged 

horizontal circular cylinder could be highly efficient as a wave power 

absorber. Problems concerning circular cylinders will be looked at in 

detail in chapter 4. 

Here the general theory will be summarised in §3.2 and then, in 

§§3.3 and 3.4, applied to two simple cases. 

In §3.3 the problem of a completely submerged vertical plate, hinged 

at the sea bed, is analysed. The hydrodynamic characteristics of such a 

system are found using the method of matched eigenfunction expansions. 

A similar problem has been solved by Leach et al. (1985), the difference 

being that in their work the plate extends through the free surface. 

In §3.4 the problems of a rectangular block on the bottom 

oscillating in sway and in heave are considered and again the method of 

matched eigenfunction expansions is used. 
Results for these simple cases are discussed in §3.6 and it is noted 

that there is a vast improvement in the reflective properties over fixed 
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devices. It is also found that, the vertical hinged plate not extending 

to the free surface can, with an appropriate restoring force, reflect 

more waves than the hinged plate considered by Leach et al. (1985) even 

though the latter extends through the free surface. 
As will be shown in the next. section, in order to calculate the 

properties of a moving body in waves it is necessary to know the 

characteristics of the same body when fixed in those waves. In the case 

of the block this will allow results obtained in §2.2 for the shallow 

water case to be compared with the full linear solution. The reflection 

and transmission coefficients for a rectangular block on the bottom have 

been calculated by McIver (1985) who solved the scattering problem by 

the method of matched eigenfunction expansions. Here these quantities 

will- be. obtained from the solution of two radiation problems, one 

symmetric and one antisymmetric, via the Newman relations. This is done 

in §3.5. 

In §3.7 it is indicated how the general theory can be extended to 

cover incoming wave fields having a frequency spectrum rather than just 

a single frequency. 

A discussion of the conclusions that can be drawn from the work 

presented in this section is given in §3.8. 

3.2 General Theory 

The material in this section is based on ideas due to D. V. Evans and 

together with material from §§4.2-4.7 forms part of a joint paper by 

Evans and Linton to be published in Applied Ocean Research. An approach 

is used which follows closely 
, 
that of Evans (1976) for the wave power 

absorption problem in order to solve the general problem of wave 

reflection by moving bodies in two dimensions. 
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We consider a single body spanning a narrow wave tank and 

constrained to oscillate at the same frequency as the incident waves in 

a single mode of motion, either heave, sway, or roll. Its motion is 

opposed by an external force proportional to its (small) displacement. 

For example this could be regarded as the hydrostatic restoring force 

for a surface-piercing body, or a mooring force. 

As described in §1.2 there exists a velocity potential 

t(x, y, t) = Re[O(x, y)e`] (3.2.1) 

where the time independent potential q$(x, y) satisfies 

v2O 
=0 in the fluid - .. 

(3.2.2)- 

KO +a=0 on y=0, K= w2/g (3.2.3) 

4 
=0 ony=h (3.2.4) 

do = U. n on the body. (3.2.5) 

As x -+ +o we assume 

gA cosh r -h (e'KX + Rte-'Kx) (3.2.6) 
w cosh ich 

with A real, whilst as x -+ -oo 
a 

gA cosh -h Tie"' . 
(3.2.7) 

&J cosh nh 
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Here Ic is the real positive root of 

K=r. tanhich 

It is clear from equations (3.2.6), (3.2.7), and the equation 

(3.2.8) 

*) = -img-i*O(X, O) (3.2.9) 

for the time-independent surface elevation, that 0 describes a wave of 

amplitude A incident upon the body and giving rise to reflected and 

transmitted waves of amplitude AIR1I and AIT1j respectively. 
It is convenient to separate 0 into two potentials, so that 

0= Os + UOR . 
(3.2.10) 

Thus ýS is a scattering potential which satisfies all the previous 

conditions satisfied by ý but with the body held fixed and then U, 

the time-independent velocity (or-angular velocity in roll) of the body 

is zero and R1, T, in equations (3.2.6) and (3.2.7) become R, T 

respectively. 

On the other hand 0, is a radiation potential satisfying equations 

(3.2.2)-(3.2.4) and 

R= (U. n)/U on the body (3.2.11) 
n 

whilst for x- too 

N 
A' cosh k -h eFikx (3.2.12) 

cosh c 

describing waves radiating away from the body. 
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It is clear that the combination given by equation (3.2.10) 

satisfies all the conditions of the problem. Furthermore we have 

R1=R+gA', T1=T+gA'. (3.2.13) 

At this stage we shall restrict the body and its motion to be 

symmetric in the sense that in heave, A+ = A- = As, say, and in sway or 

roll, A* = -A- = As. 

Now if we require the induced motion of the body to create a wave 

which cancels the downstream wave, we require 

T±, g As=O (3.2.14) 

where the upper sign refers to heave, the lower to sway or roll. If we 

substitute this optimal value of U determined from equation (3.2.14) 

into the expression for R, in equation (3.2.13) we obtain 

R1 =RtT, T1 =0. (3.2.15) 

But for symmetric bodies it follows directly from the Newman relations 

(Newman (1975), see equation (3.2.21) below) that 

IR + TI = IR - Tj = 1. It follows that not only does U, chosen to 

satisfy equation (3.2.14), eliminate the downstream wave but no work 

needs to be fed in or taken out of the system in the process since the 

incident wave is totally reflected. This result was first pointed out 

by Guevel (1985). 

We turn next to the external force on the body and, in the light of 

the previous result, choose a form which is non-dissipative. We denote 

time-independent forces by X, their actual value being Re[Xe''t]. 
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Thus we shall assume the external force to be 

Xex = iam''U, A real, (3.2.16) 

that is, proportional to the oscillatory displacement of the body and 

hence its time-independent velocity U. With . real it is clear that 

the mean power over a cycle, JRe[XexU] , is zero. (Here a bar denotes 

a complex conjugate). 

Similarly we denote the exciting force on the fixed body, 

corresponding to the potential OS, by XS and the radiation force, 

corresponding to the potential UOR, by XR. This latter force is 

conveniently separated into a term in phase with the acceleration of the 

body and a term in phase with the velocity. 
Thus 

Xx =- (B + iA)U (3.2.17) 

where B, M are the frequency-dependent radiation damping and 

added-mass coefficients for the body in question, and can be assumed 

known. 

The relations amongst the various quantities we have introduced 

which were proved in chapter 1 will be used to simplify the subsequent 

work. Thus for the symmetric problem being considered we have from 

equation (1.2.45) 

Xs = 2p&AAscg (Ilaskind) (3.2.18) 

and from equation (1.2.32) 

B= 2pw2g-' As12cg (3.2.19) 
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whilst from equation (1.2.39) 

1RI2 + IT12 =1 (conservation of energy) (3.2.20) 

and from equations (1.2.43) and (1.2.44) 

R±T= -AS/AS (Newman). 

The equation of motion for the body is 

Xex + XR + Xs = i(IU 

(3.2.21) 

(3.2.22) 

where I is the mass (heave, sway) or moment of inertia (roll) of the 

body. This can be written, using equations (3.2.16) and (3.2.17), as 

B(1 + iC)U = Xs (3.2.23) 

where 

C= {(Ai + I)tv2 - a}/Brv 

which determines the motion of the body in terms of the constant A. 

It follows from equations (3.2.13), (3.2.21) and (3.2.23) that 

R1 = (CR ± iT)/(C - i) 

T1 = (CT ± iR)/(C - i). 

It is easily verified that 

(3.2.24) 

(3.2.25) 

JR, 12 + JT, 12 =1 (3.2.26) 
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and that 

R1 ± T1 = 
(C 

-i 
(R t T) (3.2.27) 

This in turn implies that 1R, ± T11 = IR ± T) since C is real. 

Now since IR + Tj = IR - TI =1 it follows that Re[R/T] =0 

provided T#0. Thus we may write R/T = ix where X is real and 

one-signed provided R#0 at any frequency. 

Thus 

T1 = T(C + X)/(C - i) (3.2.28) 

R1 = R(C t X-ý)/(C - i). (3.2.29) 

The condition for T. =0 is 

C= ±x or A= (M + I) w' + BwX (3.2.30)- 

whilst the condition for R1 =0 is 

C= ±X"1 or A= (rM + I)w2 ± BwX'1 . 
(3.2.31) 

It would appear therefore that it may be possible to 'tune' a body 

to reflect all the incident waves, so that T1 = 0, at a given 

frequency, by a suitable choice of 'spring' constant A satisfying 

equation (3.2.30). 

With Ao fixed, equation (3.2.28) gives T1 as a function of wave 

frequency, vanishing if and when 

C=±X or AO =(M+ I)w2 T (3.2.32) 
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In order to demonstrate the theory we will apply it to two simple 

cases. In the next section the problem of a vertical plate hinged at 

the sea bed is considered and then the problem of a rectangular block on 

the sea bed will be considered in §3.4. 

Equation (3.2.28) gives T1 as a function of a number of 

parameters. Before we can use this equation to work out the reflecting 

properties of a body a method for calculating the non-dimensional added 

mass and radiation damping coefficients together with the, reflection and 

transmission coefficients for the scattering problem must be found. 

3.3 Vertical Plate IIinged at the Sea Bed 

Isere we will solve the radiation problem for the vertical hinged 

plate by using the method of matched eigenfunction expansions. The 

geometry of the problem is indicated in figure (3.3.1). 

0 y=o 

------------- y=h- a 

11 
X_ y=h 

Figure 3.3.1 

Once again the starting point for the solution is the velocity 

potential I(x, y, t). The time independent velocity potential ý(x, y), 

defined by equation (3.2.1), is the solution of the boundary-value 

problem given by equations (3.2.2)-(3.2.5) with a radiation condition 

imposed at x= ±oo. The fluid region will be divided into two parts 

let the potential in x<0,0 <y<h be 6- and in x>0,0 <y<h 
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be ¢'. Then 

02 0' =0x<0 

v20+=o x>0 

(3.3.1) 

ý± N At cosh x h- 
eF ' KX as x-º ±oo. (3.3.2) cosh /L 

Continuity of pressure and velocity across x=0 give the conditions 

0-_o' x=0,0<y<h-a (3.3.3) 

ý_ ýXL+ x=0,0<y<h-a (3.3.4) 

and if the plate is hinged at the bottom we then have 

do- 
==U(ý, x= xxa h-y <y<h. (3.3.5) 

where U can be taken to be an arbitrary complex number (see equations 

(1.2.14)-(1.2.17)). 

We will use the complete orthogonal functions, (see Mei (1983) 

pp 304-306), 
fn 

= N; L2 cos k,, (h Y) 

where 

Nn _ý 
(1 

+ sin k,, h 
n-0,1, .... 

Here kn n=0,1,... are the solutions of 

K+ kn tan knh =0 (3.3.6) 
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and it can be assumed without loss of generality that Re(kn) >0 

n=0,1,2,... . Note that the n=0 equation is just equation (3.2.8) 

with x= -iko and so 

fo = NO" cosh rc(h-y) 

where 

Na =1+ sink 2ih 

Writing k,, h =z=x+ iy reduces equation (3.3.6) to 

Kh +z tan z=0. The imaginary part of this equation reduces to 

sin 2x 
_ 

Binh 2y 
2x y 

which has no solution except in the limit (x, y) -º (0,0). It follows 

that all the remaining solutions to equation (3.3.6), i. e. k� n>1, 

are real and it is easy to show that there are an infinite number of 

them. The functions f� satisfy 

h 
f fn(y) fm(y) dy = Smn m, n = 0,1,... . 

(3.3.7) ho 

The first step in solving the problem is to write down eigenfunction 

expansions of q$ and O+. Thus 

m 
U-' 0 (X, Y) = Bö fa etKx +ý Bn fn eXP(knX) (3.3.8) 

n=i 

m 

U-' 0'(X, Y) = Bö fp e-tKx +C Bn fn eXp(_i{nX). 
n i 

(3.3.9) 
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A comparison with equation (3.3.2) immediately gives 

A` = Nö'2 Bö cosh xh ; A- = Növ2 Bö cosh Kh (3.3.10) 

From equations (3.3.8) and (3.3.9) it follows that 

C13 A i* I 

U'i UX 
1XBO =+ ix Bö fo Ti kn Bn fn. (3.3.11) 

n=i 

The boundary conditions on x=0 then imply that Bö = -Bo* and 

B; = -Bn which is clear on physical grounds due to the antisymmetry of 

the problem. 

The problems for and can now be simplified to just one 

problem, say for P', with the extra condition that 

0+(0, y) =00<y< h- a. (3.3.12) 

This condition is equivalent to 

co 

IB*n fn(y) =0 0< y< h-a (3.3.13) 
n=o 

and equation (3.3.5) is equivalent to 

kn Bn fn(Y) =yh h-a <y<h. (3.3.14) 
n: 0 

To convert these two equations into a single infinite system the 
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following method is used. 

Let 

m 

aI Bnfn(y) 0<y<h-a 
F(y) = nm=o 

Q kaBn fn(y) + (h-y)} h-a <y<h 
n=o 

where a, fl # 0. Then 

F(y)=0 0<y<h. 

Therefore 
h 

1J F(Y) fm(Y) dY =0 fi 
o 

It follows from equation (3.3.7) that 

m=0,1,... 

(3.3.15) 

(3.3.16) 

(3.3.17) 

hh-a 

fm fn(y) f m(Y) dy = 8m n- fi Jf n(Y) iY) dy (3 
.3 . 18) 

h-a o 

and so equation (3.3.17) implies that 

m( 

rr 
fh 

( Bn aDmn +ýkna (b,, 
' D.,, ) ýfml) dy 

n=0 h-g 

(3.3.19) 

where 
fh 

Dmn fn(y) f. ( y) dY. 

0 

(3.3.20) 

The constants a and Q are arbitrary but non-zero. By varying 

these parameters the convergence properties of the final system of 

equations will be altered. It was found however that the effect of 

altering either parameter was slight and so from now on it will be 

assumed that a=Q=1 since this keeps the algebra as simple as 
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possible. Then, putting 

Cn =- Bn ka/h (3.3.21) 

equation (3.3.19) becomes 

h 

C. [ bmn + Dmn ý 
nä 

- 1) J=f 
hjý fm(y) dY" (3.3.22) 

n=o h-a 

Evaluating the right hand side gives 

n=0 

m=0,1,... . 

nsl 

Equation (3.2.23) represents an infinite system of equations for the 

unknowns C. n=0,1,... . It is more convenient to have the indices 

n and m running from 1 rather than from 0 and so we write 

equation (3.3.23) as 

m 

2 Mmn Xn = Ym 

where 

m=1,2,... 

11fmn = Smn + Dm_1, n-i 
( 

ný 
- 

1) 

3jmi 
= Smi + Dm-s 0 `1lCä - 1) 

= 6m1 - Dm_1 -i Dm-1, o/(Ka) 

m 
CS+ Dý- 1 =N-ý2 

(a, siýnkýma 
-1- 

ýoskmal 
ný mm mý 

ýýým 
lL JJ 

Xn = Cn-i 

_(3.3.23) 

(3.3.24) 

m=1,2,... 

n=2,3,... 

m=1,2,... 

n=1,2,... 

Y= -3/2 (asinkm-1a_ 1- coskm-1a m=23 .. n 
Nm-1 

i, ," 

m-ý m-ý 
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1- cosh Kal Y1 = Novz a sinh Ka 

- fiT- KJ. 

Equation (3.3.24) represents an infinite system of equations in an 

infinite number of unknowns. For the purpose of computation equation 

(3.3.24) is truncated to an NxN system and approximations are 

calculated to the finite set of coefficients X� n=1,2,..., N (and 

hence Cn). By increasing the value of N the convergence of the 

method can be checked and providing the method does converge, i. e. the 

values obtained for the coefficients Xn tend to some limiting value as 

N -º co, greater accuracy can be achieved at the expense of computing 

time. In this example taking N= 50 was found to give an accuracy of 

about 1%, though greater values of N are required when a/h is 

small. The values of the coefficients ... 
CA can thus be assumed known 

and 0± can be calculated from 

m -- 
0`(x, Y) 0-(xýY) Uh Cl fä 

exp(-knx). (3.3.25) 
n: o 

The moment, f, on the plate is given by integrating the moment of 

the pressure around the plate and is therefore given by 

h OD 

f= - 2pwi f (Y- h) Uh I C" fä dy 
ý-a n. o 

(3.3.26) 

and so the added inertia and damping coefficients, non-dimensionalised 

with respect to the quantity pa3Uw, µ and v, are given by 

m 
[]3 

N2 G L2 a sin k"a 1 cos k"a (3.3.27) =ý 
[Fi 

Tc"h - {" 
"=o 
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m 
h cc Cn v2 siTn kn-a 1 cos k, a 

-2 äk�aNn hnd' 
- {na 

] 

n=i 

- 2i h Co N; 1/2 rsinh rca +1- cosh rcaI 
ä ra L rca rca 

(3.3.28) 

Some curves of # and v, plotted against non-dimensional frequency, 

Ka, are shown in figures (3.3.2) and (3.3.3). 

Standard theorems connecting the far field behaviour with the 

damping coefficient can now be used as a check on the results. 

Comparing equations (3.3.2) and (3.3.25) we see that the amplitudes of 

the waves in the far field are proportional to jAt) where the At are 

given by 

At 2_ C° z cosh rch "h--, 24 Kh cosh 
2 
rh [k]. ý 1ý 1,2- ýCI ý 2nh sinT2ýTi 

(3.3.29) 

The damping coefficient, v, and these amplitudes are connected by 

equation (1.2.32), thus 

2 

vpma2 = ýg l (IA'1Z + IA-12) (3.3.30) 

h 
where cg is the group velocity and is given by rx 

11 
+ J2/cnLTTKT 

}. 

This can be simplified to 

3 

v=ICo122 Ra 
[a] (3.3.31) 

where the dispersion relation, equation (3.2.8), has been used. 

The Newman relations, equations (1.2.41)-(1.2.44), connecting the 

reflection and transmission coefficients for the scattering problem with 

the far field behaviour of the radiation problem, can now be used to 
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show that 

R-T= Co/Co. (3.3.32) 

In order to find expressions for R and T separately we must solve a 

symmetric problem as well as the antisymmetric problem solved here. 

Before this is done the case a=h will be examined, which should 

check with the simple wavemaker solution due to Havelock (1929). 

If a=h then Dmn =0Vm, n so that M is the identity matrix. 

Therefore Xn = Yn and the coefficients Cn are given by 

Co = Novz rsin 
+1 -ýhI 

C -- N, sin knh 
_1- cos knh 

nn -ý--h 
Knu {n 

(3.3.33) 

n=1,2,... 

It is straightforward to check that this solution is the same as the 

solution to the wavemaker problem. In this case the coefficients 

C. n=0,1,... are all real. 
The quantities u and v in this case can be calculated using 

equation (3.3.28) with the values for Cn those given by equation 

(3.3.33). As the C. 's are all real the damping coefficient is given 

exactly by 

4 (rch) '1 
(1 

+s 
inýJ 1 (s in 

+1- cosh tchl Z 

which shows that vN (2ich)'1 as nh --- 0. Figure (3.3.3) shows that 

the damping coefficient is not unbounded in this limit if a/h <1 and 

thus the hydrodynamic characteristics of the plate must change 

dramatically as the plate approaches the free surface. This is not 

particularly surprising considering the fact that when a small gap 
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exists above a rolling plate it is likely that a substantial oscillatory 

flow will be generated above the plate. However when a/h =1 this can 

no longer exist. A similar situation arises when a submerged cylinder 

approaches the bottom and this will be discussed in some detail in §4.4. 

Figures (3.3.4) and (3.3.5) show the change in p and v as a/h --º 1. 

As mentioned above it is necessary to solve a symmetric problem in 

order to be able to calculate R and T. Here a symmetric problem is 

one where the potentials 0+(x, y) and q'(x, y) satisfy 

o+(X$Y) =0 ('X, Y) (3.3.34) 

The symmetric problem that will be solved will be a boundary value 

problem for 0' : 

V2 7+ =0x>0 (3.3.35) 

ý+ N A. cosh r. h- 
e" as x -4 oo (3.3.36) 

cosh ý 

0 0<y<h-a 

"" 
(". 

° (h- Y) 
Uä h-a'< Y<h 

(3.3.37) 

This problem can be solved explicitly using simple wavemaker theory as 

developed by havelock (1929). The only value that is of interest is 

that of A. which is given by 

AS _ 
icosh ich sinh ýca +1- cosh rca (3.3.38) ýý ýa ý -ý No 

I 

which is pure imaginary. It follows from the Newman relations that 

R+T=1 and then equation (3.3.32) gives 

R=1 (1 + Co/Co) ýT=1 (1 - Co/Co) . 
(3.3.39) 
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Figure (3.3.6) shows a curve of DTI against Ka for three plates 

of different heights, the largest having a height equal to 4/5 of the 

depth. The curve shows that as a fixed device a vertical plate not 

extending to the free surface is a poor reflector of waves. 

3.4 Rectangular Block on the Sea Bed 

In this section, as in the previous section, the method of matched 

eigenfunction expansions is used to solve a radiation problem. This 

time the problem concerned is that of a rectangular obstacle on the sea 

bed. Due to the symmetry of the obstacle it is only necessary to work 

in the region x>0 with a suitable condition on x=0. 

Y=O R2 

/ ---------- y=h, 

/ '! /// y=h 
x=0 x=a 

Figure 3.4.1 

The problems of heave and sway will be considered simultaneously. 

Bracketed superscripts will be used to distinguish between the two 

problems with (" referring to sway and (2) to heave. The fluid domain 

of interest is divided into two regions : 

Ri 

: O<x<a, 0<y<hi and 
R2 

: a<x, O<y<h . 

The time-independent potential in R1 will be written as 0iiI j=1,2 

and that in A2 as q$ j=1,2 . The two boundary-value problems 
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are then given by 

V2 oj >> =0 in R1 i, j=1,2 (3.4.1) 

Kýl + 
ýi >> 

=0 on y=0 i, j=1,2 (3.4.2) 

(2J) 

V =0 on v=h. a<x i=1,2 (3.4.3) 
v-w, v. 
y 

o1 i) = 01>> 

Y 

ý12) 
= U(2) 

a (i) 

y =0 

on x=a, 0<y<hi j=1,2 (3.4.4) 

on y=hi, O<x<a (3.4.5) 

on y=hi, O<x<a (3.4.6) 

ý121 
0 on x=0,0<y<hi (3.4.7) 

0i i) =0 on x=0,0<y<hi (3.4.8) 

aI" ý Ix=a 0<y<hs 2 
x=a 

(3.4.9) PX >> 

Ucsýbjý h, <y<h 

In order to solve this problem two complete orthogonal sets of 

functions will be required, one for the region R1 and one for RZ. 

These will be denoted by fn(y) and gn(y) n=0,1,2,... respectively. 

Thus 

f, (Y) = N-n" cos an(Y - hi) n=0,1,2,... 

Nn + sin 2anhtl -ý1 -ý- 2a h1 J 

an tan anh, +K=0 
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ön(Y) _ Mnv2 cos Q,, (y - h) n=0,1,2,... 

ri n=2 
Cl 

+ sin 
l 

Qn tan Qnh + R= ý. 

The constants an and Qn n>0 are real and positive but ao and 

Qo are pure imaginary and correspond to the wavenumbers i1 and x 

for the two different fluid regions: 

ao = i1c1 

Qo = 1/C 
. 

For further detail see §3.3. 

Due to the nature of the boundary conditions we write 

U(z)ly -R+ An2) cosh a"x (y)1 (3.4.10) 
l an sinh a"a 

f" 
JJ ' 

m 

n o 

where the first two terms are included so as to satisfy the 

inhomogeneous condition on y= h1,0 <x<a and the free surface 

condition, 

m 

U(I) C Ani ) sink anx f nýY) L an cos ana n: o 

m 

o2>> = Um Btj) ex -, x-a gn(Y) 
no 

r- ". 

j=1,2. 
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With this choice all the boundary conditions of the problem are 

satisfied except those on the boundary between the two regions, namely 

equations (3.4.4) and (3.4.9). Equation (3.4.4) gives 

m co 
R+C Ant) cothanana f. (Y) --ýB, ý, 2) 9"(YI (3.4.13) 

n=Go n=0 n 

and 

Both of these equations must be valid in the region 0 <-y < hl. In 

order to simplify the algebra we define 

h 

Cmn = Iii 
f ifm(Y) 

gn(y) dy " 
0 

mW 

Ani) tanhýnana fn(Y) 
--) Bni) 9fYj °n 

no nýý=++o 

(3.4.14) 

(3.4.15) 

Multiplying by fm(y) and integrating equations (3.4.13) and (3.4.14) 

over the range 0 to h1 then leads to 

Amt 
Co ý 

amhi tanh ama ý Bý2) Cý 
= 

tanh aIDa 
ý' (3.4.16) 

no 

AID1ý +ý amh1 coth ama j Bniý ýý 

n=0 

m=0,1,2,... 

(3.4.17) 

where the inhomogeneity in the first equation is due to the term 

y- 1/K in the expression for the potential. 
The boundary condition concerning the horizontal fluid velocity on 

the line x=a is now applied. This results in another equation 
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connecting the A's and the B's: 

$kj) h, V2 
AnJ)Cnk + ÖJ1 Sill , Ok(h-hi). (3.4.18) 

k 
n=o 

Combining equation (3.4.18) with equations (3.4.16) and (3.4.17) leads 

to the following system of equations: 

m 

Am(') + amh1 tanh ama ý Dmn An2ý tan 
am i Nm 

n=0 

(3.4.19) 

Co 

Acýý + amh, CD A( ý) h amh1 Cmk sin k h-h1 
I/Z tanh aaG mit n 111 tanh kk 

n=o k=o 

m=0,1,2,... (3.4.20) 

where 

D 
.nL. 

k=o 
Tk-R -- . 

This infinite system of equations for Aý'ý is solved using the same 

truncation procedure as described in §3.3. 'It was found that truncating 

all the series to ten terms gave'accuracy to within at least 1%. 

The force in the direction of motion is given by 

X(2) 
= 2pwiU(2)J oi2ý(x, h1) dx (3.4.21) 

0 

W) = 2pmiU(i) Jh 021)-(a, Y) dy 

i 

(3.4.22) 

and this leads to the following expressions for the added-mass and 
damping coefficients (non-dimensionalised with respect to the mass of 
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fluid displaced by the block): 

00 
(2) 

- 1Uý2ý = 
h1 

II -1- 
A02' 

+ 
A"2' 

fi=Iiý L Rý - ýla /c1 1oG ana aý 1n 

m 

n=i 

h B(1) 
ýý- ° sin Jý 

/ýn (hi-h) 
i na nn 

n=o 

(3.4.23) 

(3.4.24) 

In order to use equation (3.4.24) it is necessary to evaluate the B's in 

terms of the A's. This is done using equation (3.4.18). 

It is important to note what problem is actually being solved in the 

heave case. No account has been taken of the fact that as the block 

moves upwards a gap will be created at the bottom which would result in 

another region of fluid. In fact the problem-that=has been solved is 

that of a block that is continually changing shape so that it remains in 

contact with the bottom while the top oscillates. 

Some curves of ji and v, plotted against Kh are shown in figures 

(3.4.2)-(3.4.5). The heaving block exhibits the phenomenon of negative 

added mass when the block is close to the free surface. This phenomenon 

has been discussed in detail by McIver and Evans (1984). In an appendix 

they prove the following result due to Falnes (unpublished note): 

T- V= 411N2 (3.4.25) 

where T and V are respectively the kinetic and potential energies of 

the total fluid motion averaged over a period, M is the added mass and 

U is the velocity amplitude of a body oscillating in a single mode of 

motion. At large depths of submergence the effect of the free surface, 

and hence V, is negligible and so M is positive. Clearly however if 

the effect of the free surface is such that V>T then negative added 

mass will result. It should also be noted that the long wave limits of 
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the heave added mass differ from results obtained by Bai (1977) for the 

case of a block immersed through the free surface. A careful analysis 

of the zero frequency limit shows that the two problems are not in fact 

equivalent. 

Equation (3.4.12) implies that as x --+ oo 

O(J) N irc-'U(J)gäl)e-lx(x-a) go(Y) 

and so if it is assumed that as x --' 

O(J) N U(J)A+j)e-l"x cosh rc -h 
cos rc 

the following expression is obtained for the complex amplitude: 

A+j). - iBaJ)elKa cosh 

(3.4.26) 

(3.4.27) 

The Newman relations, equations (1.2.41)-(1.2.44), therefore give 

R+ (-1)J T=- A+>>/A+>> = e2tic 
a Bo>>/Bo>> .' 

(3.4.28) 

As in the previous section, the relation between the damping 

coefficient and the far field amplitudes, equation (1.2.32), can and was 

used to provide a check on the calculations. In this case the identity 

obtained is 

v(j) _h 
BöJ) 2 

- h=h, ica 
(3.4.29) 

The results obtained for R and T were also checked against 

curves shown in McIver (1985) who solved the scattering problem for the 

block by the same method. 
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3.5 Comparison with Shallow Water Theory 

Lamb (1932) p. 262 used the shallow water approximation to solve the 

two-dimensional problem of wave reflection by a step. The following 

statement is added in a footnote: "It will be understood that the 

problem admits only an approximate treatment, on account of the rapid 

change in the character of the motion near the point of discontinuity. " 

The shallow water equations, by assuming that horizontal velocity 

does not vary with depth, are obviously inadequate in problems with 

sudden depth changes. Tuck (1976) looked at this problem and showed how 

progress can be made by considering a small region encompassing the 

depth change and using matching techniques to match the solution 

obtained in this region to the standard solution obtained from the 

'outer' region. 

In chapter 2 the shallow water equations are used, without any such 

refinement, to solve problems with rectangular blocks on the sea bed. 

The results for the reflection and transmission coefficients for a 

single block can-now be compared with those from the full linear theory 

given by equation (3-4.28). ' Figure (3.5.1) shows such a comparison for 

three blocks of different heights. The results show that, as expected, 

the shallow water approximation is not that good for this problem, but 

in the region 0< Kh < 0.3 where the shallow water equations should be 

most applicable the results are accurate to within a few percent. 

3.6 Results 

The condition for zero transmission is given by equation (3.2.30) 

which is 

A= (M + I) w2 '+ BwX 
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with the upper sign for heave and the lower for sway and roll. Thus if 

a body is tuned to a frequency wo, the force constant, A, must be given 

by 

A= (Dto + I)wö + Bowoxa (3.6.1) 

in an obvious notation. The transmission coefficient, IT1I, is given 

by equation (3.2.28) and this can now be written 

Ti =T 
Dt+Iw2 - Mo+I wö +Bowo o+Bw + w- (Alo Wo + oWoxo -Aw 

(3.6.2) 

It is convenient to non-dimensionalise the quantities that appear in 

this equation. If M' is used to represent a typical fluid mass or 

inertia then a suitable non-dimensionalisation is given by 

I= M's ;M= M'µ ;B= M'wv. 

The resulting expression for T1 is then 

(3.6.3 

In §§3.3 and 3.4 methods for the calculation of µ, v, X and T 

were discussed for two simple cases and these results can now be used in 

equation (3.6.3) to see what sort of results can be obtained from such 

devices. In the case of the vertical hinged plate of length a the 

inertia used for M' was pal (see equation (3.3.27)), whilst for the 

block of length 2a and height h-h, the mass of displaced water was 

used, i. e. hl'* = 2pa(h - h, ), (see equations (3.4.23) and (3.4.24)). 

For the block therefore s represents the specific gravity and in the 

results shown we will assume that the block is neutrally buoyant so that 

s=1. For the vertical hinged plate s is the ratio of the mass of 
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the plate to the mass of a large block of fluid and is clearly going to 

be small. In the calculations s=0 is used. Note that the method 

for generating the appropriate force constant, A, is not discussed. It 

is assumed that such a restoring force can be created by some means. In 

chapter 4, when we will examine a device in much more detail, this 

problem will be addressed. 

Let us start with a vertical plate hinged at the sea bed which is 

allowed to perform rolling motions in response to an incident wave. Let 

us further assume that some sort of restoring force is in operation that 

results in the body being 'tuned', in the sense that equation (3.2.30) 

is satisfied, with, say Kh = w2h/g = 1. Figure (3.6.1) shows curves of 

IT1I against non-dimensional frequency, Kh, for three different plate 

lengths: a/h = 0.3,0.5 and 0.8. All the curves satisfy IT11 =0 at 

Kh =1 but the bandwidth of frequencies over which IT1I is small is 

narrow when a/h < 0.5. Nevertheless the increased reflection being 

achieved here is a great improvement on the amount of reflection that 

was obtained from fixed devices in chapter 2. The results also compare 

very favourably with those presented by Leach et al. (1985) for the 

rolling plate that extends through the free surface and is subject to a 

restoring force provided by cables connecting the top of the plate to 

the sea bed on either side of the hinge. In their paper curves are 

shown which indicate a large degree of reflection but predominantly in 

the short wave regime (Kh > 4). (Clearly if the mooring forces are 

stiff enough the whole device will be rigid and since the plate extends 

through the free surface total reflection will result). In the case 

considered here however, large amounts of reflection can be achieved 

with waves of more typical frequencies (Kh < 2) even when the plate is 

well clear of the free surface. 
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The results for the block are better. Figure (3.6.2) shows the case 

of a block in sway while the case of a heaving block is shown in figure 

(3.6.3), both for three different clearances: hi/h = 0.2,0.5, and 0.7. 

In all cases the parameter a/h was taken to be 0.5 and thus the 

block length is equal to the water depth. Again the curves are shown 

against Kh and here also it is assumed that all the blocks are tuned 

to Kh = 1. 

The results for the large swaying block are remarkably good with 

near perfect reflection being achieved at two points other than the 

tuning frequency. Other examples of this phenomenon are given in §4.7. 

Even in the other cases the bandwidth of the curves is greater than 

those achieved by the rolling plate especially in the case of heave. 

Clearly the reflection capabilities of a device that is allowed to 

move in response to the incoming waves are much greater than those of 

fixed obstacles. In chapter 4 we will take a particular object, a 

submerged cylinder, and examine the reflection properties in more 

detail. 

3.7 Real Seas 

So far the waves incident on a body have been assumed to be 

monochromatic, i. e. consisting of just one frequency. This is clearly 

not the case in the open ocean or in harbours, where a whole spectrum of 

waves of different heights, frequencies and directions will exist. The 

problem of modelling a real sea is not an easy one and much has been 

written on the subject. In this section some of the most important 

aspects of the problem will be discussed and then. a description of how 

to adapt the theory from §3.2 will be given. For a detailed discussion 

together with a comprehensive bibliography see Carter et al. (1986). 
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The reason that a whole spectrum of waves is found in one area of 

the sea at the same time is due to the fact that once created (usually 

by the action of the wind on the sea surface) waves dissipate very 

little energy and thus travel considerable distances. Waves at any 

particular location may therefore have been created at places with 

widely different wind conditions. 

There are two different types of wave that are encountered; swell, 

which refers to waves generated by distant storms (hundreds of 

kilometres away) and sea, which refers to waves generated by local 

winds. Locally generated waves have relatively short wavelengths 

compared to swell since waves with short wavelengths dissipate over a 

much shorter distance. Usually a different mathematical description of 

the sea surface is required-. to-model--each of these two regimes. 

There are many different ways of describing the surface of a real 

sea. If, as is the case here, the sea' is two-dimensional then the most 

useful way of describing it is to represent it' by a power -spectral 

density function, 'S(w)'. ` This function represents the proportion of 

energy in the waves that is due to waves of a particular angular 

frequency w, i. e. if wi- and w2 are two angular frequencies then the 

ratio S(w1)/S(w2) gives the ratio of the energy in the waves due to 

waves of frequency wi and w2 respectively. The function S is 

defined up to an arbitrary multiplicative constant. 
Pierson and Moskowitz (1964) used dimensional analysis to suggest a 

possible form of S(w) for fully developed wind seas, i. e seas for 

which S(w) has reached a steady-state independent of the duration in 

time and the distance over which the wind is acting on the free surface 

(see Newman (1977)). Their solution has Its drawbacks, notably that it 

fails to model swell, and it'has been refined and improved on over the 

years. However it is very simple and we will use it here to illustrate 

the way the theory of §3.2 can be used for incident wave spectra. It is 
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more common, when discussing real seas, to use f (= w/2T), i. e. Hertz, 

as the frequency variable. This has the advantage that it is readily 

convertible into wave periods since the period is equal to 1/f. 

Pierson and Moskowitz's form for S is then given by 

S(f) = ag2(2; r)'4f'g exP['A(2T)-4(g/Ü)4f'4] (3.7.1) 

where a=0.0081 and A=0.74. Two points require explanation. 

Firstly the leading factor is included so as to give S the units 

m2/Hz and secondly the parameter U is the mean wind speed measured at 

a level of 19.. 6m above the sea surface and is the sole parameter 

describing the spectrum under fully developed conditions. Typical 

values of - U-- ar-e in the range 8-16 ms-'. 

The theory of §3.2 can be considered as a 'black box' which converts 

a given parameter, w, into another, IT, I. This means that a wave of 

height one at frequency w becomes a wave of height IT1I at the same 

frequency. However the energy in a wave is proportional to the square 

of the amplitude so that if the incoming wave has energy one then the 

outgoing or transmitted wave will have energy IT112. The consequence 

of this is that if the power spectral density function of the waves 

incident on a body is S(f) then the power spectral density function of 

the waves transmitted downstream will' be, since the, problem is 

completely linear, ST(f) where 

ST(f) _ IT1(f)l2 S(f). (3.7.2) 

The function IT1(f)12 is called the power transfer function. 

As an example figure (3.7.1) shows the effect of a 4m long vertical 

plate hinged at the bottom in water of depth 5m on a sea described by 

equation (3.7.1) with U=8 ms-". The reduction in wave amplitude is 
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quite impressive even though the frequency to which the plate is tuned 

does not correspond to the peak in the power spectrum of the incoming 

wave. Clearly in any practical application of this theory the local 

wave climate would play a large part in determining the design of the 

body that was used. 

3.8 Conclusion 

In this chapter we have looked at the general two-dimensional 

problem of waves incident on a body which is allowed to move in 

response. In order to simplify the theory it was assumed that the body 

was symmetric about the vertical axis x=0. It was shown that with a 

suitable choice of restoring force the body could be tuned to reflect 

all the waves of a particular frequency without any work needing to be 

put in or taken out of the system. 

To demonstrate the theory it is necessary to know the hydrodynamic 

characteristics of the body in question. To this end two simple 

problems were solved: the radiation of waves by a vertical plate, 

hinged at the bottom, and performing rolling motions and the radiation 

of waves by a block on the bottom, in both sway and heave. The general 

theory was applied to these bodies to see how good they would be as wave 

reflectors and the results show that the performance of these moving 

bodies as wave reflectors is much better than any of the fixed devices 

considered in chapter 2. 

Clearly in any practical situation the incident wave on such a body 

would not be monochromatic and so a description of how to extend the 

results of the general theory to the case of incident wave spectra has 

also been given. 
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CII1iPTER 4 

Submerged cylinders 

4.1 Introduction 

In §3.1 it was pointed out that Evans (1976) showed that a submerged 

horizontal circular cylinder could be an efficient absorber of wave 

power. The problem of wave absorption and wave reflection are closely 

linked and it will be shown in this chapter that such a body can also be 

a good reflector of wave energy. This is a remarkable result since it 

can be shown using linear water wave theory that in infinitely deep 

water a fixed submerged circular cylinder reflects no waves (Dean 

(1948)), and further, that a freely floating neutrally buoyant cylinder 

reflects no waves either (Ogilvie (1963)). 

In this chapter the, hydrodynamic characteristics of a submerged 

cylinder in finite depth are calculated using the. method of expansion in 

multipoles pioneered by Ursell (1950) for the case of infinite depth. 

Dultipoles are discussed in §4.2 and are used throughout this and the 

next chapter. 

The use of multipole expansions, like the method of matched 

eigenfunction expansions used in §§3.3 and 3.4, reduces certain problems 

to the solution of an infinite system of linear equations for the 

unknown strengths of the multipoles. These can then be solved on a 

computer by truncating to N equations and checking the convergence of 

the solutions for increasing N. In this case we also require the 

numerical evaluation of principal value integrals, a problem which is 

discussed in §4.3. 
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Sections 4.4 and 4.5 are concerned with the full solution of the 

single cylinder problem. In §4.6 the case of a tethered buoyant 

cylinder is examined and the results of chapter 3 are applied to this 

device to give the results shown in §4.7. 

In the context of harbour breakwaters it may be necessary to know 

the hydrodynamic characteristics of a submerged cylinder next to a wall. 

Problems concerning cylinders next to walls can be reformulated as 

problems with two parallel spaced cylinders (and no wall) oscillating in 

such a manner as to make the fluid on a vertical line midway between 

them behave as if it were a wall. ' Two cylinder problems are examined in 

§§4.8-4.10. The work is an extension of Wang (1981) who considered this 

problem in infinitely deep water, though here the method of solution 

used is much simpler. The case of small vertical oscillations (heave) 

for two parallel spaced identical cylinders is equivalent to the problem 

of heave for a single cylinder in the presence of a vertical wall. By 

considering two cylinders making small horizontal oscillations (sway), 

exactly out of phase with each other, the problem of sway next to a wall 

can be solved. This is the problem that is of interest in the context 

of using tethered cylinders as harbour breakwaters. For completeness a 

third case, that of two cylinders in sway and in phase with each other 

(e. g. the sway of a catamaran hull) is also considered. As well as 

these radiation problems, the problem of the scattering of waves by a 

cylinder next to a wall will also be solved. 

4.2 Multipole Expansions 

The method used here to calculate the hydrodynamic characteristics 

of submerged cylinders is to express the time-dependent velocity 
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potential I(x, y, t) in the form 

Re[¢(x, y) e'"`] (4.2.1) 

and then to represent the time-'independent potential 0 as an infinite 

linear combination of multipole potentials, each of which is a harmonic 

function in the fluid region, except at a point, satisfies the free 

surface and bottom boundary conditions and which describes a wave 

travelling outwards as IxI -ºoo. 

Depending on the problem under consideration either symmetric or 

antisymmetric multipoles will be appropriate. The following convention 

is used: q=1 (2) refers to antisymmetric (symmetric) multipoles; 

where a bracketed pair appears, the top (bottom) element is applicable 

if q=1 (2). 

With this convention the multipole potentials, given by Thorne 

(1953), can be written 

m 

On. an+1 (sin n9l 1f g(k, q) Jsin kxl dk °' a n- rý lCOs n9J 
+ IlT 

0 
cosh kh - kh S1riT1 , týl 1COs kx j 

iT Q(,, Q) sin xx 
n. cos xx} n=1,2,.... (4.2.2) 

where x is given by the dispersion relation (3.2.8), 

g(k, q) = a2h (ka)n-i (e-k(h-f){K sinh ky -k cosh ky} 

- (-1)n*q (K + k) e'kf cosh k(h-y)] (4.2.3) 

and 

q) = 2ra Ica n cosh x(y-h [e-K(h-f) + (_1)n+q ee(h-fý]. 2/ch + sin h 
(4.2.4) 
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Note that a factor of a7t1/n has been included for convenience. 

These multipoles are harmonic everywhere in 0<y<h, -oo <x< co, 

except for the point (0, f), and they satisfy the boundary conditions on 

y=0 and y=h, equations (1.2.8) and (1.2.7) respectively. 

Note also that the multipole with a In r singularity has been 

omitted. This is because as the multipoles are to be centred at points 

inside the cylinder, a In r singularity in 0 would result in an 

instantaneous flux of fluid across the surface of the cylinder which is 

physically unacceptable. 

To simplify the writing of these expressions four functions are 

defined: 

Then 

ýn, 
q 

c1(u) = -(Kh + u) [e-° + (-1)"+g eu(1-2f/h)) (4.2.5) 

c2(u) = (Kh - u) e"(2f/h-s) - (Kh + u) (-1)"+g e-° (4.2.6) 

Cs(u) =1+ (-1)"+g e2n(i-f/h) (4.2.7) 

Ca(u) = e2u(f/h-s) + (_1)n+q 
. 

(4.2.8) 

at fsin nO 
nnrr ` cos nol 

m 

+ a2 "-1 ýc1(kh) ek(f-r) + c2(kh) ekcY'fý1 sin kx dk 
n? 

f(ka) 
cosh - sinh c 

{cos 
kx} 

0 

-ý +isan 
ýaý° 

n 
[c3(ýh) eKcf-Yi + c4(ýh) eKcY-fý]{csin /cx 

os Kx}. 

(4.2.9) 
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These multipoles can be expanded in polar coordinates centred on 

(0, f) using the following two identities: 

e 

This gives 

OD 

where 

OD 

M-0 

(4.2.10) 

a n+l sin n8 ar sin m8 O". 
4 - Tr-{COs n8} 

}Jma 
mAm". 

4{COs m8} 
+ Ao". 

4 
Mai 

A 
(a] när J° (-1) q Ci (u) + C2(u) n-1 du °nýn -fiý cos u-u sinh üu 

- 2ri (xh) n (-l)" c3 (rh) + C4 (Ich) 1 1O1 (4.2.12) 
2ý + sinh rc 

,J1 

m 
Amn. 

q _ah 
+m 

ff 
(-1)m+qc1 (u) + c2(u) 

un- 
- n. m-1 cosh u-u sin u 

0 

- 2ýi (kh)n*m (-1)mýec+(s1n + 
ý4(Kh) 

] (4.2.13) 

m=1,2,... . 

This expansion for On, q is valid in the region r< 2f. (See Thorne 

1953). 

The behaviour of On, q as Ix` - co is also of interest and will be 

needed later. We only need to consider the case x +oo since 

On. a(XlY) _ (-1)4 On. a('XIY)" 

ek(Y-f){csin os kx} 
C_ 

mr 
'{cos 

mB}' 

k(f-. v) {csin kx (-)sin mO 
os kxj 

mýo 

mr m{cos 
m9} 

m 

(4.2.14) 
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The first term in the expression for equation (4.2.2), clearly 

makes no contribution as x-o. To examine the behaviour of the second 

term we look at 

I=1 gi. (k, a) 
n? 

Jr 
c cos - kh sindclFi 

dk (4.2.15) 

where 

gs(klq) = g(k, q) etkx 

and r is the contour: 

complex k-plane 

(4.2.16) 

It is easily shown, using the Riemann-Lebesgue lemma, that the only 

contribution to It as x- oo is from the integral along the real axis 

and around the pole at k=x. Thus since there are no singularities 

inside this contour Cauchy's theorem implies that, as x -+ co 

m 
1 gý Sr 1 nr 

fo 
cosh - sink kh dk - nFiý. (Kh -1 sinh ich - rý cosh rc 

0' 

( 4.2.17) 

The second term, which is the contribution from the pole, can be 

simplified by using the dispersion relation, equation (3.2.8), giving 

m 
1s (k , q) 2Ti cosh ich 1K n! rfO h'Fi-cosh : l- kh sin niýdk-º hn.. s+ sinh 'x 

- 

(4.2.18) 
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Therefore 

1T 1 ý(: k, cý) fsin kxl dk ý- 
JIml 2Ti cosh xh sý 

n. cos kh - ksn inIi ýi lcos kxj 1Rej iIn. x+ sinh s 
0 

as x -ºoo. 

After some algebra this gives the result that as x -+ oo 

(4.2.19) 

on. ° --º 2ra (Ka)' cosh x -h reK( f -h) + (-1)"+g e"( ''-f)]e-licx 1 
n. (2ich + sinh !c -i ' 

4.3 Calculation of Principal Value Integrals 

(4.2.20) 

In order to evaluate the coefficients A., q in equation (4.2.11) 

principal value integrals-need to be computed numerically. The 

following technique is employed. 

0m 
Let I=}§- dk where h(x) = 0, h' (x) # 0. This implies, by 

definition, that 

fo 
K-E 

rKm+Egý. Eýp I+J'h 
lxl 

dk . 
(4.3.1) 

The problem arises from the fact that both integrals- in (4.3.1) are 

divergent and so cannot be evaluated independently. However we note 

that 
2K IC-6 2K 

J dk 
_ 

lim Jr+Jf1 dk 
k- ýc - E-ýO ý O0 K+6 

EýÖ I [ln(x-k)]0 E+ [ln(k-x)]K. 
E 

} 

=0. (4.3.2) 
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Therefore we can write 

2K co 

gI= Jo { ýIJ ý-Kr} dk +fý dk (4.3.3) 
2K 

Since h(k) N (k-ic) h'(/c) as k -+ ic, the integrand in the first 

integral is well behaved near k= ic. To calculate the integrand near 

k= ic now requires the subtraction of two large numbers. 

Computationally this is straightforward if we use double precision 

arithmetic, provided ic is known with sufficient accuracy. 

4.4 The Radiation Problem for a Single Cylinder 

The problems of sway and heave will be treated simultaneously using 

the notation that was introduced in the previous section. The time 

independent velocity potential, qq, satisfies the 'following 

boundary-value problem: 

v20q =o in the fluid (4.4.1) 

Kýq +, 1 =0 on y=0 (4.4.2) 

a= o on y=h (4.4.3) 

är =U 
IsiCOS 

B} on r=a (4.4.4) 

where U is the time-independent velocity of the body. 

The multipole potentials on 
. 

'q discussed in §4.2 satisfy 

V26n, q =0 in y>0 except at (0, f) which is not in the fluid. They 

also satisfy the appropriate free surface and bottom boundary 

conditions. 
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Therefore to solve the radiation problem put 

m 
O4 =UI Cn. 4 On. Q 

n=1 

(4.4.5) 

where cn, q n=1,2,.... are constants to be determined. 

Substituting from equation (4.2.11) into equation (4.4.5) and then 

using equation (4.4.4) gives 

co 

sin 
OS IIB} 

+ý Amn. 
Q{COS mB} 

, {COS 

B} C°'4[ 
{C 

n=i m=a 

or 
ý 

- Cm, q +ý Amn, 
q Cn, q = Sim 

n-1 

in = 1,2,... . (4.4.6) 

This infinite system of equations is now solved numerically by 

truncation (see §3.3) and the convergence of the system is good. It was 

found that in all cases of interest choosing N=4 gave at least three 

figure accuracy and all the results that will be shown were calculated 

using this value for the truncation size. 

The time-independent hydrodynamic force on the cylinder in the 

direction of motion, fq, is given by integrating the pressure times the 

appropriate component of the normal around the cylinder, i. e 

n 
fq = -Pwi Oa(a, e) sin 9a d9 {cos 

6} -n 

(4.4.7) 

Substituting from equation (4.2.11) into equations (4.4.5) and (4.4.7) 

gives 

Co fq = -pGJ1Üä, 27C1 C1,4 +i Cn. q 
Asn. 

4 ]" na1 

(4.4.8) 
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This expression can be simplified by noting that equation (4.4.6) with 

m=1 is 

Ain, 
q Cn, q =1+ Cl, q 

so that 

nut 

fq = -pmiUa2T (1 + 2c1, g). (4.4.9) 

Thus the added mass and damping coefficients, non-dimensionalised with 

respect to the maximum acceleration of the cylinder and the mass of 
fluid displaced by the cylinder, are given by 

µq - ivq =- (1 + 2c1, q) (4.4.10) 

and depend only upon the first unknown coefficient in the multipole 

expansion. 

In order to examine the far field behaviour equation (4.2.19) is 

used together with equation (4.4.5) giving 

co n 
2TaU ý cn. g nýa kco+hsin 

-hý ýeK(f-h) + (-i)n. g eK( h-f)]e-"KX{-i} 
n=1 

(4.4.11) 

as x -º oo. If A. is defined by 

2ra cosh ich 
mC 

A q- 2xh + sin ,cG 
r""4 

where 

nsi 

(4.4.12) 

rý. a = na n 
r(f-h) +(_1)n+g eK(h-f)ý 

1-i( 
Cn [er 1 .4 

then 

Oa N UAgcosh /c etc cos n 

(4.4.13) 

as x -, oo . (4.4.14) 
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The reflection and transmission coefficients for the scattering 

problem, R and T, can be obtained via the Newman relations, equations 

(1.2.41)-(1.2.44), whence the results can be written 

Co 
[rn. 

2] 

m 

R+T [rn. 
2],, '> 

n=i n: i 

Co 
(ll [rn. 

i] 
n: i n. i 

(4.4.16) 

The damping coefficient vq is related to the far field amplitude 

Aq by equation (1.2.32), 

2 

ra2pmvq = 2pcg g lAql2, 

where cg is the group velocity. This simplifies to 

__ 
2x UV 

k+ SlII 2rch 
ni 

(4.4.17) 

An identity has thus been derived which can be used as a check on the 

numerical results obtained by solving equation (4.4.6): 

2ý+ sinh ýc 
1_L_ 

rn. aI2 = Im(c1, a) . 
(4.4.18) 

n=i 

There are two parameters in this problem: a/h and f/h. The 

effect of varying these parameters on the hydrodynamic characteristics 

of a cylinder are shown in figures (4.4.1)-(4.4.12). These figures are 

grouped into two sections: figures (4.4.1)-(4.4.5) are for cylinders 
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with a constant value of f/a, namely f/a = 1.5, whereas figures 

(4.4.6)-(4.4.12) are for cylinders with a constant value of a/h, namely 

a/h = 0.2. 

To start with we will look at the case f/a = 1.5. The case of 

infinite depth corresponds to a/h = 0. Increasing the parameter a/h 

from zero corresponds to bringing the bottom up towards the cylinder. 

The value of a/h for a cylinder which is just touching the bottom is 

0.4, (since f/h + a/h =1 in this case). Thus a/h must lie in the 

range 0< a/h < 0.4. The case a/h = 0.4 will be discussed later. 

Figures (4.4.1)-(4.4.4) show curves of added mass and damping 

coefficients against non-dimensional frequency, Ka, in both sway and 

heave for five different values of a/h :0 (infinite depth), 0.1,0.2, 

0.3 and 0.39. It is difficult- to- obtain results using the multipole 

method described above if Kh is too large, (Kh <8 was the criterion 

used in the calculations described here), and so the curves for 

a/h = 0.1 stop at Ka = 0.8. This is not much of a handicap however as 

beyond Ka = 0.8 the infinite depth results provide a very good 

approximation. Figures (4.4.1) and (4.4.2) show a marked difference in 

the behaviour of the added mass coefficient between the sway and heave 

cases. As the bottom approaches the cylinder the heave added mass 

changes very rapidly whereas in sway this is only true in long waves. 

In infinite depth the added mass and damping coefficients for the 

sway case are the same as those for heave, a result first shown by 

Ogilvie (1963). Figures (4.4.3) and (4.4.4) show that the effect of 

finite depth is to increase the damping coefficient in sway but to 

decrease it in heave. In chapter 5 it will be shown that the same 

phenomenon occurs in the case of the submerged sphere. 

Dean (1948) showed that in infinite depth a fixed submerged cylinder 

reflects no waves, i. e. R=0. Figure (4.4.5) shows how this result is 

affected by the presence of a bottom. Curves are shown for the same 
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Figure 4.4.3. v (sway) plotted against Ka for a submerged cylinder 
(f7a=1.5) in different depths of water. (1) infinite depth; 
--- a/i=0.1; """"" a/h=0.2; -"-"- a/h=0.3; (2) a/h=0.39. 
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Fi ure 4.4.4. v (heave) plotted against Ka for a submerged cylinder 
(f7a=1.5) in different depths of water. (1) infinite depth; 
--- a/h=0.1; ..... a/h=0.2; -"-"- a/h=0.3; (2) a/h=0.39. 
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Figure 4.4.5. IRI plotted against Ka for a submerged cylinder 
(f7a=1.5)) in different depths of water. --- a/h=0.1; ".... a/h=0.2; 
-"-"- a/h=0.3; a/h=0.39. 
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four non-zero values of a/h as were used in figures (4.4.1)-(4.4.4) 

and it is evident that the effects of finite depth are quite small since 

when a/h = 0.3 (in which case the cylinder is blocking over half the 

depth) the reflection coefficient is still always less than 0.25, which 

corresponds to a value of IT) of about 0.97 since IT12 =1- IR12. 

There is however a big increase as the bottom gets very close to the 

cylinder with SRI approaching 0.5 at some frequencies. The curves 

show that, whatever the depth, if f/a = 1.5 the cylinder is most 

effective in reflecting waves in the region 0.1 < Ka < 0.3. 

In all the remaining figures the ratio of the cylinder radius to the 

depth will be kept constant at 0.2 and the immersion depth will be 

varied. In this case the possible values of f/a lie in the range 

1< f/a < 4. The limiting values of 1 and 4 correspond to the 

situations when the cylinder is just touching the free surface and just 

touching the bottom respectively. The case f/a =4 will be discussed 

later. 

Figures (4.4.6)-(4.4.9) show curves of added mass and damping 

coefficients against non-dimensional frequency, Ka, in both sway and 

heave for five values of the parameter f/a : 1.1,1.5,2,3 and 3.9. 

Figures (4.4.6) and (4.4.7) show that the cylinder close to the free 

surface exhibits the phenomenon of negative added mass in both sway and 

heave. This phenomenon has been discussed in §3.4. Another noteworthy 

feature of the curves is that as the cylinder approaches the bottom in 

the heave case the added mass becomes almost completely independent of 

frequency. 

The curves of damping coefficient, figures (4.4.8) and (4.4.9), 

simply show that the deeper the cylinder is immersed the less good it is 

at making waves, with a big increase in this ability as the cylinder 

approaches the free surface. This is exactly the same as for the case 

of infinite depth. 
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The reflection coefficients for these five cases are shown in figure 

(4.4.10) and it can be seen that the effect of altering the immersion 

depth on IRI is small. 

It is interesting to examine the behaviour of the hydrodynamic 

characteristics of a cylinder as the gap between the cylinder and the 

bottom approaches zero. This can be done in two ways: fix f/a and let 

a/h tend to its limiting value or fix a/h and let f/a tend to its 

limiting value. The behaviour turns out to be essentially the same and 

so here we will just consider the latter with a/h = 0.2. There are 

possible problems in both the heave and sway cases. In heave, when 

f/a = 4, there will be a discontinuity in the derivative of the velocity 

potential at the point of contact between the cylinder and the bottom 

since the motion of the cylinder will imply a non-zero value of Y 
whereas the presence of the bottom will imply a=0. In sway this 

problem does not arise but another one is present. Due to the 

antisymmetry of the problem there is likely to be an oscillating flow 

beneath the cylinder which for small gaps might have a large velocity. 

When f/a =4 however this flow is no longer possible and the 

transition from one state to the other may be very delicate. 

Let x be the non-dimensional gap width, i. e. x=1- a/h - f/h, 

and let fi(x) represent some hydrodynamic characteristic of the 

cylinder. Then e(x) - ý(0) must tend to zero as x -º 0. However due 

to the problems described above the convergence is likely to be slow. A 

sensible guess for the behaviour of fi(x) as x -º 0 would therefore 

be 

ý(x) -ý(0) NAx In x as x-+0 (4.4.19) 

where A is some constant. Figures (4.4.11) and (4.4.12) show two 

curves of 1e(X) - ý(O) j against -x In x for the cases e= heave 
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Figure 4.4.10. (RI plotted against Ka for a submerged cylinder 
(a7h=0.2) with different clearances. (1) f/a=1.1; --- f/a=1.5; 

"""" f/a=2; -"-"- f/a=3; (2) f/a=3.9. 
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added mass and ý_ fRl. In both cases curves are shown for five 

different frequencies, Ka = 0.2,0.4,0.6,0.8 and 1.0. The figures 

show that equation (4.4.19) is indeed a good approximation near x=0. 

In the case ý_ SRI it is clear that the constant is dependent on Ka 

but in the case heave added mass A is clearly independent of Ka. 

Other choices of result in similar curves. In these two figures the 

range 0< -x In x<0.05 is equivalent to the range 0< gap/h < 0.011 

for the non-dimensional gap. 

4.5 The Scattering Problem for a Single Cylinder 

The method used in §4.4 is not directly applicable to the scattering 

problem but the problem can be reformulated in such a way as to make the 

problem solvable by the multipole method. The time-independent velocity 

potential, ýs, satisfies equations, (4.4.1), (4.4.2), (4.4.3), 

ars 
=0 on r=a, (4.5.1) 

and- 

Os gA cosh r -h J e'KX + Re-`KX X- +ý (4.5.2) "m 

cos Kl Te'Kx xý -ý , 

If the potential 0 is'defined by 

Os _ gA cosh w -h e, Kx +0 (4.5.3) 
w cosh sh 

then 0 also satisfies equations (4.4.1), (4.4.2), and (4.4.3) together 

with 

0 gA cosh r -h e, KX on r=a (4.5.4) ý -- ýý cos A] 
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and 

A cosh k-h Re" x-4 +w 4.5.5 
w cosh r ,h (T-1)e'KX x- -00 '() 

The function 0 is therefore an asymmetric radiation potential and 

so it can be represented by a combination of symmetric and antisymmetric 

multipoles: 

Cm ý=aC (Qn On-' 
+ /ýn 

ýn, 
2}. 

n. i 

Using equation (4.2.11) we have 

m- -ý 
= g- 

- a� sin n8 - Qn cos nO OI'I r: a aw 
n: i 

(4.5.6) 

m1 
+ýý dn Amn, s Sill mO + fl. Amn. 

z COS mO) 
(4.5.7) 

m: l 

1ý1 

Expanding the right hand side of equation (4.5.4) about r=0 and then 

using equation (4.5.7) leads to uncoupled sets of equations for am and 
Qm: 

m 
im 

K(f -h) m (h-f Am n. i an = cosh k mai . 
[e - (-1) er 

n. s 

(4.5.8) 
OD 

Qm 
- 

Amn 
2 

ß, =1 
/ca m 

(eK(f-h) + (-1)ID eK( h'f']. 

cosh is m-1 . `` 
n=i 

These equations can again be solved using a truncation procedure. 

The results were used to calculate R and T directly and this 

provided a check, since these values have already been calculated when 

solving the radiation problem. (See equations (4.4.15) and (4.4.16)). 
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Naftzger and Chakrabarti (1979) used a numerical technique based on 

Green's theorem to solve this problem. The particular quantities that 

are calculated and plotted in their paper are the vertical and 

horizontal forces on the cylinder due to the wave motion. The 

formulation of the problem used here gives these quantities very simply. 

For example, the horizontal force is given by 

7I 

fH =-pwi J s(a, O) a sin 0 dB (4.5.9) 
-n 

which, using equations (4: 5.3) and (4.5.6) gives 

m 

fH=- ipgAra 
l 

irca cosh rc f-h 
+ a1 + an Ain . 1] - (4.5.10) 

cos rc n=i 

Finally, using equation (4.5.8) with m=1 gives 

fH =- 2ipgA7ra a1 (4.5.11) 

If this expression for fH is normalised in the same way as in Naftzger 

and Chakrabarti (1979) then 

fH = per) = 2r jail . 
(4.5.12) 

Similarly, the result for the vertical force is 

Iv = 2r Ifl l. (4.5.13) 

Figures (4.5.1) and (4.5.2) show graphs of fH and Iv against Ka 

for two cylinders at the same immersion depth but in different depths of 

water. The values obtained agree, as accurately as can be assessed from 
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the graphs in their paper, with those of Naftzger and Chakrabarti 

(1979). The effects of finite depth are small, but it is noteworthy 

that in shallower water the maximum horizontal force is increased 

whereas the maximum vertical force decreases (in infinite depth these 

forces are equal, see Ogilvie (1963)). 

4.6 Tethered Cylinders 

We are now in a position to apply the theory of §3.2 to the case of 

a submerged horizontal cylinder. Since a body will have to be moored in 

any event, to prevent it drifting away, the tension in. the mooring line 

of the buoyant cylinder can be used to provide the spring constant A. 

The cylinder is held down by two inextensible cables,. -one at-each end. 
During the passage of the waves the cylinder makes small horizontal 

oscillations about the vertical. (Any slight offset which may develop 

due to second order mean drift forces will be neglected). 
Let the cylinder have specific gravity s, ýso that the mass of the 

cylinder, I, is given by I= M's where M' is the mass of water 
displaced by the cylinder, and let the cables have length Q. Then for 

small horizontal oscillations the acceleration of the cylinder is 

opposed by the the horizontal component of the tension in the cables. 

This in turn is just the difference between the upthrust and the weight 

of the cylinder. For small motions we may neglect the small additional 

oscillatory vertical force due to the waves. Thus 

A= Di' (1 - s)g/P- (4.6.1) 

and for T1 =0 equation (3.2.30) implies that, for frequency cd, 

(1 - s)g/Q = {('c + s) + vX}w2 (4.6.2) 
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where µ= li/Ai' ,v= BIM' w are the non-dimensional added-mass and 

radiation-damping coefficients respectively, each varying with wave 

frequency. 

Equation (4.6.2) provides a relation between incident wave frequency 

m, specific gravity s, and cable length £ to ensure tuning. For 

example it may be re-written 

s=1 -1 (ju 
++v 

K1 (K = ýZ/g) . (4.6.3) 

Suppose 1, s and hence A are chosen so as to tune the cylinder to 

cancel a wave of frequency wo. Then 

A= Ao = (¢lo + I)wo2 + Bowoxo (4.6.4) 

where the suffix denotes values of those quantities at frequency mo. 

Substitution of equation (4.6.4) into equation (3.2.28) gives 

T1 _T 
+S +v - i(ß" +vo o Wo w2 

(4.6.5) 
ß +S - lv- µo +S +voXo «jo W 

for the variation of the transmitted wave amplitude with wave frequency. 

It can be seen clearly from equation (4.6.5) that T1 =0 when a= wo. 

A similar expression can be derived for Rs. 

The velocity amplitude is given, from equations (3.2.23) and 

(3.2.17) by 

ZA 1 
w As 1+ (4.6.6) 

and this can be re-written in terms of the wavemaking coefficient, Wý, 

defined as the ratio of the amplitude of the waves radiated to infinity 

to the amplitude of the forced motion of the cylinder in sway. Thus 
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from equations (3.2.9), (3.2.11) and (3.2.12) it follows that 

We = KIASI 

whence the non-dimensional cylinder velocity U is 

(4.6.7) 

IÜI =ý_ 
,1 

ýr)-ýr 
. 

(4.6.8) 

The maximum amplitude, of the free surface over a period is given by 

Inl =g IOs(x, 0) + UOR(x, 0)I 

Thus, using equation (3.2.13), 

II _ 
1-9-10s(X, 0) +T -ST1 OR(x)0)l. (4.6.9) 

Equations-(4.4.5), (4.5.3) and (4.5.6) imply that 

III = n=i 

(4.6.10) 

In order to calculate In/Al the original representation for #n, q, 

equation (4.2.2), was used since the expansion in polar coordinates, 

equation (4.2.11), is only valid for r< 2f. Evaluation of equation 

(4.2.2) requires the evaluation of oscillatory integrals which is time 

consuming but not a major problem. 

4.7 Results and Discussion 

If the cylinder is fastened to cables which are fixed to the sea bed 

the length of the cables, t, is just h-f and so the condition for 

m 
etKx +ý 

rran 

+ 
T-1Ts 

en, 11 0n. i(X, o) +ýýn, 2(X'oýý 
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perfect reflection, equation (4.6.2), can be written 

1- s=K (h- f) (ýc+s+vX) . (4.7.1) 

For a given cylinder this can be solved to find a frequency at which 

this relation is satisfied. If such a frequency exists it will be 

represented by wo and as in the previous section a subscript zero will 

refer to the value of a frequency-dependent quantity at wo. 

There are basically three parameters in the problem; a/h, f/h, and 

s. How the value of s affects the reflection characteristics of a 

tethered cylinder will be examined first by considering a cylinder for 

which a/h = 0.25 and f/h = 0.5. Table (4.7.1) shows how the tuning 

frequency varies as s is increased from a very small value, 0.01, to 

almost water density. It is clear that the smaller s is the shorter 

the wavelength of the waves which will be totally reflected by the 

cylinder. The sort of waves that might be encountered, for example, in 

a harbour entrance are likely to be in the range A/2a < 10 and so for 

the device to be a practical possibility the specific gravity must be 

small. This is an attractive feature since a small value of s would 

ensure that the mooring lines were always taut, even in severe weather, 

and it would also allow the device to be built out of some cheap, light, 

rubber material. 
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s Koa ao/2a 

0.01 0.61 5.1 

0.06 0.49 6.2 

0.1 0.41 7.1 

0.2 0.29 9.5 

0.3 0.22 11.2 

0.4 0.17 13.7 

0.5 0.13 15.7 

0.6 0.10 18.5 

0.7 0.07 22.4 

0.8 0.04 31.4 

0.9 0.02 44.9 

Table 4.7.1 

Figure (4.7.1) shows how IT, I, calculated from equation (4.6.5) 

varies with non-dimensional frequency, Ka, for five values of the 

specific gravity, s, with the same cylinder dimensions as described 

above. The figure illustrates the crucial problem which a good wave 

reflector must overcome. While all the curves are zero at their 

" respective tuned frequencies the range of values, or bandwidth, of 

frequencies over which ITLI is small varies dramatically from curve to 

curve. The fact that the bandwidth is greater for small values of s 

is encouraging for the reasons described in the previous paragraph. 

Figure (4.7.2) shows exactly the same curves plotted against 

non-dimensional wavelength, A/2a. It is noticeable that in this figure 

the bandwidths of the five different curves are very similar, though a 

close inspection reveals that the bandwidth still increases as s 

decreases. This is due to the fact that the relation between Ka and 

A/2a is not linear ( Ka = 2raa-1 tanh 2rha-1 ). Using A/2a as the 
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x-coordinate makes it easier to interpret the results. Thus we see that 

when s=0.06 the transmission coefficient is less than 0.3 for 

wavelengths of between 4 and 6 diameters which provides a clearer 

impression of the capacity of the cylinder to reflect waves of different 

wavelengths. It is also more important from an engineering point of 

view to have a large bandwidth in terms of the more familiar wavelength 

than in terms of the slightly artificial parameter Ka. For this reason 

all the results in this section, except those from experiments, will be 

plotted with A/2a as the x-coordinate. 

To simplify the rest of this results section we shall fix a 

particular value of the specific gravity and use it in all the remaining 

calculations. In the experiments which will be discussed later a 

cylinder with s=0.06 was used and so it will be convenient to use 

this value throughout. 

One of the attractive features of using a tethered cylinder as a 

wave reflector is that large reductions in wave intensity can be 

achieved while still having a considerable gap between the top of the 

cylinder and the free surface, large enough to allow the passage of a 

small vessel for example. Figure (4.7.3) shows curves of jTLj against 

A/2a for three cylinders all with a constant immersion depth to radius 

ratio, f/a = 2. The different curves correspond to different water 

depths: a/h = 0.1,0.2, and 0.25. Shallower water results in shorter 

cables and as a result the cylinder is tuned to shorter waves together 

with an increase in the bandwidth. This makes this sort of device 

suitable for installation in areas of shallow water like harbour 

entrances or for the protection of other coastal installations. 

The bandwidth of the curves can be examined in more detail. For 

example when a/h = 0.25, IT1I is less than 0.5 for wavelengths of 

between 4 and 8 diameters. This corresponds to a, reflection coefficient 

of greater than 0.87 or equivalently one can say that the cylinder 
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reflects over 75% of the incoming wave energy over this range. 

It is of interest to know the sort of cylinder velocities required 

to achieve this degree of reflection. This is illustrated in figure 

(4.7.4) for the same three cases that were shown in the previous figure. 

The graph shows 101, defined by equation (4.6.8), plotted against A/2a 

and shows that although the bandwidths in figure (4.7.3) look quite 

similar the smaller a/h is the less likely it is that these results 

will be achieved in practice. Even when a/h = 0.25, JÜ( is greater 

than 2 for some wavelengths, indicating that the cylinder has a 

maximum speed over twice as great as that of a typical water particle in 

the free surface. This turns out to be possible, as the experiments 

discussed later confirm, whereas 101 = 20 corresponding to a/h = 0.1 

is clearly not realisable in practice. 

A comparison of the curves for a/h = 0.25 in figures (4.7.3) and 

(4.7.4) shows that the maximum value of Jul does not occur at the 

point of zero transmission as one might intuitively expect. The 

equation for 101, equation (4.6.8), shows that amongst other things 

IU is inversely proportional to the wavemaking coefficient, Wý, and 

curves of W. are shown in figure (4.7.5). It can be'seen from these 

curves that in the situations under consideration WC has a maximum 

near A/2a =3 and then gradually decreases as A increases. Clearly, 

since (ÜJ is bounded as A/2a -º 0 and as A/2a -+ oD, a complicated 

balance exists between this ability to make waves and the forces on the 

cylinder which appear in equation (4.6.8) through the term (1 + C2)-v2. 

Figures (4.7.6)-(4.7.8) show curves of 1T11, IÜI and WC for 

three cylinders slightly closer to the free surface (with f/a = 1.5). 

Comparing the curve for a/h = 0.2 with that shown in figure (4.7.3) 

shows that by moving the cylinder closer to the free surface the length 

of the cables has increased and the cylinder is tuned to slightly longer 

waves. There is a slight reduction in the bandwidth of the main peak 
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but the wavemaking capabilities of the cylinder are greatly enhanced 

when it is close to the free surface and this results in a small 

secondary peak. The cylinder velocities required to achieve these 

transmission coefficients is seen, by comparing figures (4.7.4) and 

(4.7.7) to be slightly greater than in the case when f/a = 2. 

Figure (4.7.9) shows how JTal varies, as a cylinder with 

a/h = 0.2 moves closer to the free surface, in more detail. When 

f/a = 1.1 the cylinder is tuned to A/2a N 19 but lT1d is almost 

zero near A/2a =7 and is zero again near A/2a = 2.5. The associated 

cylinder velocity, shown in figure (4.7.10), for this curve is very 

large near the tuned wavelength but is small near the secondary peak 

where the sway wavemaking coefficient, shown in figure (4.7.11), is much 

greater. The sway wavemaking--coefficient decreases as A/2a decreases 

from 5 and the cylinder velocity at the zero of transmission near 

A/2a = 2.5 is larger again. This suggests that such a cylinder would 

be a much better reflector if it were tuned to a wavelength of about 7 

diameters which could be done by using some form of semi-elastic rod to 

moor the device or by attaching the cables to some fixed point above the 

bottom. Figure (4.7.12) shows that this is indeed the case with more 

than 707. of the incident wave energy reflected over the whole range 

from, 3< A/2a < 16. Figure (4.7.13) emphasises the practicality of 

this result with the non-dimensional cylinder velocity about 1 for 

wavelengths in the range 3< A/2a < 10. 

Figure (4.7.14) shows another particularly good configuration: 

a/h = 0.3, f/h = 0.4. In this case however the tuning is not 

artificial. The curve for a/h = 0.2, f/h = 0.4 is shown for 

comparison (see figures (4.7.3)-(4.7.5)). Again a very wide bandwidth 

with small transmission coefficient is achieved with relatively small 

cylinder velocities, as can be seen from figure (4.7.15). 
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The behaviour of the free surface near the cylinder can be examined 

by solving the scattering problem and using equation (4.6.10). Figures 

(4.7.16)-(4.7.19) show curves of jq/A( against x/2a for a cylinder 

with a/h = 0.25, f/a =2 at four different frequencies. The quantity 

(n/Aj represents the maximum height of the water at a particular point 

in space over one wave period. Figure (4.7.17) shows what happens at 

the tuning frequency, Ka Koa = 0.49. The curve shows that the 

incoming wave is cancelled within four cylinder diameters of the 

cylinder and also that there are no abnormally large waves above the 

cylinder. Upstream of the cylinder the curve represents the 

superposition of the incoming and reflected waves. The other three 

curves show the behaviour of the free surface at other values of Ka 

(0.4,0.6, and 1.0). In all cases the transition over the cylinder is 

smooth and no large waves are created. Such waves would be undesirable 

in the context of a coastal protection device since they would make it 

difficult for small vessels to pass over the cylinder. 

Comparison between theory and experiment is shown in figure 

(4.7.20), again using a cylinder for which a/h = 0.25 and f/h = 0.5. 

The experiments were performed in a narrow wave tank in the Civil 

Engineering Department at the University of Bristol. The radius of the 

cylinder that was used for the experiments was 51mm. The voltage 

applied to the wavemaker at each frequency was the same and this 

resulted in the amplitude of the incident wave varying between 2mm and 

3.5mm. No account was taken of wave attenuation along the tank, which 

may account for the fact that the experimental readings are mostly 

slightly lower than the theoretical predictions. The agreement, both 

qualitative and quantitative, between theory and experiment is very 

good. Experimental runs were made with larger incoming waves though no 

measurements were taken. It was clear from these runs that the 
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qualitative behaviour of the device as a wave reflector was still the 

same for these large waves. 

4.8 Single Cylinder next to a Wall 

If a breakwater is installed in a harbour it may be more suitable to 

treat the region behind the obstacle as closed rather than infinite in 

extent as has been done up to now. It may thus be necessary to 

calculate the hydrodynamic characteristics of a cylinder next to a wall. 
Such a problem is most easily solved by reformulating it in terms of two 

identical submerged cylinders oscillating in a coordinated manner. 

There are three situations that will be covered in this and the 

-following-two sections. First the case where the cylinders oscillate 

together in heave. This is a symmetric problem and is equivalent to 

just one cylinder oscillating in heave next to a wall. In the same 

section the problem of a cylinder in sway next to a wall will also be 

solved. This is equivalent to two cylinders oscillating in sway exactly 

out of phase with one another and is also the case that is relevant to 

the use of tethered cylinders as harbour breakwaters. Secondly in §4.9 

the problem of wave scattering by a cylinder next to a wall is examined 

and finally the problem of two cylinders oscillating in sway and in 

phase with each other is solved in §4.10. All the problems will be 

formulated as if two cylinders were present. 

Y=O 
ý 1-1--ý---ý --- -1 - ------ y=f 

x=_ x= x= =h by 

Figure 4.8.1 
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The cylinders are centred on (-b, f) and (b, f), see figure (4.8.1), 

and in this section the problems considered will be equivalent to that 

of a wall on x=0. In other words the solutions will satisfy 

rx =0 on x=0. (4.8.1) 

The problem is simplified by the introduction of a second complex 

number j, (j2 = -1), and then a point in the x, y plane can be 

represented by z=x+ jy. There will therefore be two complex numbers 

present in the analysis which follows, j as mentioned above, and i 

which appears through the time dependence condition, equation (4.2.1). 

Which complex number is referred to by the functions-real. and imaginary 

part will be indicated by suffices, e. g. Imp. 

Let the point (-b, f) be zs and (b, f) be z2. Then, using polar 

coordinates centred on these points 

z= z1 + r1 exp[j(ý - 9s)] = z1 +j r1 exp(-j61) 

= Z2 +j r2 exp (-j02) 

and 

(4.8.2) 

zz - z1 = 2b. (4.8.3) 

The method that will be used here is to write the solution in terms 

of multipoles centred at the centres of the two cylinders. Using the 

same conventions concerning symmetric and antisymmetric multipoles as 

were used for the single cylinder case these multipoles can be written 

ao m 
a"'s Jsin n8ý 1Car sin m91 
n ri lcos nBI J+Lm Am" 

,4 
Ci 1) {cos 

mBt 
} 

Met 

(4,8.4) 
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1n2)q _a 
n+l Jsin n821 

+ (ý a Amý, q 
(r21" jsin m92 /ý1 F F2 llcos ne21 mýJ lcos m02 m. i i (4.8.5) 

These expansions are valid in the region r, < 2f, i=1,2. 

The boundary condition on the wall is satisfied by the following 

time independent potential: 

0, ý, Z1) + dn(On(11 + 0. (? 1)] (4.8.6) 
n. i 

This ensures that 0 is symmetric and thus if the boundary condition on 

one of the cylinders is satisfied the other. one must also be. Applying 

the boundary condition on r2 =a gives 

co B2 surge +d 
1D2 

+ 
00"sin ý 

on r2 -a. - 
3 

"ýi 

[c" `ý 
ý ý, "' cos 6z heave 

(4.8.7) 

Equation (4.8.5) gives 

äJI COS m02 

mal 

In order to evaluate the other terms needed in equation (4.8.7) it 

is necessary to go back to the original representation of the multipole 

potentials, equation (4.2.2), and express it in terms of polar 

coordinates r2,0 centred on (b, f). Equation (4.2.2) can be written 

0(i) _ a"'1 jsin nail Im, l 0 J "'v - Il Tf [cos n81 j+ lRej 

Nn? ql Isin n921 jsin m921 (4.8.8) dr2 r2=a cos n92 J+ AM... lcos m92 

GD 

!U 

(4.8.9) 
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The functions ct(u), i=1,4 are defined by equations (4.2.5)-(4.2.8). 

After some manipulation the second term in equation (4.8.9) can be 

written 
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It is convenient to define some new functions: 

cs (u) = (a/h) "" u""- t/ [2n ! (m-1) ! (Kh cosh u-us inh u)] 

ce (u) =-r (ua/h)""/ [n! (m-1) ! (2u - sinh 2u)] 

co h} du Q... 

%=f C5 (U) [(-1)'cl(u) - cZ (u)) (-1) a {sin 
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0 
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Then fie,, satisfies 
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(4.8.12) 

Referring back to equation (4.8.9) it can be seen that the second 

term in the expression for ý$ has been expanded about r2 = 0. The 

next step is to do the same for the first term. Following McIver (1985) 

let 

F in 
_ ex 'nBs 

ý-_Z , - zs ri, 
(4.8.13) 
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i. e a function whose real and imaginary parts are those functions that 

appear in equation (4.8.9). The function Fn is analytic everywhere in 

the complex j plane except at z= z1 where there is a pole of order n. 

The function Fit can therefore be expanded in a Taylor series about 

z= z2 and the expansion will be valid on r2 = a. 
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Where 
C°n _ -1 ° n+m-1 ! (a/2b)"'° 

m- . n! 

The time independent potential, defined by equation (4.8.6), can now 

be written as an expansion about r2 = a. 
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m9z] 

+m ýýQ"n. s - 
Amm, s) sin M02 + Smn. 1 cos m92 ]J] 

cn 
[(a/2b)hl sinnnr 2 

+ Bn, i - (a/r2 

r2 

sin n02 
n 

+ 
[a21 ( Cm" [sin (n+m)7r cos m02 - cos (n+m)-22 sin 
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+ dn [(a/2b)' cosnna 2+ Bn, 2 + (a/r2)n cosnne2 

co 

.E mat 

Ca21mr Cmn [cos (n+m)" cos M02 + sin (n+m)r sin m02] 

mn. 2 
]] 

ý + 
m[Qmn, 

2 sin mBz +(Smn, z +Am) cos m92] 

(4.8.14) 

Equation (4.8.7), the boundary condition on the cylinder, can now be 

applied to give the following infinite system of equations. 

n= 1 e2n_1 = Cn ; e2n = d. 

m 

I n=i 

Um 
n en = 

Si m surge 
SZm heave m=1,2,... (4.8.15) 

where 

M2m-1,2n-1 = Smn + Qmn, 
1 - 

Amn, 
s Cmn cos (n+m)f 

m= Qmn, 2 + Cmn sin (n+m)7 M2- -i, 2n 

M2m, 2n-1 = Smn. i + Cmn sin (n+m)7" 

1ý 
lýi2m, 2n 

Smn + Amn. 
2 + Smn, 2 + Cmn COS (n+m)2 

(4.8.16) 

This infinite system of equations is solved by truncation and values for 

en (and therefore c� and d. ) n=1,2,... obtained. The added mass 

and damping coefficients can then be calculated from 

V 

Uwra2pi(p - iv) apwi 
f 0(a, 62) I csin 

02 

os 02 de2 ýheagveý' (4.8.17) 
_n 
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For sway this gives 

A 

W 

/ý 
11/ = Ci +[ Cn ( 

Ci 
n COS (II+l)2 - 

Q1,1 
+ At,,., ) 

nsl 

{ do (Qin. 
2 + Cin sin (n+1)7 J. 

This can be simplified by using equation (4.8.14) with m=1. The 

resulting equation is 

µ- iv = -1 + 2c, . (4.8.18) 

The same procedure can be carried out for the heave case, this time 

using equation (4.8.14) with m=2, to get 

2ds . (4.8.19) 

The far field behaviour of ý can be examined in much the same way 

as was done for the single cylinder case. After some algebra the 

following result is obtained. 

UAW cosh x (h- 
e- t 

KX 
as x --+ ao cosh xi 

(4.8.20) 

where 

_ 
4Tia cosh 'ch AW - 2/G + sin ' /G 

co 

xc n. i 

Pn, s sin icb + pn, z cos kb 
J 

(4.8.21) 

and 
n 

Pn. q = na [e-"(h-f) + (-1)n. g eK( h"f)] {d'} . (4.8.22) 
n 

Equation (1.2.32) connecting the damping coefficient with the energy 

radiated to infinity does not hold when a wall is present but it is a 
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simple exercise to work out that the appropriate relation is 

B= ýp 2 ca IAwI 2 (4.8.23) 

(Alternatively the problem can be considered as that of the radiation of 

waves by an obstacle consisting of two parallel spaced identical 

cylinders; the damping coefficient would then be twice as big and 

equation (1.2.32) would then apply, giving the same answer since the 

waves radiated to ±co have the same amplitudes. ) 

The resulting formula, which can be used as a check on the solutions 

obtained from equation (4.8.15), is 

4r 
v- 2xh + sinh 2xh 

m 
Jpn, 

1 sinicb+p,,, 2 cosicb 
n-I 1 (4.8.24) 

and is analogous to equation (4.4.17) for the single cylinder case. 
The presence of the wall implies that the reflection coefficient for 

the fixed cylinder must satisfy IR12 =1 whence T=0. The Newman 

relations in this case can then easily be shown to reduce to 

R =-A,, /X,,. (4.8.25) 

The problem of the scattering of waves by a tethered cylinder next 

to a wall can be solved with a simple change to the work presented in 

§3.2. Rather than going through all the theory again we will simply 

note those aspects of the problem that are different in this case. 

In the same way that (R) = 1, the presence of a wall implies that 

JR, I =1 and thus that the transmission coefficient, Ti, is zero. With 

A. defined by equation (4.8.21), equation (3.2.13) becomes 

WUA" (4.8.26) 
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The IIaskind relation, equation (3.2.18), is still valid here but the 

relation connecting the damping coefficient to the far field amplitude 

is given by equation (4.8.23) and not by equation (3.2.19). Combining 

equations (3.2.18), (4.8.23) and (4.8.26) together with equations 

(3.2.16), (3.2.17), (3.2.22) and (4.8.25) gives 

2R 
+1 

where C= {(b1+I)w2 - A}/Bi. This can be written 

R1 =RC + u=i (4.8.27) 

which is just equation (3.2.27) with T1 =T=0. This ensures that 

IR1d =1 since JR1 =1 and C is real. 

We will now return to the radiation problem and examine the 

behaviour of the added mass and damping coefficients as given by 

equations (4.8.18) and (4.8.19). There are three geometrical parameters 

in this problem, a/h, f/h, and b/h, and by varying them individually 

their various effects can be examined. In fact we will consider three 

different physical ideas. The first is the effect of the proximity of 

the wall. In this case it is a/h and f/h that are held fixed, at 

a/h = 0.2 and f/h = 0.3 (f/a = 1.5). The parameter b/h (or b/a) 

then measures the distance from the wall to the centre of the cylinder 

and clearly must satisfy b/a > 1. The behaviour of hydrodynamic 

characteristics as the gap between the cylinder and rigid boundaries 

approaches zero was discussed in §4.4 and here the limiting cases will 

be avoided. Thus figures (4.8.2)-(4.8.5) show curves for four. values of 

b/a, namely b/a = 1.05,1.5,2.5 and 5.0. One'feature that appears in 

all four figures is the increase in the number of oscillations of the 
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Figure 4.8.2. µ (sway plotted against Ka for a cylinder next to a 
Wall (a/h=0.2, f/a=1.5 at different distances from the wall. 

b/h=0.21; --- /h=0.3; """"" b/h=0.5; -"-"- b/h=1. 

Figure 4.8.3. j 
, 

(heave) plotted against Ka for a cylinder next to a 
wall (a/h=0.2, f/a=1.5) at different distances from the wall. 

b/h=0.21; --- b/h=0.3; ..... b/h=0.5; -"-"- b/h=1. 
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Ka 

Figure 4.8.4. P(sway plotted against Ka for a cylinder next to a 
wall (a/h=0.2, f/a=1.5 at different distances from the wall. 

b/h=0.21; --- /h=0.3; """"" b/h=0.5; -"-"- b/h=1. 

Ka 

Figure 4.8.5. v (heave) plotted against ha for a cylinder next to a 
wall (a/h=0.2, f/a=1.51 at different distances from the wall. 

b/h=0.21; --- /h=0.3; ..... b/h=0.5; -"-"- b/h=1. 
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curves as b/a increases. This is not particularly surprising since as 

the wall gets further away from the cylinder more wavelengths can fit 

between the cylinder and the wall. If the number of wavelengths that 

lie between x=0 and x=b is denoted by A then 

brch 
li Tr- . 

(4.8.28) 

Taking b/h =1 and a/h = 0.2 it is easily shown that as Ka varies 

between 0 and 1.26 A varies between 0 and 1. This compares very 

well with the curves which complete one cycle in approximately this 

range. 

The curves for b/h = 1.05 show that the maximum value of the 

damping coefficient in sway is lowered as the gap between the cylinder 

and the wall decreases whereas the maximum value of the sway added mass 

together with those of both the added mass and damping coefficient in 

heave are increased. It is interesting to note that for the larger 

values of b/a the damping coefficients for sway and heave are almost 

exactly out-of phase with each other. 

It can be seen from figures (4.8.4) and (4.8.5) that, unlike the 

single isolated cylinder, the cylinder next to a wall has zero damping 

coefficient at some values of Ka. Thus equation (4.8.23) implies that 

no waves are radiated out to infinity. One consequence of this is that 

no net work is required to keep the cylinder oscillating at these 

frequencies. 

Figures (4.8.6)-(4.8.9) show the effect of immersion depth on the 

hydrodynamic characteristics of the cylinder. The parameters a/h and 

b/h are fixed at 0.2 and 0.5 respectively and f/a is allowed to 

vary between 1 and 4. The damping coefficients in sway and heave are 

again almost exactly out of phase with each other, particularly for 

small immersion depths. Like an isolated cylinder, a cylinder next to a 
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Figure 4.8.6. (sway plotted against Ka for a cylinder next to a 
wall (a/h=0.2, 

b/h=0.5) 
with diiferent clearances. f/a=1.1; 

--- f/a=2; """"" f/a=3; -"-"- f/a=3.9. 

Ka 

Figure 4.8.7. µ (heave) plotted against Ka for a cylinder next to a 
wall (a/h=0.2, U/h=0.5) with diiferent clearances. 
--- f/a=2; ..... f/a=3; -"-"- f/a=3.9. 
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Ka 

Figure 4.8.8. v (sway__. plotted against Ka for a cylinder next to a 
wall (a/h=0.2, b/h=0.5) with different clearances. f/a=1.1; 
--- f/a=2; """"" f/a=3; -"-"- f/a=3.9. 

2.5 

Ka 

Figure 4.8.9. v (heave) plotted against Ka for a cylinder next to a 
wall (a/h=0.2, b/h=0.5) with different clearances. f/a=1.1; 

--- f/a=2; ..... f/a=3; -"-"- f/a=3.9. 
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wall which is very close to the free surface has negative added mass at 

some frequencies. See §3.4 for a discussion of this phenomenon. 

The third situation that will be considered is that of bringing the 

bottom up to meet the cylinder. In this case the parameters f/a and 

b/a are held fixed, at 1.5 and 2.5 respectively, and a/h is 

allowed to vary between 0 and 0.4. Curves for a/h = 0.1,0.2,0.3 

and 0.39 are shown in figures (4.8.10)-(4.8.13). For the heave case 

curves for a/h =0 are given in Wang (1981) and it is found that the 

difference between the a/h = 0.1 curves and those for infinite depth 

is very small (less than about 27. ) as one would expect. The effect of 

decreasing the water depth until the cylinder is almost touching the 

bottom is seen to have a large effect on the sway characteristics in 

long waves but not otherwise. Again the damping coefficients are almost- 

exactly out of phase, particularly for small values of a/h. 

4.9 The Scattering Problem 

The method used to solve the scattering problem for a cylinder next 

to a wall is the same as that used in §4.5 for the isolated cylinder. 

Again the problem is a boundary value problem for the time-independent 

velocity potential, 4s, which can be reformulated in terms of a 

radiation potential, 0, so that the results of §4.8 can be used. Let 

¢s _ gA cosh x r-h (etKX 
w cosh x 

Then since 

(4.9.1) 

Os N gA cosh x -h (e'KX +R e-'Kx) as x --º oo (4.9.2) 
w cos ti 
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Figure 4.8.10. p (swa) plotted against Ka for a cylinder next to a 
wall (f/a=1.5, b/a=2.5) in different depths of water. ä/h=0.1; 
--- a/h=0.2; """"" a/h=0.3; -"-"- a/h=0.39. 

Ka 

Figure 4.8.11. p (heave) plotted against Ka for a cylinder next to a 
wall (f/a=1.5, b/a=2.5) in different depths of water. a/h=0.1; 
--- a/h=0.2; """"" a/h=0.3; -"-"- a/h=0.39. 
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Figure 4.8.12. v (swa ) plotted against Ka for a cylinder next to a 
wall (f/a=1.5, b/a=2.5) in different depths of water. a/h=0.1; 
--- a/h=0.2; """"" a/h=0.3; -"-"- a/h=0.39. 
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Figure 4.8.13. P (heave) plotted against Ka for a cylinder next to a 
wall (f/a=1.5, b/a=2.5) in different depths of water. a/h=0.1; 
--- a/h=0.2; """"" a/h=0.3; -"-"- a/h=0.39. 
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0 must satisfy 

ý. cocoshsh 
K-h 

(R-1) e_ ý KX as x -º oo. (4.9.3) 

Thus ý is a radiation potential which satisfies 

ýý ý (gA cocoshsh 
n_h 

(elKX + e-"KX)1 on r2=a. lJ 
(4.9.4) 

The term in square brackets. can be expanded about the point r2 = 0, 

valid in the region r2 < f, to give 

co 
C Km! [(er('-hl + (_l)m e"('-f)) COS M02 COS /cb 

f*O 

(eKcr-' - (_1)m er(h-f)) sin m92 sin rcb]. 

The function 5 is asymmetric so we need to consider a combination of 

symmetric and antisymmetric multipoles. Thus let 

_r 
(1) (2) (On (2)l1 

ý LaO \ 
(ýý. 

1 ' 
ýý. 

iý + Qý 
.2+. 

ýn. 
2/J' 

nal 

(4.9.5) 

This ensures that Os satisfies the condition of no normal velocity at 

the wall. The results of the previous section then imply that the 

coefficients a. and A. can be obtained by solving the following 

matrix equation: 

CD 

I Mm 
n 7n = Rm m=1,2,... (4.9.6) 

not 
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where 

720-t =an i yen = fin n=1,2,... 

R -1 rca. 1a eK(n-f) _ eK( 
f -h) sin ýcb ý"-' _- cosF icF m-1 ! ýý') 

ý 

-1 ýa 01 [(1). eK(n-f). + eKcf -hýý cos /Gb Rz. = coý m-1 ' 

and If.. is given by equation (4.8.16). 

4.10 Two Cylinders in Sway and in Phase 

In 1981 Wang solved the radiation problem for two parallel spaced 

cylinders in infinite depth, for both heave and sway motions. The 

motivation for this work came from the study of catamaran type vessels. 

This is not particularly relevant to the problem of wave reflection but 

for completeness the sway problem for such a configuration will be 

solved here. Note that the heave case is the same as for a cylinder 

next to a wail and has been solved in §4.8. 

The problem of sway next to a wall was also solved in §4.8 and in 

this case the boundary condition on x=0 is = 0. When two 

parallel spaced cylinders are in sway and in phase with each other the 

the problem is antisymmetric about x=0 and the appropriate boundary 

condition on this line is = 0. 

Very little work is required to change the formulation of §4.8 in 

order to satisfy this new boundary condition. The representation for 0 

given by equation (4.8.6) was chosen so that Pa=0 
would be 

automatically satisfied. It is easy to show that the representation 

required for this new case is 

rt 
mr 

ý-Uý 
LCn 

(OR. 
1+ 

Oe? i )+d. (Ont 2 0n? 2)]" 

nut 

(4.10.1) 
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The analysis is identical to that which was done for the case of sway 

next to a wall with terms coming from 0n29 
q=1,2 being multiplied 

by -1. The resulting infinite system of equations is 

Co 

1 uni 

Where 

Men 
en - ri 

m 

eZp_I = C. 

and the matrix H.. is given by 

m=1,2,... (4.10.2) 

e2. = dn n=1,2,... 

ý2 -i, 
2a-i - -ban + Qmn, 

i + Amn, 
i - 

Can cos (n+m)" 

112 _192e = Qmn. 2 + Cmn sin (n+m) 

(4.10.3) 
112m, 

2A_1 = Smn, 
1 + Cmn sin (n+m)-2 

1i2m. 
2a = ban 

- 
Aon. 

2 + Smn. 2 + Can COS (n+m)ý 

The added mass and damping coefficients are again given by equation 

(4.8.18). 

Figures (4.10.1) and (4.10.2) show some curves of added mass and 

damping coefficients against non-dimensional wavenumber, Ka, for fixed 

values of f/a (=1.5) and b/a (=2.5) with varying a/h. Curves for 

a/h =0 can be found in Wang (1981) and they are within a few percent 

of the a/h = 0.1 curves shown. Figure (4.10.2) shows that, like a 

cylinder next to a wall, two parallel cylinders in sway have zero 

damping coefficient at some frequencies (see §4.8). A comparison with 

figures (4.8.13) and (4.8.14) shows that the damping coefficient in this 
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Figure 4.10.1. µ plotted against Ka for two parallel cylinders in 
sway (f/a=1.5, b/a=2.5) in different depths of water. 
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Figure 4.10.2. v plotted against Ka for two parallel cylinders in 
sway. (f/a=1.5, b/a=2.5) in different depths of water. 

a/h=0.1; --- a/h=0.2; """". a/h=0.3; -"-"- a/h=0.39. 
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case is almost exactly in phase with that for the heave case. Why this 

is the case whereas for sway next to a wall it is almost exactly out of 

phase (see §4.8) is unclear. 

4.11 Conclusion 

Eight problems concerning submerged cylinders in water of finite 

depth have been solved in this chapter using multipole expansions. They 

are 

1) The radiation of waves by a single cylinder in heave. 

2) The radiation of waves by a single cylinder in sway. 

3) The scattering of waves by a single cylinder. 

4) The scattering of waves by a tethered buoyant cylinder. 
5) The radiation of waves by a cylinder in heave next to a wall. 

6) The radiation of waves by a cylinder in sway next to a wall. 

7) The scattering of waves by a cylinder next to a wall. 

8) The radiation of waves by two parallel cylinders in sway. 

The multipole expansion method has been shown to be an efficient way to 

solve such problems provided a sensible approach is taken to the 

evaluation of the principal value integrals that appear. A lot of the 

work in this chapter is the extension to the finite depth case of work 

of other authors. The major exception is the problem of the scattering 

of waves by a tethered buoyant cylinder. 

This problem was studied with a view to proposing a wave reflection 

device suitable for the protection of coastal installations while 

allowing the passage of small vessels over it. The need for wave 

reflection devices has been highlighted recently by the realisation that 

the platforms in the Norwegian Ekofisk oil field in the North Sea are 

gradually sinking as oil is extracted and as they do so they become more 

susceptible to damage by large waves. 
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The results shown in §4.7 show that a tethered buoyant submerged 

cylinder, if sensibly 'tuned', can be an excellent wave reflector. The 

results show that the best performance can be achieved by very light 

cylinders in fairly shallow water and this makes- the device highly 

suitable for coastal sites. 
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CIIAPTER 5 

The added mass and damping coefficients of a submerged 

sphere in finite depth 

5.1 Introduction 

The general theory presented in §3.2 is only applicable in two 

dimensions. It is hoped that in the future this theory will be extended 

to cover three-dimensional problems. One of the simplest 

three-dimensional problems that could be looked at would be reflection 
by a tethered submerged sphere. The hydrodynamic characteristics of 

such a body would need to be evaluated and this is done in this chapter 

using the multipole method. 

Srokosz (1979) used the multipole method to solve the problem of the 

radiation of waves (in sway and heave) by a submerged sphere in 

infinitely deep water. In this chapter the techniques described in 

chapter 4 will be used to solve the same problem in finite depth. 

The numerical evaluation of three-dimensional multipole potentials 

again involves calculating principal value integrals and the method 
described in §4.3 will again be used. 

The quantities R and T, i. e. the reflection and transmission 

coefficients, do not appear in this chapter since these concepts are 

meaningless in three dimensions, since the amplitude of any diverging 

wave tends to zero as the distance from the wave source tends to 

infinity. 
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5.2 Spherical Multipole Expansions 

Spherical polar coordinates (r, O, a), with their origin at 

x=z=0, y=f will be used with 9 measured from the downward 

vertical (the positive y-axis). The cylindrical polar coordinate 

R- (x2 + z2)v2 will also be used. 

Time independent spherical multipole potentials centred on (0, f) can 

then be written (see Thorne (1953)) 

Co 
a n. t m 

ae+2 kn J. 
oý = cos ma a Pn (cos 6) + n-m . 

1RcosTi 
kýkI sin Ti kfi 

0 

[ ek(-n) (K sinh ky -k cosh ky) - (-1)1+m (K+k) e-kf cosh k(h-y) ] dk 

_ 
21ria rca "'1 cosh Ic r-h 

n-m .K+ sinh 1c 
ic(f-h) + (-l)n*m eK(h-f) ] Jm(KD) 

n=0,1,... m<n (5.2.1) 

where c is given by the dispersion relation (3.2.8), J. m=0,1,... 

are Bessel functions and Pn are Legendre functions. The superscript 

m represents the azimuthal mode. 
With the functions Ct i=1,2,3,4 defined by equations 

(4.2.5)-(4.2.8) with q replaced by m this can be written 

m n= cos ma a Pmn(cos B) 

m 
a2 I f, _.. '% nfc1 (kh) ekc f-y 

t n- m. J_ 
0 

J. (kR) dk 

1 2ria ica n+i 

c3 hh e"c f-Yl + c4 rch e"c Y-fý Jm(tcR 
n-m .h+ sin h 'K ý(^)()ý)" 

(5.2.2) 
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These multipoles can be expanded in spherical polar coordinates 

centred on (O, f) using the following two identities (See Thorne (1953) 

and Abramowitz and Stegun equation (9.1.35)): 

m 
ek(i-7) J. (kR) = (-1)' 1 

skm 
s 

Ps(cos 9) 

ek(r-f) J. (kR) = 

s=m 

m 
is 

s+m i 
Pg(cos B). 

8 .m 

This gives 

s=m 

Df1 

ýý =a cos ma 
[ [r21 Pn(cos 8) +G 

[La]sAn- Ps(cos 0) (5.2.5) 

where 

Co 

Am, * _ 
(a/h1 rf (_1 m*sCi u+ C2 

uu` du 
Il- QI . S+QI " 

II. 'Jj cosh u-uS lIl u 
0 

- 2ri (Kh)n+s+l (-1)m+sc3(xh) + c, (ich) I. 
r+ sinh xJ 

n=0,1,... m<n (5.2.6) 

This expansion for is valid in the region r< 2f. (See Thorne 

(1953)). 

5.3 Formulation and Solution 

In order to calculate the added mass and damping coefficients we 

must solve the following boundary value problem for the time-independent 

(5.2.3) 
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potential ý: 

V20 =0 in the fluid (5.3.1) 

R4 +=0 on y=0 (5.3.2) 

dy =0 on y= h (5.3.3) 

_U sin 9 cos öa T- 
cos 0 onr=a surge 

heave (5.3.4) 

where U is the time-independent velocity of the sphere. 

Note that Ps (cos 0) = cos 0 and P; (cos 0) = sin 0 and so from 

the boundary condition on the sphere, equation (5.3.4), it is-clear that 

the potentials for sway and heave can be written solely in'terms of On 

and ¢$ respectively. In order to be able to solve both problems 

simultaneously let O, m=0,1, represent the solution to the heave and 

sway problems respectively. The boundary condition on the sphere can 

now be written 

06a 
Tr =U Pi(cos 0) cos ma on r=a, 0<6<r. (5.3.5) 

Let 
m 

ýID =ý Cn ýý 
. 

(5.3.6) 
n=1 

Note that the n=0 term which could appear in the expansion for O° 

has been omitted. This term corresponds to a rs singularity at the 

centre of the sphere which is physically unacceptable as it would imply 

an instantaneous flux of fluid across the surface of the sphere in 

exactly the same way that the In r singularity was unacceptable in the 

case of the submerged cylinder (see §4.2). However if this term were 
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left in we would simply find that its coefficient was zero. 

Application of the boundary condition, equation (5.3.6), gives 

act 

Co m 
jC. 

L- 
(II+l) Pä (COS 0)'+ 1s 

-A: 
S 

PS (COS 6) 
Sam 1 = Pi (cos B) . 

(5.3.7) 

This can be converted into an infinite system of linear equations by 

applying the operator 

w 

J... 
Pr (cos 9) sin 8 d9 r> m 

0 

and using the orthogonality relations 

*f 2/(2r+1) m=0 

1 Ps(cos 0) Pro(cos 0) sin 0 d9 = Srs . 
0 2r(r+1)/(2r+1) m=1 

(5.3.8) 

The resulting system is 

Cr Aer Cmn S1 r/2 (5.3.9) 
not 

which can be solved numerically by truncation (see §3.3). 

The time-independent hydrodynamic force on the sphere in the 

direction of motion, f', is given by integrating the appropriate 

component of the pressure around the cylinder, i. e. 

Zw w 

f' _- pwi 
J0 J0 ý'(a, 6, a) Pi(cos 6) cos ma a' sin 0 dB da (5.3.10) 

Co 

=-ý 7c13Üp;, r1 [ Ci +i A°nt Cn ]. 
Rol 
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Using equation (5.3.7) with r=1 and non-dimensionalising with 

respect to the fluid displaced by the sphere gives the final result 

µ° - ivm =- (1 + 3ci) . 
(5.3.11) 

The three-dimensional equivalent of equation (1.2.32), which relates 

the damping coefficient to the energy radiated to infinity, is given by 

Itei (1983) p. 321 as 

2, ff 

B=2ý ce 1 JA(a)12 da 
0 

Where it is assumed that 

cosh 
cosx ý-h lýýffJ 

v2 
as R -ºoo. 

This can be used to provide a check on the results obtained from the 

system of equations (5.3.9). The method used is identical to that 

described described in §4.2 and the resulting identity that is obtained 

is 

[2Ka (2Kh + sinh 2Kh)]'' 
Ic Iý { 2x- m= 4 (5.3.12) Lr" r m=1 

n. i 

Where 

rn - 
/c1 n+týeK(f-h) 

+ ý-1)n+m ee(h-f)ý Con 
A- fü 

5.4 Results and Discussion 

Curves of added mass and damping coefficients for four spheres are 

shown in figures (5.4.1)-(5.4.4). In all the curves the immersion depth 
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to radius ratio is the same, namely 3/2. The different curves thus 

correspond to radius to depth ratios in the range 0< a/h < 0.4. The 

case a/h = 0.4 is the extreme case of a sphere just touching the sea 

bed and the problems associated with this value are discussed with 

reference to submerged cylinders in §4.4. 

The multipole method is a particularly efficient method for solving 

the radiation problem for a sphere in finite depth provided that Kh is 

small enough. (Results are difficult to obtain if Kh is greater than 

about 8. ) However in the region Kh <8 the convergence of the method 

is excellent and using a truncation size of 1 gives accuracy within 2%. 

All the results shown in this section were calculated using a truncation 

size of 4. 

The results for a sphere with a radius to depth ratio of 0.1 are 

very close to those shown in Srokosz (1979) for the infinite depth case 

and in fact unless the sphere is very close to the bottom the effects of 

finite depth are quite small. 

Figures (5.4.1) and (5.4.2) show the added mass coefficients for 

sway and heave respectively. It can be seen that the nearer the sphere 

is to the bottom the greater its added mass. The curves shown in these 

two figures can all be considered as deviations from 1, the added mass 

of a sphere which is infinitely submerged in infinitely deep water. 

Figures (5.4.3) and (5.4.4) show that the effect of finite depth is 

to increase the damping coefficient for sway motion and lower that for 

heave motion, which is precisely the same as in the case of the 

submerged cylinder, though the heave damping coefficient still remains 

the larger of the two. Note that, unlike the two-dimensional problem of 

the submerged cylinder, the sphere in deep water does not exhibit the 

property that the added mass and damping coefficients in sway are the 

same as those in heave. 
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CIIAPTER 6 

The sloshing of fluid in a half-full sphere 

6.1 Introduction 

In chapters 4 and 5 the method of multipoles has been used to solve 

problems in which one or more submerged bodies have been present 

together with a free surface. Problems in which bodies lie in the free 

surface can sometimes be solved more easily by representing the 

potential as a sum of a wave source and a linear combination of 

wave-free potentials. This method was pioneered by Ursell (1949) who 

solved the problem of the heaving motion of a half-immersed circular 

cylinder. The problem of the floating hemisphere making periodic 

heaving oscillations was solved first by Havelock (1955) using this 

method and then a greatly improved solution was given by Hulme (1982) 

who also solved the problem of surge. 

Here we consider the problem of fluid motion inside a hemisphere for 

which a very similar method can be used. As the fluid domain is finite 

we do not require a wave source and instead of wave-free potentials, 

potentials which are valid outside the sphere and radiate no waves to 

infinity, we require harmonic potentials which are bounded inside the 

sphere, and which satisfy the free surface boundary condition. 

All motion is assumed to be time harmonic with angular frequency w. 
This leads to a condition which w must satisfy in order for there to 

be a solution. We call these allowable values of w, suitably 

non-dimensionalised, the normal modes of oscillation, or sloshing 
frequencies, of the body. 
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The problem is formulated and solved in §6.2 and then the limiting 

case of small waves is considered in §6.3. Results are then given in 

§6.4. 

A solution to the exterior problem of the forced motion of a 

surface-piercing body can be obtained by solving a Fredholm integral 

equation of the second kind for the unknown velocity potential on the 

body. Unfortunately this method breaks down for values of the forcing 

frequency at which the interior problem, with the velocity potential 

vanishing on the body boundary, has a non-trivial solution (see Mei 

(1983) §7.8.2). The same method as was used to calculate the sloshing 

frequencies can be used to calculate these irregular frequencies. This 

is done and results are shown in §6.5. 

6.2 Formulation and Solution 

Spherical polar coordinates (r, 9,0) will be used with 0 measured 

from the downward vertical, together with cylindrical polar coordinates 

(x, o, y), with y increasing with depth and 0 as before. We will 

adopt the convention that n, m, bt refer to integers, whilst p, v are 

used to represent real numbers. 

The motion can be represented by a velocity potential I(x, y, t) 

which is harmonic in the fluid region, R (y >0r< a). As we have 

done in previous chapters we remove the time dependence by writing 

, I(x, o, Y, t) = ße[¢(x, o, Y)e"t]. (6.2.1) 

Then ¢ is harmonic in R and satisfies the free surface boundary 

condition 
ýd +ý=0 on y=0, (6.2.2) 
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together with 
ý= on r=a. (6.2.3) 

The first step in the method of solution is to construct a function 

which is equal to in the fluid region but which is harmonic in the 

whole sphere r<a. To do this we will use an argument similar to that 

given in Ursell (1968) p825 where he does the same for wave functions 

(functions which satisfy the Helmholtz equation) in a semicircle. 

The function $, defined in R by 

ýº=K¢+ý, (6.2.4) 

is harmonic in the fluid region and is zero on y=0. If Green's 

theorem is applied to this function together with 

G(Xjy; f jjl) _ [(X_ )2 + (y_ý)z] _'2 _ [(X'4)2 + (y+ßl)2] -'2 we obtain 

4r'ýýýýýýý1) = 
Js''Y) ý(X, 

Y; f, ý! ) - G(X, Y; f, ýi) 
ý! F(X, O, Y)] ds(x, y) 

(6.2.5) 

where S is the curved surface of the hemisphere. Here the facts that 

V2G = 4rö(x-f)b(y-n) in R and that G=0 on y=0 have both been 

used. 

It is clear from equation (6.2.5) that if the point (., n) lies 

inside the sphere r=a then is not singular and harmonic 

in the whole sphere r<a. It also coincides with the function 

defined in R by equation (6.2.4) and so equation (6.2.5) provides the 

continuation of 4 into the whole sphere. Since 

G(x, y; f, n) =- C(x, y; f, -n) it can be seen that the function $ defined 

in R by equation (6.2.4) can be continued into the whole sphere by 

means of the construction 
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*(x, O, -Y) =- t(X, O, Y)" (6.2.6) 

Solving equation (6.2.4) shows that in R 

,( (X7ý 
Y 

9'ýfY) = eK(Y-Yi 0(X, OfY) + e-KY 
fY 

eKu ýj(xf0, u) du (6.2.7) 

J 

where Y>0 is some fixed value of y in R. But the right hand side 

of equation (6.2.7) defines a harmonic function in r<a which 

coincides with 4(x, o, y) on y=0, Irk < a, so that equation (6.2.7) 

provides the continuation of 4(x, O, y) into the sphere r<a. 

It follows that 4 has an expansion in spherical polar coordinates 

of the form 
m 

O(P, e, 0) =j an Pn(cos 0) rn cos 310 . (6.2.8) 
n=o 

Here without loss of generality we have restricted the 0 dependence to 

be just cos MO. Equation (6.2.8) can be rewritten 

mc 
¢= 

L[azn 
PZn(cos 9) r2" + a2n. t Pzn+s(cos 0) r2"*1] cos Mo. (6.2.9) 

p. 0 

Now ¢ must satisfy (6.2.2), which in polar coordinates can be written 

=±ý. K¢+rý=0 on 0 
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Therefore 

i[K a2" Pzp(cos 0) r2n +K a2". 1 P2". 1(COS 0) r2"'1 
no0 

+ sin 8(a2" Pz"'(cos 0) r2n's + a�., P2", 1'(cos B) r2n)] 

=o on 0=ý. (6.2.10) 

We now use the following identity (Abramowitz and Stegun (8.5.4)): 

P9p '(0) = (v + µ) PD_1(0) d v, ý. 

This gives 

[K a2n Pzp(0) r2A +K a2n+i Pzn+1(0) r2e+i 
 . 0 

+ (2n+)[) a2" Pz . -, 
(O) r2"' + (2n+2M+1) a2 n. 1 P(O) r2 n] = 0. 

(6.2.11) 

If the order M is* assumed to be even, we can write M= 2m, (m>0). 

We use the fact that 

P? ".. 1(0) =0V 00 

and 

P", (x) =0 if M>00. 

Equation (6.2.11) can then be rewritten as 

and 

co 
[K az" P2ý(0) rz" + (2n+2m+1) az"+1P2ý(0) rz"] 

n.   

+ 2m ao P? i(0) r'' = 0. (6.2.12) 
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Since P? 7(0) = Pö'(0) (Abramowitz and Stegun (8.2.1)), the last term 

is zero and we have 

Co 

1[K a2p P2ý(0) r` + (2n+2m+1) a2". iP2n(0) r2"] = 0. 
s"" 

This implies that 

K aZl = -(2A+2m+1) aze+t" (6.2.13) 

If we define d. = a2.. ß/K, then 

0= 
co 

L de [K P? p. 1(C0S 0) r2n`1 - (2n+2m+1) PZn"(cos 0) r2n] cos 2mo. 
ass 

(6.2.14) 

The term in square brackets is the internal equivalent of a wave-free 

potential (see Hulme (1982)). 

Using equation (6.2.3), the boundary condition on the hemisphere, 

gives 

Co 
[Ka (2n+1) Pzp. t(x) - 2n (2n+2m+1) Pzn(x)] d. =0 0<x<1. 

qs  

There are two cases which must be considered separately : 
(i) m=0. 

Define pa = (2n+1) d. so that (6.2.15) becomes 

(6.2.15) 

m 

G [Ka P2 1.1(x) - 2n PZ�(x)] P. = 0. (6.2.16) 
R. O 

For convenience the parameter A (= 1/Ka) is introduced and then the 
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I 

operator f-... Pz: (x) dx (s = 0,1,2,... ) is applied to equation 
0 

(6.2.16). We will employ the notation (see Hulme (1982)) 

i 

I(v, a'; Di) = 
JP(x) P, ". (x) dx (6.2.17) 

0 

for which Hulme gives an explicit formula. This leads to the following 

eigenvalue problem: 

a P. 
ý 

p. I(2n+1,2s; O) s>1 
A: 0 

and (6.2.18) 
m 

0=L p� I(2n+1,0; 0). 
A. 0 

The- s=0 equation can be solved for do, and this value then 

substituted back into the other equations. Using the fact that 

I(1,0; 0) =j we get 

m 

do = -2 1 dn I(2n+1,0; 0) (6.2.19) 
n=1 

and 

a d: ý dn [I(2n+1,2s; 0) -2 I(2n+1,0; 0) I(1,2s; O)]. (6.2.20) 
nsl 

Thus the normal modes of oscillation can be found from the eigenvalues, 

A, of the matrix 

Ati = 
4i+1(I(2j+1,2i; 0) -2I (2j+1,0; 0) I(1,2i; 0)] (6.2.21) 

where I is given by equation (6.2.17). A description of how to 
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calculate the eigenvalues of such a matrix is given in §6.4. 

(ii) m>1. 

For this case we simply apply the operator 
J... PZS(x) dx to 

0 

equation (6.2.16) and use the result 

I(2n, 2s; 2m) = ö�, s 
1 (2s+2m)! 

4-sg+-l (2-s--, 2-MT ' 
This gives 

m 

I do [Ka (2n+1) I(2n+1,2s, 2m)] = 
2s 2s+2m+1 ! d$ V s>m. s+1 (2s-2m)! - s.   

(6.2.22) 

In order to make the summation run from 1 rather than m we put 

n= m+ j-1 ; 

Now 
co 

I d , j-1 (2m+2j-1) I(2m+2j-1,2m+2i-2; 2m) 
1"s 

= 
(2m+2i-2) 2i+4m-1 ! d®., 

-1 a m+ i- i- 
d i>1. (6.2.23) 

If we substitute back for M, and again write A= 1/Ka we can 

calculate the normal modes of the system from the eigenvalues, A, of the 

matrix 

At i= 
4i+21i+3- 2i-i+! (1_j+li-1) I(2j+1! -1,2i+1! -2,1i) (6.2.24) 

Next we must consider the case when M is odd. To this end we 

write It = 2m+1, (00). Now we have (Abramowitz and Stegun (8.6.1)) 

Pzn, `" (0) =0V n>0 
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and so, from equation (6.2.11), 

CD 

L [K a2". ý P'22�+, '1(0) r2". ' + (2n+2m+1) a2n PZý'_1(0) rz"'1] = 0. 
e. o 

(6.2.25) 

In order to make the summation run from 1 rather than 0 we use the fact 

that (Abramowitz and Stegun (8.2.1)) 

P? i" (0) = Nom-, (0) = 0. 

Therefore 

[K a2"-, P2 p_'1 (0) r2"'1 + (2n+2m+1) a2" P2ý'i(0) r2n'1] =0 
.. 1 

Which implies that 

(6.2.26) 

K azp_1 = -(2n+2m+1) 
aZ- d n>1. (6.2.27) 

The velocity potential ý can now be written as 

m 

¢=1d. [K r'° Pzn's(cos 9) - (2n+2m+1) r'n-' Pzn=i(cos 9)]cos (2m+1)0 
e. w+i 

(6.2.28) 

and the boundary condition (6.2.3) then gives 

ý dp [Ka 2n Pz: 'I(x) - (2n-1) (2n+2m+1) Pzý_1(x)] =0 0<x<1. 
ewm#l 

(6.2.29) 
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t 

Applying the operator 
J... P'223'-"I(x) dx gives 

co 

I dp Ka 2n I(2n, 2s-1; 2m+1) = 
2s-1 2S+2mm+1 ! ds V s>m+1. 

.... l 
(6.2.30) 

In the same way as for the case of even order the summation variables 

will be changed so as to make the summation run from 1. This is done by 

putting 

II=III+j ; S =m+l. 

Then 

m 

I d.. j 2(m+j) I(2m+2j, 2m+2i-1; 2m+1) = 
2m+2i-1 2i+4m+1 ! 

m+ i-1 i- 
j .l 

m+t" d i>1 

(6.2.31) 

Substituting back for Di and again writing A= 1/Ka we see that the 

normal modes are related to the eigenvalues, A, of the matrix 

Ali = 
4i+01-3 (2i-2)! 

-2'+D! 
-1 I(2j+D! -1,2i+D! -2, b! ) 

(21ol- 2) i+' 1 

which is exactly the same as for the case of the even modes. 

6.3 Short Wave Asymptotics 

(6.2.32) 

In this section we simply note the results of Davis (1975). 

If, instead of a hemisphere, we considered a vertical circular 

cylinder, then simple separation of variables would give the normal 

modes, K. a, as the zeros of the function JID(Ka), where J. m=1,2,... 

are Bessel functions and m represents the azimuthal mode of 

oscillation. 
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When ha is very large the disturbance is concentrated very near 

the free surface and the effect of the spherical nature of the bottom is 

small. We would therefore expect the first term in an asymptotic 

expansion for K .a to be j:,,, where jm� is the nth zero of J. 

By constructing a generalised Green's function Davis obtains an 

integral equation which yields an iterative solution for ý as n 00. 
Using this solution the normal modes can be expressed in terms of an 

integral over the surface of the hemisphere and a detailed asymptotic 

analysis leads to the result 

Koa N j: a - m2 + 
661 

+ý n-º ao 
CJ 

as 
4j. '. 3rj. a 2j. o 

l 

(6.3.1) 

This result can be used as a check on the numerical results obtained 

from eigenvalues of the matrices given in equations (6.2.21) and 

(6.2.24). 

6.4 Results 

The sloshing frequencies, K,, a, of the hemisphere are related'to the 

eigenvalues, A., of an infinite matrix by K. a = 1/A. - If the motion is 

axisymmetric, i. e. m=0, then this matrix, A, is given by equation 

(6.2.21) otherwise it is given by equation (6.2.24). 

In order to evaluate the eigenvalues of an infinite matrix a 

truncation procedure similar to that described in §3.3 is used. The 

infinite matrix A is truncated to an NxN matrix and the 

eigenvalues of this finite matrix are calculated. If by increasing N 

the eigenvalues converge then the values to which they converge will be 

assumed to be the eigenvalues of the infinite system. As there is no 

dissipation or energy input into the physical system under consideration 

the values obtained for u must be real. This in turn implies that the 
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eigenvalues of A must be real. However no such statement can be made 

about any finite truncation of A. In fact all truncations except a 

1x1 system do produce some complex conjugate eigenvalues which in the 

context of this problem are meaningless and thus will be ignored. 

An NxN approximation to A will thus produce an approximation 

to the first M sloshing frequencies where If 5 N. In practice If is 

much less than N, e. g. if N= 20, If = 4. 

As will be seen, the asymptotic formula for large n given in §6.3 

is very accurate for n>3 and not too bad for n=2 and 3. The most 
important result that is required however, in terms of practical 
application, is the dominant mode which is given by K, a. The 
formulation described above is particularly well suited to this task 

with a truncation size of 20 requiring very little computer time to 
solve and giving Kea to four significant figures. 

Table (6.4.1) shows how the results vary with truncation size for 

one particular value of the azimuthal mode, in this case m=3. The 

table shows values of 1/an for all the real eigenvalues of the NxN 

matrix with N=1,5,10,20,40 and 60 together with the value for K. a 

given by the asymptotic formula, equation (6.3.1). The convergence of 

the eigenvalues is clear and a 40 x 40 truncation gives the first 

seven sloshing frequencies to five significant figures. 
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n=] 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Asymp. N=1 N=5 N=10 N=20 N=40 N=60 

. 4.06827 2.74286 3.98407 3.99302 3.99398 3.99414 3.99415 

! 7.97269 7.96382 7.97245 7.97275 7.97279 

11.31964 11.31934 11.31986 11.31993 

14.56660 14.56526 14.56663 14.56673 

17.77347 17.77336 17.77351 

20.95977 20.95956 20.95974 
24.13401 24.13370 24.13393 
27.30052 

27.30013 27.30041 
30.46177 

30.47849 30.46134 
33.61929 31.97674 33.62171 
36.77404 36.95168 
38.17995 38.17995 

Table 6.4.1 

In table (6.4.2) the truncation size N is fixed at 40 and results 

are shown for the first three azimuthal modes: m=0,1 and 2. The 

accuracy of the results is indicated by the number of non-italicised 
figures. Figures in italics are probably not correct. The asymptotic 

values associated with the m=0 column are calculated using equation 
(6.3.1) but with n replaced with n+1. This is because the first 

zero of JO(x) is at x=0. This solution corresponds to the vertical 

rigid body motion of fluid in a vertical cylinder without a bottom which 

clearly is not applicable to the problem being considered here since it 

contradicts the law of mass conservation. 
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n=1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

m= 0 Asymp. m= 1 Asymp. m= 2 Asymp. 

3.74516 3.75038 1.56015 1.51422 2.81968 2.87334 

6.97632 6.97635 5.27552 5.27423 6.65937 6.65821 

10.14740 10.14740 8.50438 8.50397 9.94121 9.94080 

13.30404 13.30412 11.68334 11.68325 13.14977 13.14968 

16.454 79 16.45495 14.84592 14.84598 16.33118 16.33126 

19.60254 19.60277 18.00098 18.00115 19.49930 19.44949 

22.74854 22.74885 21.15195 21.15222 22.65985 22.66013 

25.89345 25.89383 24.30044 24.30079 25.81568 25.81605 

29.03850 29.03808 27.44735 27.44776 28.96911 28.96882 

31.44005 32.18180 30.46419 30.59361 31.42665 32.11937 

Table 6.4.2 

6.5 Irregular Frequencies 

A solution to the (exterior) problem of a hemisphere lying in the 

free surface making periodic forced oscillations can be obtained by 

solving a Fredholm integral equation of the second kind for the unknown 

velocity potential on the body. This method has the drawback that it 

fails at certain values of the forcing frequency corresponding to the 

eigenvalues of the interior problem with the condition i=0 on the 

boundary of the hemisphere. When solving the exterior problem using 

this integral equation method it is useful to know these 'irregular 

frequencies' so that they can be avoided in the numerical computation. 

Equation (6.2.14) and the boundary condition 0=0 on r=a give 

Co 

G[ Ka P2n+. (x) - (2n+2m+1) P2n(x) ] dn =0 0<x<1 (6.5.1) 
n=m 
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for the even modes and for the odd modes equation (6.2.28) gives 

PzKa Pzý`(x) - (2n+2m+1) °: i(x) ) d. =0 05x51. (6.5.2) 
n u+l 

If we proceed exactly as in §6.2 we find we no longer have to treat 

the m=0 case separately and it is straightforward to show that the 

irregular frequencies are given by 1/A. where A. are the eigenvalues 

of 

A' - 2i+2Sf: 
3 (2i-2)! I(2j+M"1,2i+M-2; M) M=0,1,2,... 

(6.5.3) 

The argument presented in §6.3 for the first term in the asymptotic 
formula for K. a as n -" oo can again be used here and it is clear 

that 

Kpa N j. p as n -+ w (6.5.4) 

where j., is the nth zero of J.. 

Table (6.5.1) shows results based on a 40 x 40 truncation of A 

as given by equation (6.5.3) for the first three azimuthal modes 

m=0,1 and 2. Again the accuracy of the results is indicated by the 

number of non-italicised figures. The convergence of the eigenvalues in 

this case is slightly faster. than in the case of the sloshing 

frequencies. 
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n=1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

m= 0 Asymp. m= 1 Asymp. m= 2 Asymp. 

2.55732 2.40483 3.91881 3.83171 5.19700 5.13562 

5.57370 5.52008 7.05632 7.01559 8.45059 8.41724 

8.68576 8.65373 10.20031 10.17347 11.64313 11.61984 

11.81438 11.79153 13.34375 13.32369 14.81391 14.79595 

14.94868 14.93092 16.48665 16.47063 17.97446 17.95982 

18.08559 18.07106 19.62920 19.61586 21.12936 21.11700 

21.22394 21.21164 22.77153 22.76008 24.28083 24.27011 

24.36315 24.35247 25.91370 25.90367 27.43004 27.42057 

27.50296 27.49348 29.05671 29.04683 30.60294 30.56920 

30.49699 30.63461 31.44567 32.18968 31.95896 33.71652 

Table 6.5.1 

6.6 Conclusion 

In this chapter two problems were considered. The evaluation of the 

normal modes of oscillation of fluid in a half-full sphere and the 

evaluation of the irregular frequencies which arise when the problem of 

the forced motion of a half-immersed sphere is solved using a Fredholm 

integral equation of the second kind for the unknown velocity potential 

on the body. These problems are closely connected, see §6.1. 

By expanding the velocity potential in spherical harmonics we were 

able to construct functions that are harmonic inside the hemisphere and 

satisfy the free surface boundary condition. The application of the 

body boundary condition, =0 on r=a in the case of the interior 

problem and 0=0 on r=a in the case of the irregular frequencies, 

then resulted in the need to calculate the eigenvalues of a doubly 
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infinite matrix which was done by truncation. This method is 

particularly efficient when calculating the largest eigenvalues (i. e. 

the lowest frequencies) which correspond to the dominant modes of 

oscillation. The main drawback of the method is that it is only 

applicable to simple geometries although, as the work in this chapter 

shows, there is no need for these geometries to be two-dimensional. 

170 



REFERENCES 

ABRAM[OWITZ, M. & STEGUN, I. A. 1965 Handbook of mathematical functions. 

Dover Publications inc. New York. 

ALKER, G. 1974 High frequency waves trapped in a two-dimensional 

canal. Quart. J. tech. Appl. lath. 27,347-363. 

BAI, K. J. 1977 The added mass of two-dimensional cylinders heaving in 

water of finte depth. J. Fluid tech. 81,85-105. 

BLACK, J. L., MEI, C. C. & BRAY, M. C. G. 1971 Radiation and scattering of 

water waves by rigid bodies. J. Fluid , tech. 46,151-164. 

BUDIANSKY, B. 1960 Sloshing of liquids in circular canals and 

spherical tanks. J. Aerospace Sci. 27,161-173. 

CARTER, D. J. T., CHALLONER, P. G., EWING, J. A., PITT, E. G., SROKOSZ, M. A. 

& TUCKER, M. J. 1986 Estimating wave climate parameters for 

engineering applications. Offshore Technology Report 0TH 86 228, 

Dept. of Energy. 

CRAGGS, J. X. & DUCK, P. W. 1978 A power series method for treating 

mixed boundary value problems. J. Inst. lath. Applic. 21,1-12. 

DAVIES, A. G. 1982 The reflection of wave energy by undulations on the 

sea bed. Dynamics of Atmospheres and Oceans 6,. 207-232. 

DAVIS, A. M. J. 1974 Short surface waves in a canal; dependence of 

frequency on the curvatures and their derivatives. Quart. J. tech. 

Appl. lath. 27,523-535. 

DAVIS, A. M. J. 1975 Small oscillations in a hemispherical lake. 

Quart. J. Mech. Appl. lath. 28,157-179. 

DEAN, R. C. & URSELL, F. 1959 Interaction of a fixed semiimmersed 

circular cylinder with a train of surface waves. Technical Report 

No. 37, Hydrodynamics Lab. IIT, 91 pages. 
DEAN, W. R. 1945 On the ref lexion of surf ace waves by af lat plate 

floating vertically. Proc. Camb. Phil. Soc. 41,231-238. 

171 



DEAN, W. R. 1948 On the reflexion of surface waves by a submerged 

circular cylinder. Proc. Camb. Phil. Soc. 44,483-491 

EVANS, D. Y. 1976 A theory for wave-power absorption by oscillating 

bodies. J. Fluid tech. 77,1-25. 

EVANS, D. V., JEFFREY, D. C., SALTER, S. H. & TAYLOR, J. R. M. 1979 

Submerged cylinder wave energy device : theory and experiment. 

Applied Ocean Research 1 (1), 3-12. 

EVANS, D. Y. & LINTON, C. M. Active devices for the reduction of wave 
intensity. Applied Ocean Research (to appear). 

FOX, D. W. & KUTTLER, J. R. 1983 Sloshing frequencies. J. Appl. lath. 

Phys. (ZAMP) 34,668-696. 

GUEVEL, P. , LANDEL, E. BOUCHET, It. & MANZONE, J. M. 1985 Le phenomene 
d'un mur d'eau oscillant et son application pour proteger un site 

cötier soumis ä l'action de la houle. Bulletin de l'Association 

Technique Maritime et Aeronautique. 85,229-245. 

HASKIND, M. D. 1959 The exciting forces and wetting of ships in waves. 
(In Russian). Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk 7,65-79. 

English translation available as David Taylor , Jlodel Basin 

Translation No. 307. 

HAVELOCK, T. H. 1929 Forced surface waves on water. Phil. lag. 8, 

1929,569-577. 

HAVELOCK, T. H. 1955 Waves due to a floating sphere making periodic 

heaving oscillations. Proc. Roy. Soc. Lond. A 231,1-7. 

HULME, A. 1982 The wave forces on a floating hemisphere undergoing 

forced periodic oscillations. J. Fluid Mech. 121,443-463. 

HULME, A. 1985 The heave added-mass and damping coefficients of a 

submerged torus. J. Fluid Mech. 155,511-530. 

JOHN, F. 1950 On the motion of floating bodies II. Comm. Pure Appl. 

lath. 3,45-101. 

172 



KIRBY, J. T. & DALRYMPLE, R. A. 1983 Propagation of obliquely incident 

water waves over a trench. J. Fluid Mech. 133,47-63. 

KREISEL, G. 1949 Surface waves. Quart. Appl. lath. 7,21-44. 

LAMB, H. 1932 Hydrodynamics (6th ed. ). Cambridge University Press. 

LEACH, P. A. McDOUGAL, W. G. & SOLLITT, C. K. 1985 Hinged f loating 

breakwater. J. Yaterway, Port, Coastal and Ocean Eng. 111, No. 5, 

895-909. 

LEVINE, H. 1965 Scattering of surface waves by a submerged circular 

cylinder. J. lath. Physics 6, No. 8,1231-1243. 
McIVER, M. 1985 The interaction of water waves with submerged bodies. 

Ph. D. Thesis, University of Bristol. 

McIVER, P. & EVANS, D. V. 1984 The occurrence of negative added mass 
in free surface problems involving submerged bodies. J. Eng. lath. 

18,7- 22 . 
McIVER, P. 1988 Sloshing frequencies for cylindrical and spherical 

containers filled to an arbitrary depth. Private communication. 
MEI, C. C. & BLACK, J. L. 1969 Scattering of surface waves by 

rectangular obstacles in waters of finite depth. J. Fluid tech. 

38,449-511. 

MEI, C. C. 1978 Numerical methods in water wave diffraction and 

radiation. Annual Review of Fluid lechanics 10,393-416. 

MEI, C. C. 1983 The applied dynamics of ocean surface waves. 

Viley-Interscience, New York. 

MEI, C. C., TETSU HARA & MAMOUN NACIRI 1988 Note on Bragg scattering 

of water waves by parallel bars on the sea bed. J. Fluid tech. 

186,147-162. 

MOISEEV, N. N. 1964 Introduction to the theory of oscillations of 

liquid-containing bodies. Advances in Appl. tech. 8,233-289. 

173 



MOISEEV, N. N. & PETROV, A. A. 1965 The calculation of free 

oscillations of a liquid in a motionless container. Advances in 

Appl. Mech. 9,91-154. 

MORISON, J. R., O'BRIEN, M. P., JOHNSON; J. W. & SCHAAF, S. A. 1950 The 

force exerted by surface waves on piles. Petroleum Transactions 

A. I. H. F. 189,149-154. 

NAFTZGER, R. A. & CHAKRABARTI, S. K. 1979 Scattering of waves by 

two-dimensional circular obstacles in finite water depths. 

J. Ship Res. 21, No. 1,32-42. 
NEWMAN, J. N. 1965 Propagation of water waves past long two-dimensional 

obstacles. J. Fluid tech. 23,23-29. 

NEWMAN, J. N. 1975 Interaction of waves with two-dimensional obstacles: 
A relation between the radiation and scattering problems. J. Fluid 

Mech. 71,273-282. 

NEWMAN, J. N. 1976 The interaction of stationary vessels with regular 

waves. Proc. 11th Symp. Naval Ifydrodyn. ONR, London, pp 491-501. 

NEWMAN, J. N. 1977 Marine Hydrodynamics. NIT Press. 

OGILVIE, T. F. 1963 First and second order forces on a cylinder 

submerged under a free surface. J. Fluid Mech. 16,451-472 

PEREGRINE, D. H. 1972 Equations for water waves and the approximations 

behind them. Waves on beaches, Academic Press, pp 95-121. 

PIERSON, W. J. Jr. & MOSKOWITZ, L. 1964 A proposed spectral form for 

fully developed wind seas based on the similarity theory of S. A. 

Kitaigoradskii. J. Geophys. Research 69 (24), 5181-5190. 

SCHNUTE, J. T. 1971 The scattering of surface waves by two submerged 

cylinders. Proc. Camb. Phil. Soc. 69,201-215. 

SHAW, R. 1982 Wave energy, a design challenge. Ellis Jiorwood Ltd. 

SROKOSZ, M. A. 1979 The submerged sphere as an absorber of wave power. 

J. Fluid J! e ch . 95,717-741 

174 



TAKANO, K. 1960 Effects d'un obstacle parallelepipedique sur la 

propagation de la houle. flouiile blanche, 15,247. 

THOMAS, J. R. 1981 The absorption of wave energy by a three-dimensional 

submerged duct. J. Fluid Mech. 104,189-215. 

THORNE, R. C. 1953 Multipole expansions in the theory of surface waves. 

Proc. Carob. Phil. Soc. 49,709-716. 

TUCK, E. O. 1976 Some classical water-wave problems in varying depth. 

IUTAX Symposium on Waves on Water of Varying Depth, Canberra. 

URSELL, F. 1947 The effect of a fixed vertical barrier on surface 

waves in deep water. Proc. Carob. Phil. Soc. 43,374-382. 

URSELL, F. 1949 On the heaving motion of a circular cylinder on the 

surface of a fluid. Quart. J. tech. Appl. lath. 2,218-231. 

URSELL, F. 1950 Surface waves on deep water in the presence of a 

submerged circular cylinder. I. Proc. Camb. Phil. Soc. 46, 

141-152. 

URSELL, F. 1968 The expansion of water-wave potentials at great 
distances. Proc. Camb. Phil. Soc. 64,811-826. 

WANG, S. & WAHAB, R. 1971 Heaving oscillations of twin cylinders in a 

free surface. J. Ship Res. 15,33-48. 

WANG, S. 1981 Wave radiation due to oscillation of two parallel spaced 

cylinders. Ocean Eng. 8, No. 6,559-621. 

WHITHAM, G. B. 1974 Linear and non linear waves. ! �iley Interscience, 

New York. 

YU, Y. S. & URSELL, F. 1961 Surface waves generated by an oscillating 

circular cylinder on water of finite depth : Theory and Experiment. 

J. Fluid tech. 11,529-551. 

r 
UNIVERSmr 
OF DRiTOI 

LIP"' äY 

175 


