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Abstract 

We present a method for the estimation of vehicle mass and road 

gradient for a light passenger vehicle. The estimation method uses 

information normally available on the vehicle CAN bus without the 

addition of extra sensors. A composite parameter estimation 

algorithm incorporating a nonlinear adaptive observer structure uses 

vehicle speed over ground and driving torque to estimate mass and 

road gradient. A system of filters is used to avoid deriving 

acceleration directly from wheel speed. In addition, a novel data 

fusion method makes use of the regressor structure to introduce 

information from other sensors in the vehicle. The dynamics of the 

additional sensors must be able to be parameterised using the same 

parameterisation as the complete vehicle system dynamics. In this 

case we make use of an Inertial Measurement Unit (IMU) which is 

part of the vehicle safety and Advanced Driver Assist Systems 

(ADAS). Therefore, a method using some filtering and supervisory 

logic is employed to give a sensible update behaviour for the vehicle 

mass estimation algorithm. The main function of the supervisor is to 

reject the mass estimate produced by unsuitable available data due to 

unmodelled loss forces. Good estimation results are obtained from 

data from a vehicle which was also fitted with some additional 

instrumentation including GPS sensors and a high quality IMU for 

scientific verification purposes. 

1 Introduction 

In the quest for increased vehicular functionality and autonomy, there 

is a requirement for more effective vehicle modelling in the context 

of control. Certain elements of a vehicle model may not be well 

known or easily determined by fitting inexpensive sensors to the 

vehicle system. Certain vehicle parameters are coupled 

mathematically by the vehicle dynamics so that sensor outputs 

include the influence of more than one vehicle or environmental 

parameter. 

A pair of parameters to which this coupling applies are the focus of 

this paper, namely vehicle mass and road gradient. These are coupled 

by the Newtonian dynamics of the vehicle. Both are time varying 

from the vehicle's frame of reference, and both exhibit some dynamic 

behaviour, albeit with very different time scales and characteristics. 

Neither parameter is easy or especially inexpensive to measure 

directly in the context of current light duty passenger vehicle 

practice, but their estimation from existing vehicle bus data is 

complicated by the influence of other aspects of vehicle dynamics. 

In this paper, we present a new set of results that demonstrate the 

effectiveness of a novel regressor-based data-fusion method for 

tackling a real estimation problem. We introduce two methods of 

supervised output filtering on the mass estimate to improve its 

robustness to certain types of error. The first method identifies 

periods of convergence of the estimate on an appropriate value and 

rejects estimates during events likely to generate errors. The second 

method makes use of a Kalman Filter which is controlled by the same 

type of data-rejection supervision to smooth the output; this method 

makes use of the ease with which a simple noise model may be 

identified for the mass parameter estimate.  Data collected from 

practical  vehicular experiments with a light passenger vehicle as part 

of a series of vehicle dynamics tests supporting several automotive 

projects is processed offline to demonstrate the effectiveness of these 

novel methods. 

 

We begin by presenting an overview of the current state of the art in 

vehicle mass and road gradient estimation and also the background to 

this particular piece of work in light of the other methods found in the 

literature. We will then examine the mathematical context for the 

problem.  This will encompass the methods used for vehicle 

modelling, and the novel composite parameter estimation algorithm 

used at the core of the estimation method. The regressor data fusion 

method originally presented in [1] will then be reiterated in its latest 

form, as used for the work in this paper. The use of supervised output 

filtering to manage the mass estimate will then be presented and 

discussed along with results from experiments carried out using real 

vehicles. 

2 A Brief Overview of the Current State of the 

Art in Vehicle Mass and Road Gradient 

Estimation 

A considerable amount of effort has been made by academic and 

industrial researchers into the online estimation of vehicle parameters 

that are either prohibitively difficult or expensive to measure directly. 

The most usual approaches are to use estimation based on the 

Recursive Least Squares algorithm [2] [3][4] or Kalman Filtering  

[2][3][4] and many make use of data fusion from more than one 

source. 
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Vahidi et al.[5] make use of RLS methods to simultaneously estimate 

vehicle mass and road grade. Han et al.[6], Kim et al.[7] and Fathy et 

al.[8] among others have all used RLS methods to estimate vehicle 

mass, using various dynamics including lateral and roll dynamics. 

The extended RLS has been used to estimate a large number of 

vehicle parameters simultaneously in simulation by Bayani 

Khaknejad et al. [9] and expanded to include a total least squares 

approach to a similar problem by Rhode and Gauterin [10]. 

Kalman Filtering and Extended Kalman Filtering (EKF) based 

estimation methods are widely used in vehicle parameter estimation, 

by Sahlholm, Johansson and Jansson et al. [11][12][13]. Vahidi et 

al.[5] use a combination of Kalman Filtering and RLS methods in 

their approach, as does Raffone[14], while Sebsadji et al.[15] 

combine the Kalman Filtering of the vehicle dynamics with a 

Luenberger type observer for road gradient. 

A number of approaches also use nonlinear observer structures. 

McIntyre et al.[16] and Rajamani et al. [17] both make use of 

Lyapunov based estimators, the latter using roll dynamics for mass 

estimation, a theme shared with Kim et al.[7] who use multiple 

observer synthesis to combine the results of their longitudinal and 

lateral dynamics based estimators. 

Many of the approaches to the simultaneous mass and road gradient 

estimation problem already mentioned are model based to some 

greater or lesser degree. Some model based approaches such as that 

of Mangan et al.[18] make use purely of the Newtonian dynamics of 

the vehicle system to estimate, in this case, road gradient, whilst 

others introduce more complex effects. Bae et al.[19]  uses a model 

based approach to introduce GPS data to the system, whilst Reineh et 

al. [20] use autoregressive moving average (ARMAX) models and 

Winstead and Kolmanovsky[21] make use of Model Predictive 

Control (MPC) and Kalman Filtering to produce their estimates. 

As we have already seen, numerous methods in the literature, as well 

as our own [1] make use of data fusion from additional sensors that 

are attached to but not necessarily part of the vehicle system. 

Numerous methods including those of Sahlholm et al.[11][12]  and 

Bae and Gerdes[22]  have made use of GPS in addition to vehicle 

sensors. The work of Jansson et al.[13] also includes altitude 

measurements using a barometer, while Caron et al.[23] and 

Sukkariah et al.[24][25] both incorporate data from both GPS and 

IMU/INS systems. It is beneficial to include additional data sources 

because this reduces the reliance on excitation and accuracy from a 

single source, thus producing a more reliable and robust estimate. 

The work of Reineh [20], Kim [7] and Fathy [8] using the results of a 

relatively decoupled set of vehicle dynamics to reinforce their mass 

estimates may also be regarded as a form of data fusion. Current 

practical results for passenger vehicles provide mass estimates within 

10% accuracy with a usual settling time of the estimate of more than 

~100 seconds [14] [21] . 

In this paper we will introduce the application of supervisory control 

methods for selecting appropriate data to drive our estimation 

methods. Supervisory control is a broad field and different aspects of 

it are applied to similar problems in the literature, including the use 

of multiple models for different gearbox ratios by Raffone [14] and 

selective use of available data by Fathy [8]. 

The work presented in this paper is a development of a parameter 

estimation project within the dynamics and control group at the 

University of Bristol. Vehicular estimation for mass, road gradient 

and other parameters was begun using standard estimation methods 

and adaptive observers from the literature by Chan and Foreman et 

al. [26][27]. A composite estimation algorithm [presented in the 

mathematical context of this paper] was developed by Na et al.[28]  

and applied to vehicular systems by Mahyuddin et al. [29][30]. This 

algorithm has subsequently been modified to include a novel data 

fusion method by Wragge-Morley et al. [1] 

3 Mathematical Context 

3.1 Vehicle Modelling 

 

Figure 1. Free body diagram expressing the significant driving and loss forces 
in longitudinal vehicle dynamics for a vehicle on a fixed road grade.  

For the purposes of this paper, we need to consider our model of the 

vehicle dynamics. We use a simple longitudinal dynamics model 

incorporating the main resistance forces, but without including too 

much detail to increase computational speed and simplicity. Within 

the algorithm, the vehicle dynamics model is incorporated into the 

observer (10), so it is essential that it be computationally light.  

In addition, some inaccuracies in the model may be tolerated by the 

robust estimation method employed, although there is scope for 

including certain extra loss force. The main forces on the vehicle are 

shown on the free body diagram Figure 1. In addition it is important 

to consider rotational inertias of certain drivetrain components and 

the torque required to accelerate them. Thus the Newtonian force 

balance for the main vehicle dynamics is derived as: 

2sin cos sgn
2

d f

drive

C A
mx F mg C mg x x


     (1) 

where   is road gradient,    is the coefficient of rolling resistance,   

is density of the air, and    is the aerodynamic drag coefficient of the 

vehicle body whose frontal area is   . Vehicle mass is represented by 

  and the gravitational constant by  . Meanwhile the states   

  
  

  
     

 
  
  are respectively the displacement and speed of the 

vehicle. 

We wish to consider this model in a standard, state space form shown 

below in order to allow it to be treated like  a set of first order 

dynamics for the purposes of facilitating the linearisation of the 

model. 

1 1 2 2( , )A B B f    x x u x u  (2) 

The linearisation makes use of the following known and unknown 

parameters   and   to re-write the dynamics in the form: 

M, ω

M, ω

v

Including braking force
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where the known regressor   is: 

 driveg F    (4) 

the unknown parameters   are: 

sin

1
s
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and 
1 1 0B u . The known parameters are gravity and the powertrain 

estimate of vehicle driving force, and the unknown parameters which 

we wish to estimate describe road grade and vehicle mass. 

3.2 Filtering 

It is undesirable for the purposes of this estimator to derive 

accelerations directly from the wheel-speed sensor outputs. However, 

this situation is avoided by applying a filter to the information 

sources. The second state equation of the vehicle dynamics is: 

2 2 2x B     (6) 

where the term        is created for convenience of notation. First 

order filters are applied of the form (7) where   is the filter constant. 

It is significant that this allows us to re-write the derivative of wheel-

speed in terms of the measured and filtered wheel-speed (8). 
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  (8)  

This allows the second state equation to be re-written as: 

2 2

2

f

f f

x x

k
 


   (9) 

3.3 Novel Observer-Based Parameter Estimation 

Method 

Part of the estimation structure is dependent on an observer using the 

parameterised vehicle dynamics equation (3);  

 )ˆ(ˆˆ 211 xCyLBuBxAx    (10) 

The key elements of the estimation structure developed by Na, 

Mahyuddin et al [28][29][30] are a gradient descent type of algorithm 

based on the observer error and a regressor-driven structure   made 

up of terms responsible for finite and exponential time convergence. 

They are effectively driven by the parameter error, due to a 

relationship discussed later in this paper. 
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where   is a filtered regressor-based matrix 

)()()()( ttktMktM f

T

fffff   ,        0)0( M  (13) 

and   is the corresponding filtered regressor-based vector 

 )()()( tktNktN T

fffff   ,                 0)0( N  (14) 

where   carries the measured states in a filtered form from the LHS 

of (9) to avoid derivation of accelerations from certain data [1] 

2 2 fx x

k



  (15) 

3.3.1 Regressor Matrix and Vector Relationship 

The regressor matrix and vector carry the known parameters and state 

measurements. According to the second line of the filtered 

[1][29][30] linear parametrized state equation, these have the 

relationship shown in (9). 

If we pre-multiply equation (9) by    and assume 0  , we have a 

relationship in terms of the information carried by   and  , so it 

may be seen how the relationship below is derived for 0  : 

 )()( tMtN  (16) 

Thus, the term ˆ( ) ( )N t M t   carries the parameter error information 

used as a driver of the parameter estimator (11).  

3.4 Like-Parameterised Information Fusion 

As previously asserted by Wragge-Morley et al [1], it is possible to 

introduce data from additional sensors directly into the regressor 

structure if their dynamics can be parameterised using the same 

parameters as the linear parameterisation of the main vehicle 

dynamics. The example we use is that of an accelerometer set up to 

detect longitudinal acceleration, as would normally be found as part 

of the IMU used by vehicle safety systems such as ABS or seatbelt 

restraints. The accelerations measured by such a sensor. 
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Figure 2. Diagram for the longitudinal accelerometer attached to a vehicular 

system providing the different accelerations to produce the measured output 

    

singav xx   (17) 

This relationship may be parameterised using the parameters   as 

before, and the known parameters vector may thus be extended to a 

matrix to include the extra data: 
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As demonstrated in [1], this method may be used to reduce the 

dependence on persistent excitation of the estimator to produce a 

result. The influence of this improvement is seen in both parameters 

even though it only directly affects the gradient parameter - feeding 

an improved gradient parameter into the observer will inherently 

improve the mass estimate. 

4 Use of two different supervisory strategies 

for smoothing the mass estimate 

The main Contribution of this paper concerns itself with increasing 

the usefulness of the mass estimate by applying two output filtering 

methods. These methods make use of supervisory data rejection 

methods to obtain 'cleaner' periods of estimation and apply filtering 

processes to the output of the estimator. One process relies on 

identifying periods when the mass estimate has converged on a 

sensible value, the other on a Kalman filter incorporating supervised 

data rejection. 

 

 

Figure 3. Diagram showing the estimator system structure with the observer 
and regressor components, the supervisor and output filtering and their 

dependencies on the real plant inputs and outputs  

Presented below in Figure 4  and Figure 5 is a set of mass parameter 

and gradient estimate results. A duty cycle involving a set of test hills 

was repeated several times. The gradients up and down repeated in 

the first section of the drive are +30%, -20%, +15% and -25%. One 

may notice that the gradient estimate using the like-parameterisation 

data fusion method is very good, it is compared to a result derived 

from GPS height data, which it should be noted is less consistent - 

with a noticeable error in the third repetition of the test. The mass 

parameter    
 

 
 is displayed overlaid with a lightly filtered version 

of itself for ease of observation and also with its expected value based 

on the approximate vehicle mass as tested. 

 

Figure 4 . A comparison of gradient estimation from the algorithm presented 

in this paper and in [1] and the result from a GPS altitude trace for the same 

driving duty cycle - note the inconsistencey of the GPS at around 240 seconds 

 
 

 

 

 

 

 - 
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Figure 5 . Illustration of the problem of the mass estimation parameter 

converging on the correct estimate only during certain periods of time. A 

straight line representing the expected mass may be compared to the raw 
estimate and its periods of convergence. 

We may observe from Figure 4  and Figure 5 that although it is easy 

enough to recognise a trend in the mass parameter result by eye or 

off-line regression techniques, and thus derive a mass; the 

disturbances in the estimate make it rather hard to do this by an on 

line method. 

4.1 Sources of estimation error in the mass result 

The errors in the mass result are of different types. These can be 

catagorised in two main ways as 'impulse'-like momentary 

fluctuations and more prolonged steady state errors. It may be 

observed that the steady-state errors appear to converge on to two 

main values for vehicle mass. It may be assumed that the cause of 

this is some deficiency in the modelling of the powertrain, since the 

two values correlate to the periods of net-positive and net-negative 

driving force. The momentary spikes appear to be linked to the 

various information sources. Singularities able to propagate through 

the estimation process are linked to zero-crossings in the driving 

force          ; when this known parameter is exactly zero, the 

matrix   in (18) is singular, which also affects the regressor matrix 

and vector structures. This produces a requirement for persistent 

excitation of the estimator which, for the gradient estimate, is 

overcome to a large extent by the introduction of additional sensor 

data. Reasons for the low quality of parameter estimates are 

summarised in Table 1.  

Table 1.  A brief summary of some of the real world driving events which can 

lead to problems with reliably estimating vehicle mass. 

Braking 
The Braking forces are an estimation arrived at in a crude 

manner and broadcast on the CAN bus and may not 

therefore be treated as well known 

Small driving force 

When the driving force approaches zero, there is a lack of 

information driving the estimation algorithm, with the 

numerical result that the matrix (or vector)   approaches 

singularity, leading to erratic results 

Gradient Zero Crossing 

This is not inherently a problem, except that sudden 

changes from steep positive to steep negative gradients 

tend to trigger a driver behaviour that leads to a zero 

crossing in the force, thus precipitating the effect 

discussed above. 

Steering/Cornering 
Steering the vehicle adds additional friction losses which 

are difficult to model, and also a differntial effect in the 

wheelspeeds 

 

A supervisory control element has been implemented to reject the 

mass estimate when the conditions in Table 1. Thus, reducing the 

likelihood of strong disturbing influences on the eventual result. It 

should be noted that because it is necessary for the gradient estimate 

to be a continuous process, it is impractical for the algorithm to 

simply be 'paused' when the conditions are not met, as both gradient 

and mass are calculated simultaneously. Thus this logical process 

constitutes the first stage of an output filter for the mass parameter. 

The periods of data 'rejection' are shown in Figure 7. 

 

Figure 6. Illustrations of the effect of certain aspects of the driving duty cycle 

on the quality of the mass parameter    
 

 
 (Top).  The vehicle speed being 

low (stationary) at the beginning of the run has a large impact on initial 
conditions because this introduces a set of conditions where the measured 

accelerations and forces do not match and errors between them are greatly 

amplified (Middle), it should also be noted that the local minima in the speed 
trace represent the vehicle negotiating a tight turn, which introduces additional 

losses and these points coincide with the end of periods of low confidence in 

the driving force estimate due to deceleration. The absolute value of driving 
force (bottom) shows a clear correlation with the shape of the mass parameter 

estimate, especially between 'small' force measurements and singularities in 

the output solution. 

In this paper we examine two methods for rejecting the disturbances 

to the mass estimate, the first utilising an analysis of the mass 

parameter to determine periods of convergence on a steady value, and 

the second using a supervised Kalman Filter to smooth the result. For 

the purposes of both these pieces of work, it is assumed that the 

dynamics of mass change are slow enough for it to be assumed 

constant whilst the vehicle is moving. A 2000kg vehicle using a 60kg 

tank of fuel to travel 600km at an average of 80km/h represents a 3% 

change in mass of 0.4% over each hour of driving due to fuel 

consumption. Step changes in mass due to loading and unloading of 

the vehicle are more significant. 

4.2 Supervised Output Filtering using Convergence 

Location Method 

As discussed there are a number of influences on the mass result 

which may be isolated by observation of the input data to the 

estimation algorithm. These influences are summarised in Table 1.  
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Figure 7. Illustration of two of the logical metrics used to select data for use in 
the estimate-convergence output filtering method. The raw mass parameter 

   
 

 
 estimate is shown again (Top) to allow comparison between data 

rejection and periods of good estimate. 

The mass estimate that remains after data rejection is examined for 

convergence on a constant value, with the assumption that within 

sensible bounds, a period of convergence will imply a period of good 

estimate when we believe the input data to be good. The method 

employed for this test is a moving average of the change in estimated 

mass over a time interval of     samples: 

 







t

nti

it bb
n

b ˆˆ
1

1~
ˆ  (19) 

Hence, the convergence of the estimate at a point in time is defined as 

when the average of the variation in the previous     samples of 

the estimate are within some pre-defined bounds. The sampling rate 

and bound that implies convergence may be tuned for the particular 

scenario to get the best results. When the conditions for convergence 

are met, the mass estimate is taken as the average value of mass 

across the period of convergence and the output result is updated. 

 

Figure 8. The moving average of the temporal gradient of the error mass 

estimate    
 

 
 with itself over a predefined time before the present (Top) is 

compared to a threshold to give an indication of periods of convergence of the 

estimate (Bottom). 

4.3 Supervised Output Filtering 

Another technique that has been employed to good effect for 

extracting a good mass estimate is to use Kalman filtering. This has 

several advantages over the method discussed in the previous section; 

not least that the requirement for rejecting large amounts of available 

data is substantially reduced. By the nature of its formulation, the 

Kalman Filter is informed about the dynamics of the state it is to 

estimate and a priori quantitative knowledge of the noise properties 

of the state and measurements. Since there is an element of 

conformity in potential duty cycles, we may assume that fixed values 

for covariance of readings for a particular vehicle system and 

estimator tuning may be used. 

4.4 Kalman Filter Formulation 

A continuous time Kalman Filter formulation is used for this 

application [2][3] in conjunction with a supervisor to obtain a robust 

mass estimate based on selected periods of data. The system 

equations for the estimated state conform to following standard form: 

m m mx A x w   (20) 

m m my C x v   (21) 

where   and   are continuous time white noise processes: 

),0(~ cQw  (22) 

),0(~ cRv  (23) 

The continuous time Kalman Filtering process presented by Simon 

[2] is initialised by: 

ˆ (0) [ (0)]m mx E x  (24) 

ˆ ˆ(0) [( (0) (0))( (0) (0)) ]T

m m m mP E x x x x    (25) 

and propagated according to the following rules for the covariance: 

1T T

m c m m m cP PC R C P A P PA Q      (26) 

and estimated state: 

ˆ ˆ ˆ( )m m m m m mx A x K y C x    (27) 

where the Kalman gain   is: 

1 c
T RPCK  (28) 

For the specific application with which we are concerned, the 'state' is 

the raw mass estimate from the nonlinear adaptive observer algorithm 

with data fusion in the regressor. As previously stated, it is assumed 

that the parameter is a constant while the vehicle is in motion, 

therefore the Kalman Filter in this specific case is: 

ˆ ˆ( )m m m mx K y C x   (29) 
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It is assumed that the noise covariance of the state itself   is nil, 

since the state itself (in this case the mass parameter) should not be 

subject to change during a period of the filter being active; this is due 

to the earlier assumptions surrounding the speed of the mass change 

dynamics of a passenger vehicle system. The measurement noise   is 

treated as encompassing all disturbances and a value for the 

measurement noise covariance    is chosen to reflect this. The 

measurement does not add any gain to the estimated value, so that 

m my x  and the measurement gain matrix  1C   is an identity. 

This allows the Kalman gain and covariance propogation equations to 

be reduced to: 

1 PRK  (30) 

cc
T QRPPP  1  (31) 

4.4.1 Application of a supervisor to the Kalman Filter 

In order to further improve the performance of the final mass 

estimate obtained by filtering the output of the observer-regressor 

structure, we can discount certain periods of estimation as discussed 

in the previous section. The Kalman Filtered result is much more 

robust to the considered disturbances than the convergence 

identification method, so it is not necessary to reject so much data. In 

this case the most relevant metric for indicating an appropriate level 

of excitation is driving force.  

If we once again examine the extended regressor structure, we will 

note that the dynamic behaviour of the mass estimate is still 

dependent on the driving force only - the extra sensor data only 

directly affects the gradient estimate since it is a kinematic measure 

that is not affected by vehicle mass; as mentioned earlier in this 

paper, this has the effect of indirectly improving the mass estimate by 

including a much improved gradient estimate in the observer. The 

difficulties encountered as a result are mitigated for the gradient 

estimate to a great extent by the data fusion, but this is not the case 

for the mass estimate. Therefore we reject the mass estimate feeding 

the Kalman Filter as the driving force approaches zero. 

The filter is set up in such a manner as to be 'frozen' during the data-

rejection periods. The previous values for adaptation gains and 

outputs are retained. 

5 Results of Improved Parameter Estimation 

Methods 

The convergence-detection method of determining an estimate is 

effective for extracting a single period of converged estimate, 

however each updated estimate is independent of the preceding one 

so it carries no history. Therefore it suffers from being affected by 

medium term disturbances, such as the effect of positive or negative 

overall driving force on the driveline dynamics which has previously 

been alluded to. Some extra logical calculations would be required to 

make this method produce a practicable real time result by taking 

account of the history of the estimate and additional environmental 

factors. 

This estimation process gave the following result from a set of data 

collected from the CAN-bus a petrol engined car at Lommel. Proving 

Ground in northern Belgium. It should be noted that quite a high 

proportion (63%) of data was rejected according to the logic 

described in this paper. 

 

Figure 9. A section of mass estimate from the parameter-convergence method, 

illustrating the discrete nature of the mass output 

The Kalman filtered methods behave in a more continuous manner, 

even with the supervisor applied, the value of the output is simply 

'held' rather than being  updated in a discontinuous manner. In the 

data below, it should be noted that the drift caused in the 

unsupervised version of the filtering algorithm by singularities in the 

solution of    
 

 
 lead to sporadic large mass estimates when the 

driving force is small; there is no phenomenon that naturally 

counteracts this effect, thereby causing a positive drift in the estimate. 

When these periods of data are removed, the estimate converged  on 

a realistic estimate. 

 

Figure 10. Results of applying Kalman Filtering (black) and supervised 

Kalman Filtering (red) to the output of the mass estimation process. The 
unsupervised Kalman filter suffers some colouration from the zero-crossings 

caused in the output by weak driving force information. The rejection of data 

from periods of very low driving force magnitude significantly improves on 
this phenomenon.  

6 Summary/Conclusions 

We have shown that by applying a supervised output filter to a novel 

nonlinear adaptive observer based data fusion algorithm with data 

fusion as part of the extended regressor, we provide a relatively 

undisturbed, noise free vehicle mass estimate simultaneously to the 

good road grade estimate produced by the data fusion algorithm 

structure. These methods have been demonstrated using real vehicle 

systems and it has been shown that in their present form, the limiting 

factor on estimate quality seems to be the quality of the driving 

torque signals available. The current state of the art seems from a 

review of the literature to be an error of around 10% on the mass 

estimate and our results are within that bound, importantly the 

supervised Kalman-Filter based output method provides rapid 

convergence on a sensible result, settling within 50 or 60 seconds 

even in the presence of large disturbance-inducing effects at the 
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beginning of data runs. Hence, our robust results are indeed faster 

than previous results 
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