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ABSTRACT   

Photo-actuation, such as that observed in the reversible sun-tracking movements of heliotropic plants, is produced by a 

complex, yet elegant series of processes. In the heliotropic leaf movements of the Cornish Mallow, photo-actuation 

involves the generation, transport and manipulation of chemical signals from a distributed network of sensors in the leaf 

veins to a specialized osmosis driven actuation region in the leaf stem. It is theorized that such an arrangement is both 

efficient in terms of materials use and operational energy conversion, as well as being highly robust. We concern ourselves 

with understanding and mimicking these light driven, chemically controlled actuating systems with the aim of generating 

intelligent structures which share the properties of efficiency and robustness that are so important to survival in Nature. In 

this work we present recent progress in mimicking these photo-actuating systems through remote light exposure of a meta-

stable state photoacid and the resulting signal and energy transfer through solution to a pH-responsive hydrogel actuator. 

Reversible actuation strains of 20% were achieved from this arrangement, with modelling then employed to reveal the 

critical influence hydrogel pKa has on this result. Although the strong actuation achieved highlights the progress that has 

been made in replicating the principles of biomimetic photo-actuation, challenges such as photoacid degradation were also 

revealed. It is anticipated that current work can directly lead to the development of high-performance and low-cost solar-

trackers for increased photovoltaic energy capture and to the creation of new types of intelligent structures employing 

chemical control systems. 
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1. INTRODUCTION  

Intelligent structures – devices or systems that respond autonomously to changes in their environment – mimic the 

adaptively of plants and animals. By using smart material actuators – materials which directly respond to environmental 

stimuli – in these devices, the structural, sensing and movement functions can be performed by a single component, as 

opposed to a conventional intelligent structure where these functions are performed by different components, linked with 

complicated electronics and mechanisms. As a result, intelligent structures that employ smart material actuators more 

closely mimic both the resilience as well as the material and structural efficiency found in Nature. Although it may seem 

that the simplified solution offered by smart material actuators is preferable, such an approach struggles to accommodate 

complexities such as the physical separation of sensing and actuating locations, multiple or distributed sensors, or the 

ability to apply computation, control regimes or simple filtering between the sensing and actuating functions. In this work 

we explore biomimetic photo-actuation with a case study of a sun-tracking plant, the Cornish Mallow (Lavatera cretica L.), 

to reveal how Nature creates efficient and robust intelligent structures, while still allowing for the complexities required 

for rich adaptivity1. 

In Nature, it is the abundance of solar energy that has seen the evolution of light sensitivity in plants, and resulting 

photosynthesis become one of the most import processes on Earth. In engineering, it is the high degree of spatial and 

temporal control offered by light as a stimulus which has encouraged the development of many different types of synthetic 

photo-responsive compounds, such as spiropyrans2 and azobenzenes3, as well as photo-responsive smart material actuators, 

including some types of liquid crystal elastomers4,5 and gels6. These smart material actuators, although consisting of many 

different compositions, all respond with changes in geometry (strain state) upon direct exposure to the light stimulus. While  
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this co-location of sensing and actuation within the single material is a common property of smart material actuators, it is 

not common to Nature’s intelligent structures. As shown in Video 1, the Cornish Mallow (Lavatera cretica L.) reversibly 

moves its leaves throughout the day such that they remain facing the moving sun. This property, termed heliotropism, 

involves the generation, transport and manipulation of chemical signals from a distributed network of sensors in the leaf 

veins to a specialized osmosis driven actuation region in the leaf stem1. It is this spatial separation of the location of 

stimulus recognition (light sensing) and response (actuation), which can allow biomimetic systems that share the operating 

principles of the Cornish Mallow to overcome the constraints of smart material actuators. For example, signals can be 

integrated (computed) from a range of sensors, filtered and control logic, analogous to a closed-loop proportional-integral-

derivative (PID) scheme, applied before being transmitted to the actuator. The Cornish Mallow achieves this while 

retaining its ‘solid-state’ type structure, devoid of discrete hinges or separated components, maintaining the benefits of 

efficient material use with the reduced mechanical complexity that makes smart material actuators so attractive.  

To this end, we are developing a biomimetic analogue of the Cornish Mallow. To achieve this we are employing a meta-

stable state photoacid (long lived yet reversible fall in pH upon light exposure) as the sensing and signal transmission 

element and a pH-responsive hydrogel as an actuating element. Techawanitchai et al. used a similar combination of 

components to create a light sensitive smart material actuator, although a non-reversible photoacid generator was 

employed, significantly limiting the material’s cycle life7,8. Shi et al. attempted to overcome this limitation by actuating a 

pH-responsive hydrogel with a meta-stable state photoacid they developed, but were unable to achieve reversibility from 

the hydrogel used9. Both of these works only employed direct light exposure of the hydrogel material, thus displaying 

neither signal nor energy transfer through solution and eliminating the potential for control functionalities to be applied. It 

is anticipated that a biomimetic analogue of the Cornish Mallow could find direct application as a low-cost solar-tracker 

for increased photovoltaic energy capture. This work also serves to evaluate how the principles of distributed and separated 

light driven chemical control of actuators can be applied in other types of engineering systems. 

 

In this report a review is undertaken of the key functionalities of the Cornish Mallow before outlining an approach to 

replicating these functions in an engineered system. Results are then presented of experiments that demonstrate the sensing, 

signal transfer and actuation elements of the system. The experiments involved the remote light exposure of a meta-stable 

photoacid and the resulting signal and energy transfer through a gently stirred solution to a pH-responsive hydrogel 

actuator, shielded from direct light exposure. Results serve to highlight both the progress that has been made in creating 

truly biomimetic photo-actuation systems, but also the great challenges that exist in developing structures with the 

intelligence of the Cornish Mallow. 

Video 1. The reversible sun tracking leaf movements of the Cornish Mallow through a summer afternoon. The leaves moves 

from left to right (South to West) before returning right to left as the sun sets. This motion back to its starting position is also 

observed as the leaves are obscured by shadows.  https://youtu.be/idxwLae3Mf0 and http://dx.doi.org/doi.number.goes.here 

https://youtu.be/idxwLae3Mf0
http://dx.doi.org/doi.number.goes.here


 

 

2. THE CORNISH MALLOW 

The sun-tracking movements of the Cornish Mallow were investigated by Schwartz and Koller et al.10–16 and Fisher et 

al.17–19 in the 1980s. Despite this, the full complexity of its operation remains to be elucidated, although we can report with 

some certainty around key features regarding the perception of light (sensing), signal generation and transport, as well as 

the control and actuation. 

2.1 Sensing 

Blue light (410-500 nm) is detected in the Cornish Mallow by photoreceptor molecules in the major leaf veins12,15 (Figure 

1(a)). Although the exact nature of the responsible molecule(s) that are involved in the Cornish Mallow’s light perception 

are unknown, blue light photoreception in other plants has been attributed to the plasma membrane flavoproteins, 

phototropin and cryptochrome20. 

Schwartz and Koller hypothesized that the photoreceptor molecules have a fixed orientation with respect to the leaf vein 

(Figure 1(b)) after performing experiments where leaves were illuminated at 45˚ (oblique light) with different combinations 

of veins shielded (Figure 1(c))15. This hypothesis was further supported by later work that showed the plants preferential 

response when illuminated with light at 45˚-55˚ from above and the influence of light polarization12. 

The experiments performed and configuration hypothesized by Koller et al. shows how the Cornish Mallow’s response to 

light is a function of the stimulus of a distributed network of sensors, providing both a means for generating a control 

signal that is proportional to the error in orientation, while also providing a protecting level of redundancy. 

Figure 1. (a) The leaf of the Cornish Mallow. (b) Hypothesized arrangement/orientation of photoreceptors within the leaf 

veins15, and  (c) the experiment that encouraged this conclusion. Adapted from Dicker et al.1. 

 



 

 

      Figure 2. Rearrangement of the vascular phloem and xylem cell files in the Cornish Mallow18. Adapted from Dicker et al.1. 

 



 

 

2.2 Signaling and Control 

The signaling of plant movement in various species is known to involve a range of chemicals (hormones or turgorins) 

including auxin (indole-3-acetic acid), gibberellin, ethylene, abscisic and jasmonic acid as well as sulfonated gallic acid 

glucoside21. The exact processes involved in the sun tracking of the Cornish Mallow are unknown. The chemical signals, 

whatever their form, are transported from the sensor elements through the vascular xylem and phloem tissues of the leaf 

veins. 

By employing a chemical signal, as opposed to an electronic signal as found in engineered devices, the signal response 

relationship may be highly complex, with influence from both the current signal state and non-linear rate dependency. This 

can be thought of as being somewhat analogous to the integrative and derivative function in an engineering PID controller. 

Furthermore, one could hypothesize that the diffusive nature of chemical signals facilitates signal smoothing (noise 

filtering) and allows for straightforward signal integration. Thus, the signaling of the Cornish Mallow may in itself be an 

important part of providing the function of control. 

However, control is most obviously imparted to the sun tracking of Cornish Mallow through the geometry of the vascular 

network that carries the chemical signals. Fisher et al. showed that the cell files of phloem and xylem undergo an extremely 

complicated rearrangement and combination as they move from the intersection of the leaf and stem, to the actuating 

pulvinus region (Figure 1(a)), located just a millimeter or so beneath this point18. This vascular rearrangement is shown in 

Figure 2. 

This rearrangement provides computation, integrating the signals of different strengths from the distributed sensors 

network (the veins), while allowing for elimination of signal conflicts. The rearrangement also serves a structural function, 

ensuring the stiff vascular tissue is arranged for reduced stiffness in the flexible pulvinus region.  

2.3 Actuation 

There is a substantial quantity of literature examining biomimetic plant actuation, a pursuit that is expected to yield highly 

efficient actuation solutions22–27. Actuation in the Cornish Mallow occurs through bending of the pulvinus region of the 

leaf stem, a process caused by differential cell pressure (turgor), an osmotic process25. Osmosis is the process that sees the 

movement of solvent (water) from a region of low solute (ion) concentration to a higher one. Studies of pulvinar motor 

cells in other plants indicate that the signaling hormone auxin activates the proton pump enzyme H+-ATPase, creating an 

electrochemical gradient for the activation of ion transporters for increased uptake of potassium (K+) and chloride (Cl-) 

ions, leading to the osmotic pressurization28. The reverse process is driven by abscisic acid activated chloride efflux 

channels, and accompanying efflux of cations to maintain charge neutrality28. 

Examples of engineered osmosis driven actuators including the work of Su et al.29 and Philen et al.23. Osmosis is also the 

dominant process in the swelling of pH-responsive hydrogel actuators, as employed in our biomimetic analogue of the 

Cornish Mallow. 

3. A BIOMIMETIC ANALOGUE OF THE CORNISH MALLOW 

In an attempt to demonstrate the merits of employing the functional strategies of chemical sensing, control and actuation 

of intelligent structures, as displayed by the Cornish Mallow, it is proposed to create a simplified biomimetic analogue of 

its sun tracking leaf (Figure 3). The device has just two sensing “veins” and actuators, such that its movement is restricted 

to that of bending in a single plane.  

3.1 Sensing, Signaling and Control 

The device will employ the protonated merocyanine meta-stable state photoacid of Shi et al.9. This water soluble 

component responds to visible light illumination (419 nm and 570 nm specifically) to change from a weak to a strong acid. 

Upon removal of light, the compound returns to its original state in around 5 minutes at ambient temperature. It is the 

transfer and interactions/kinetics of the liberated protons from the strong acidic form of the reacted photoacid that lead to 

both the signal and energy transfer as well as aspects of system control.  

 

  



 

 

  

Figure 3. (a) Simplified biomimetic analogue of the Cornish Mallow in its unactuated state with quarter section removed 

to reveal internal components. (b) Device in its actuated configuration with sensor “veins” normal to light source. Adapted 

from Dicker et al.1. 

Figure 4. Half section depiction of device (a) and (b) showing proposed shading generated proportion light sensing, (c) acidic 

signal transmission and (d) actuation. Adapted from Dicker et al.1. 

 



 

 

Elaborating on the system control aspects, the amount and rate of pH change created by this photoacid should be a function 

of the current state of the solution, allowing for signal generation akin to the integrative function in a PID controller (the 

signal is dependent on the past error state of the system). Furthermore, it is believed that there is a non-linear relationship 

between the rate of pH change and the current system state, thus we have a rate dependent element, which again is in an 

abstract way analogous to the derivative element of a PID controller. While the diffusive nature of pH concentration 

changes leads to signal smoothing, which could be considered as a means for noise cancelling (signal filtering). The 

geometry of the device, specifically the diffusion distance from the sensors to the actuator, and actuator internal structure 

will also have significant influence on the resulting actuating signal. 

 

It is likely that the most important aspect of the control system is the design of the sensor veins which expose the photoacid 

to the light stimulus. One way to replicate the hypothesized photo receptor orientation with respect to the veins of the 

Cornish Mallow in the biomimetic equivalent is to cover clear tubes, which contain the photoacid, with angled shades. As 

shown in Figure 4(a) and (b), this aims to set the level of exposure, and thus the pH of the photoacid at a value proportional 

to the error in light alignment. This effect is analogous to the proportional component of a PID controller. 

 

3.2 Actuation 

The scheme proposes the use a pH-responsive hydrogel as the actuator elements. These soft, wet polymers composed of 

acidic or basic components are able to swell to many times their original size upon changes in the pH (log of proton 

concentration) of their environment, in the range of the polymers pKa (log of its proton association/dissociation constant). 

The accompanying proton association/dissociation leads to a fixed charge being established in the polymer, the resulting 

influence of this charge sees a differential being established in solute ionic concentration between the inside and outside 

of the hydrogel. It is this osmotic pressure which drives water in or out of the hydrogel, and creates the swelling.  

 

pH-responsive hydrogels efficiently convert chemical energy into mechanical work with large free strains and moderate 

blocking forces. However, the slow diffusion driven rate of hydrogel swelling, mechanical fragility and inherent difficulties 

of turning the three-dimensional swelling of these materials into a targeted actuation whilst maintaining fluid supply makes 

applying macroscale hydrogels in real devices a significant challenge. To meet these challenges we are investigating the 

use of hydrogel swelling as a pressure source within a braided flexible composite. This provides practical containment for 

the hydrogel whilst converting the swelling into a targeted axial contraction with improved work capacity30. Meanwhile, 

work is ongoing into employing carefully engineered microporous structures to improve the speed of response31, and to 

develop semi-interpenetrating polymer network (semi-IPN) hydrogels for improved toughness with minimal impact on 

actuator performance. These hydrogels are based on the polyacrylic acid/polyurethane (PAA/PU) semi-IPN hydrogels of 

Naficy et al.32. Critically, as explored through modelling in Section 4.2, the hydrogel pKa must lie in the range of the pKa 

change of the meta-stable state photoacid from its base (pKa =7.75) to excited states (pKa = 4.3) for actuation to occur33. 

Although the pKa of PAA derived hydrogels should lie in this region, the effective pKa of hydrogels is a continuing area 

of investigation. 

4. PROGRESS AND CHALLENGES 

4.1 Materials and Methods 

A meta-stable state photoacid is synthesized as per literature9, from which three batches of saturated solutions with 

deionized water were formed (~2x10-4 M) over the course of testing. All experiments were conducted within 8 hours of 

the solution being made.  

Semi-IPN PAA/PU hydrogels were prepared with a modified formulation as found in32. Porous hydrogels of this 

formulation were prepared by using sodium chloride, as received (Fisher) ~220 μm particles, as a porogen. The hydrogels 

were UV-cured (365 nm 4W) for 2 hours in 1 mm and 4.5 mm diameter cylindrical molds (for 3 mm and 6.5 mm swollen 

diameter hydrogels, respectively).  

Experimental results were obtained from a custom test apparatus (Figure 5). A rectangular magnetically stirred glass 

reaction vessel is partially sealed and fed with nitrogen to limit absorbed atmospheric contaminants. This vessel is 

surrounded on three sides by mirror shielding, which incorporates three 10W 405 - 410 nm LED’s (Ledengin LZ4-

40UA00-00U8) and three 10W 520 - 535 nm LED’s (Ledengin LZ4-40G108-0000), fan cooled and driven at 700 mA. On 

the fourth side of the reaction vessel is a sample holder connected to a sealed rigid external frame. The sample holder is 



 

 

backed with mirror shielding to prevent direct light exposure of the hydrogel and photoacid solution in the immediate 

vicinity of the sample, as shown in Figure 5(b). The sample holder aligns the hydrogel for imaging (Canon 450D, EF 

100mm f/2.8 USM Macro lens) with this imaging arrangement providing negligible geometric distortion. Image lighting 

is provided by a LED ring light with orange light filter. Lighting without the filter was found to lead to unwanted photoacid 

activation. The pH and temperature are both monitored in the reaction vessel (Mettler Toledo, S20 SevenEasy, InLab 

Expert probe).  

 

Figure 5. Custom test apparatus. (a) The reaction vessel is illuminated green as viewed through the orange tinted 

protective shielding, while the sample as shown on the monitor captures the blue light. The plots on the monitor are pH 

and Temperature. Images are post processed to determine hydrogel displacements. (b) Detail image of 3 mm Ø cylindrical 

hydrogel shielded from direct light exposure. 



 

 

The modeling undertaken involves solving numerically the system component equilibrium and mass balance equations, 

as reported previously by Dicker et al.34 but with updated meta-stable state photoacid equilibrium constants from Vallet 

et al.33. 

 

4.2 Results 

The pH change offered by the different batches of photoacid upon illumination was found to be between 1.5 and 1.7 units, 

with the starting (dark or base state) pH in the range of 5.55 to 5.95. The pH drop was found to be fully recovered after ~5 

minutes in the dark. Although ambient room lighting did not initiate the pH drop, close proximity to a low intensity white 

light source, or placing the solution in a sunny window would see the reaction occur. This sunlight driven activation is 

critical for the biomimetic devices envisaged, and is shown in Video 2, with the pH change indicated by the photochromic 

reaction (color change) from a red/orange to a yellow/green. 

 

The low light intensity required for the photo-reaction to occur and the long stable state of this reaction are both desirable 

properties. However, these properties mean that the range of high intensity lighting levels provided by the custom lighting 

rig is unable to create a significant difference in the observed systems equilibrium pH condition (Figure 6). Even the lowest 

level of lighting produced by the test apparatus sees the photo-reaction proceed to completion so much faster than the 

reverse reaction that almost no proportional control influence can be observed in the system. This is shown in Figure 6, 

where we see the pH-time relationship for photoacid illumination under one, two and all three sets of lights in the test 

apparatus. Although further testing under lower lighting intensities is required, the results shown in Figure 6 suggest that 

achieving a distributed range of pH conditions (proportional influence) through simple shading may be difficult and that 

forced solution flow may be required to limit the duration of light exposure in the sensor veins of the biomimetic analogue.  

Although the pH change offered is modest and recovery time short when compared to both the pH change and duration 

usually employed for hydrogel actuation, it does span the expected pKa for PAA derived hydrogels. This condition suggests 

potential for actuation even from this modest pH shift, provided the concentration of deprotonated (basic) groups of the 

PAA hydrogel is not so high as to buffer the photoacid provided drop in pH. In addition, the diffusion distances in the 

hydrogel must be small enough for hydrogel actuation to occur in a reasonable period of illumination. As a result, the 

testing employed a small porous hydrogel (3 mm diameter in swollen state) in combination with 1 L of gently stirred 

photoacid. The resulting actuation of this small cylindrical hydrogel under 15 minutes of illumination with one set of lights 

and 35 minutes of recovery is shown in Video 3. To the authors’ knowledge, this is the first reported example of reversible 

Video 2. Sunlight driven activation of 1 L of meta-stable state photoacid solution, as shown by the photochromic transition 

from red/orange (left, high pH) to yellow/green color (right, low pH). https://youtu.be/m_WfybTrEB8 and 

http://dx.doi.org/doi.number.goes.here 

https://youtu.be/m_WfybTrEB8
http://dx.doi.org/doi.number.goes.here


 

 

spatially separated photo-mechanical energy transduction through a chemical solution intermediary. No obvious 

degradation in performance was observed after three cycles, and reduction of the photoacid solution down to a volume of 

0.65 L also showed no change in actuation performance. This last point, combined with the range of the observed pH drop 

by the addition of the hydrogel, suggests buffering is not significant issue for the small amount of hydrogel used. 

 

Figure 7 shows the measured actuation strain from both the small hydrogel shown in Video 3, and a larger 6.5 mm diameter 

hydrogel. It can be seen that both hydrogels do not appear to have reached an equilibrium state in actuation strain after 15 

Figure 6. pH-time relationship for illumination of 1 L of gently stirred meta-stable state photoacid for different levels of light 

intensity. Test performed at 27˚C. 

Video 3. Light driven reversible hydrogel actuation. Image shows the actuated sample over a faded representation of the 

hydrogel in the unactuated state https://youtu.be/9w2Rrggup68 and http://dx.doi.org/doi.number.goes.here 

https://youtu.be/9w2Rrggup68
http://dx.doi.org/doi.number.goes.here


 

 

minutes illumination, despite this being significantly longer than the time required for the reverse photoacid reaction to 

occur. Since the hydrogel is shielded from direct light exposure (assuming that any photoacid in the hydrogel is not being 

activated to its low pH state), this result suggests that there is a significant preferential diffusion of water/hydronium ions 

over the photoacid into the hydrogel, thus the dimensions of the hydrogel actuator are not firmly restricted to being such 

that full actuation can occur quickly within the time for the photoacid to revert back to its dark high pH state.  

 

Although the 20% strain observed in this work is good in comparison to many smart material actuators, it is only a fraction 

of the actuation potential of the hydrogel used herein. In fact, actuation of this hydrogel from equilibrium in 0.1 M buffer 

solutions at pH 11 to equilibrium at pH 3 yields a strain of over 200%.  Even accounting for the lack of convergence in 

strain observed in the photoacid tests, it is clear that the photoacid illumination is not able to fully activate the hydrogel. 

The experimental results showed that measurable buffering of the pH drop had been avoided, this is in part because of the 

use of a small volume of hydrogel relative to photoacid, but it may also indicate that the range of the pH change offered 

and its location on the pH scale (where the hydrogel pKa is relative to the pH drop) is not optimal. This is examined through 

basic modelling methods and highlighted in Figure 8.  The exact pKa of the hydrogel is unknown, with work on similar 

semi-IPN PU/PAA hydrogels finding it to be as high as 6.9, while for most PAA based hydrogels it is considered close to 

4.3, the value for the acrylic acid monomer34. Furthermore, it is expected that this value is affected by such factors as the 

ionic strength of the solution, and also for there to be an element of hysteresis to this value. However, the model results, 

combined with both the limited influence measured by a reduction in photoacid solution volume (1 L to 0.65 L) and the 

low strain potential achieved in the experiments suggests the hydrogel pKa is not optimal for this photoacid system.  In 

any event, as shown in Figure 8, even ideal alignment of the hydrogel pKa to the pH change offered yields just under 60% 

hydrogel activation under modelled experimental conditions. As a result, full activation of the hydrogel will require a 

larger shift in the photoacid pKa from the dark to illuminated states (a larger pH change). Regardless of this finding, a 

~20% strain should be sufficient for the creation of a biomimetic photo-actuating device. 

Figure 7. Hydrogel strain, calculated as change in hydrogel length divided by original length and expressed as a percentage 

is calculated from images. With the length being measured as the distance between 10 points along the length of the hydrogel 

to account for sample bending. The solution pH at each data point is indicated by the color of the data point, from the high 

pH red/orange to the low pH yellow/green. It can be seen that the full solution pH change occurs very quickly in comparison 

to the actuation of the hydrogel. 



 

 

 

Despite the progress demonstrated from the successful actuation of the hydrogel, there is one significant challenge that has 

been revealed in the course of this work. Almost complete degradation of the photoacid solution to a non-responsive 

compound with lower pH was observed over the course of several days, with the process occurring faster at slightly 

elevated temperature (Figure 9). Discussions with the developer of the photoacid has revealed that changing the 

composition of the solvent away from pure water to organic solvents or solvent mixtures limits this degradation35. Although 

switching solvents may have a positive effect on the photoacid stability, the effect on the hydrogel actuation performance 

is less clear, with any change likely resulting in significant changes in the proton activity and thus pH/swelling relationship. 

Furthermore, careful selection of solvents will be required to prevent material degradation of the hydrogel. 

Figure 8. Model of hydrogel activation with 2 × 10-4 M photoacid solutions of different volumes. Hydrogel activation 

calculated as the change in COOH deprotonation as a percentage of total COOH concentration between the two photoacid 

states. Model hydrogel closely matches the experimental 3 mm diameter sample with a dry hydrogel volume of 2.7 × 10-8 

m3 and a COOH concentration in hydrogel of 0.29 M. 

Figure 9. Degradation of photoacid solution, with it loosing almost all of its photoactive pH shift after 40 hours at 27˚C. 



 

 

5. CONCLUSION 

This work has contended that the creation of engineered intelligent structures that mimic the sensing, signal transition, 

control and actuation strategies of Nature’s intelligent structure, such as the sun-tracking Cornish Mallow plant, could 

result in creations that are both efficient and robust, without compromising the system complexities required for rich 

adaptivity. These include distributed sensors and the spatial separation of those sensing elements to those responsible for 

actuation and the application of filtering and control schemes to the signals passed between these elements. 

The first experiments in attempting to replicate this complexity, through the actuation of a pH-responsive hydrogel by the 

remote illumination of a meta-stable state photoacid have been shown. In doing so we have demonstrated the first reported 

example of reversible spatially separated photo-mechanical energy transduction through a chemical solution intermediary. 

Although the results are promising, with 20% reversible strain being observed, the response of the system was found to 

degrade over several days. Future work examining the use of different solvent systems will be required to address this 

limitation.  

It is anticipated that the work presented will aid greatly in the development of a biomimetic analogue of the sun tracking 

Cornish Mallow. While further research may lead to the application of light triggered, chemically controlled hydrogel 

actuators is a range of intelligent structures and systems.  
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