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Robust Aeroelastic Design of Composite Plate Wings 

Carl Scarth1, Pia N. Sartor2, Jonathan E. Cooper3 and Paul M. Weaver4 

Department of Aerospace Engineering, University of Bristol, Bristol, BS81TR, UK 

and 

Gustavo H.C. Silva5 

Embraer S.A., São José dos Campos, São Paulo, 12227-901, Brazil 

An approach is presented for the robust stacking sequence design of composite plate wings 

with uncertain ply orientations. An aeroelastic model is constructed using the Rayleigh-Ritz 

technique coupled with modified strip theory aerodynamics. Gaussian processes are used as 

emulators for the aeroelastic instability speed in order to efficiently quantify the effects of 

uncertainty. The critical instability speed is discontinuous as a result of the different potential 

instability mechanisms, therefore multiple Gaussian processes are fitted to ensure 

computational efficiency. An order of two magnitude reduction in model runs is achieved for 

the majority of examples, and an order of magnitude reduction is achieved when a switch 

between flutter modes occurs. The emulators are used to estimate the probability that 

instability occurs at a given design speed, which is minimized using a genetic algorithm. 

Results are compared to deterministic optima for maximal instability speed. Two lay-up 

strategies are undertaken, a first in which ply orientations are limited to 0°, ±45° and 90°, and 

a second in which values of ±30° and ±60° may also be taken. Improvements in reliability of 

at least 85% are achieved. The inclusion of ±30° and ±60° plies enables a 1.7% increase in the 

nominal instability speed, and an increase in reliability of at least 59%. 

Nomenclature 

aw = Lift-curve slope 

A = Inertia matrix, training data covariance 

B = Aerodynamic damping matrix 

c = Chord length, covariance function 

c* = Emulator covariance 

C = Aerodynamic stiffness matrix 

e = Eccentricity of flexural axis from quarter-chord 

D = Out-of-plane laminate stiffness matrix 

E = Stiffness matrix, expected value operator 

Eij = Young’s modulus in the ij direction, i = j = 1, 2 

G12 = Shear modulus 

L = Applied lift 

m* = Emulator mean 

M, M = Bending moment resultant vector, applied pitching moment 

𝑀�̇� = Unsteady aerodynamic derivative 

n = Number of training data points, number of test points 

q = Generalized coordinates vector 

s = Semi-span 
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t, t = Laminate thickness, test data covariance 

T = Kinetic energy 

U = Strain energy 

Ui = Material invariants, i = 1-5 

V = Air speed 

Vcrit, Vdes = Critical aeroelastic instability speed, design aeroelastic instability speed 

w = Out-of-plane deformation 

W = Work done  

x, y, z = Cartesian coordinate system 

x = Model input vector 

y = Model output, design variable 

yf = Flexural axis location 

θ = Ply orientation, elastic twist 

κ = Curvature vector 

λi = ith eigenvalue of the equation of motion 

ρ = Density 

ρa = Air density 

ν12 = Poisson’s ratio 

ξi = Out-of-plane lamination parameters, i = 9-12 

h, β, σ2, B = Emulator hyperparameters 

I. Introduction 

omposite materials are being used to an increasing degree in aerospace structures due to a number of useful 

attributes including high specific strength and stiffness, and anisotropic behavior which may be exploited to tailor 

properties. A large amount of work has been undertaken since the 1980s in the field of aeroelastic tailoring1-6; this has 

sought to exploit anisotropy through selection of composite stacking sequences which achieve minimum-weight 

designs for aeroelastic design cases while adhering to loading and aerodynamic design constraints.  Example 

applications have included divergence1 and flutter2-4, as well as gust and manoeuvre loads5,6. 

While models can represent aeroelastic behavior to a high degree of accuracy, in reality all processes are subject 

to variability. Composite materials require complex manufacturing processes which can introduce uncertainty from a 

number of sources including material non-homogeneity, fibre misalignment, waviness and wrinkling7, and defects 

resulting from dropped plies8. There is a need9 for aeroelastic models which incorporate parametric uncertainties such 

as these, in order to quantify the effect of this uncertainty and to identify robust designs which are insensitive to small 

variations in properties. 

Uncertainty in composite structures10,11,12 and aeroelastic stability9,13,14 have been investigated using a variety of 

techniques. Monte Carlo Simulation (MCS) and the perturbation method were used10 to model buckling and 

supersonic flutter of a composite plate with uncertain ply orientations, and to model flutter of a composite beam with 

uncertain ply orientations and moduli11. MCS is the most straightforward uncertainty quantification technique, 

however, prohibitively large computational effort is required to give meaningful results. The perturbation method 

models uncertainties as Taylor series expansions of small perturbations from the mean, though cannot be used to 

obtain the full output distribution. Polynomial Chaos Expansion (PCE) has been used to model uncertainty in a number 

of models, such as a pitch and plunge aerofoil model with uncertain spring stiffness coefficients9 a composite plate 

with uncertain ply orientions12, and a flat plate subject to uncertain aerodynamic load13. Stochastic Collocation has 

been used for numerous applications, including the bifurcation analysis of a pitching aerofoil with uncertain nonlinear 

stiffness, natural frequency and equilibrium pitch angle14. The latter two techniques enable efficient uncertainty 

quantification through fitting polynomial surrogate models; orthogonal polynomials from the Askey scheme are used 

for Polynomial Chaos Expansion15 and Lagrange polynomials for Stochastic Collocation16. Both techniques are 

limited by the ‘curse of dimensionality’17, wherein the number of model runs required to fit the surrogate increases 

dramatically with input dimension. 

A Gaussian process can be thought of as a Gaussian distribution over functions18, and can be used as an emulator, 

a form of surrogate model. Gaussian process emulators can be fitted to relatively high dimension models with 

relatively little computational effort, and have been used for a number of applications including experiment design19, 

uncertainty quantification20 and sensitivity analysis21.  

A number of approaches can be taken to determine optimal designs which are insensitive to uncertainty. Reliability 

is a measure of the probability of survival within the design envelope, and is often used as either an objective or 
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constraint in reliability-based design optimization (RBDO). The reliability index is often used to estimate reliability, 

and is given by the distance between the most probable point of failure and the mean of the input parameters when 

transformed into standard normal space22.  Techniques such as the First Order Reliability Method (FORM) and Second 

Order Reliability Method (SORM) can be used to predict the reliability index by approximating the limit state function 

which defines failure of a given design, by using first and second order Taylor series expansions respectively. For 

example, FORM has been used to find the ply orientation and wing twist which maximises the probability of achieving 

a specified lift-to-drag ratio in a two-ply composite plate wing with uncertain angle of attack and thickness23. 

Alternatively, robustness can be defined as the extent to which perturturbations can be made from nominal parameter 

values without violating hard inequality constraints. This approach has been applied to the optimal placement of a 

moveable mass in order to avoid flutter of an aerofoil with uncertain bending and torsional stiffness, and aerodynamic 

loading24. A robust design optimization (RDO) seeks to trade off sensitivity to uncertainty against mean performance 

in a multi-objective optimization25. 

Surrogate modeling techniques can be used to reduce the computational effort required for each of the above 

approaches. For example, PCE has been used to maximize lift-to-drag ratio of an aerofoil while minimizing the 

variance due to uncertainty in leading-edge thickness26. Likewise, Polynomial Chaos has been used to approximate 

and minimize the probability of aeroelastic instability in the stacking sequence optimization of six-ply composite plate 

wings with uncertain ply orientations, moduli and laminate thickness27. 

This paper is a preliminary investigation into the use of Gaussian process surrogate modeling techniques for the 

efficient robust design of composite plate wings with uncertainty in ply orientation. A composite wing is idealised as 

a flat rectangular plate. A structural model is constructed using the Rayleigh Ritz technique and used to assess the 

stability of the wings. Gaussian processes are fitted to the model and used to emulate the aeroelastic instability speed. 

The lowest instability speed is discontinuous with respect to model inputs, as changing the composite layup can lead 

to switches between different instability mechanisms, for example from divergence to flutter. As such it is necessary 

to fit multiple emulators to the different instability speeds. Probability Density Functions (PDFs) are estimated for a 

number of example composite laminates using the emulators, and compared to PDFs determined using the model 

itself. Finally, a genetic algorithm is used to determine optimal composite layups for deterministic and robust 

objectives using different layup strategies. Baseline deterministic optima for maximal instability speed are obtained 

firstly by fixing ply orientations to their nominal values. Uncertainty is subsequently introduced to the ply orientations, 

and then probability of failure is estimated using the emulator, and minimized to find a robust design. Reliability of 

the deterministic and robust optima are compared alongside a number of useful statistics. 

II. Model Definition 

We idealize a composite wing as a flat rectangular composite plate fixed on one edge, free on all other edges, as 

shown in Fig. 1. The dimensions and material properties used in our subsequent examples are shown in Table 1. The 

effect of ply orientation uncertainty is included by adding an independent and identically distributed Gaussian error, 

with zero mean and standard deviation of five degrees, to each ply orientation.  

 
Figure 1. Composite Plate Geometry 

Table 1. Dimensions and material properties used in examples 

Semi-span (m) Chord (m) E11 (GPa) E22 (GPa) G12 (GPa) υ12 ρ (kg/m3) Ply Thickness (mm) 

0.3048 0.0762 140 10 5 0.3 1600 0.125 
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III. Deterministic Aeroelastic Model 

A. Composite Material Properties 

In classical lamination theory28, out-of-plane moment resultants are related to out-of-plane curvatures by 

 𝑴 = D𝜿 (1) 

where M and κ are the moment resultant and curvature vectors respectively. The out-of-plane laminate stiffness matrix, 

D, can be represented as a function of material invariants Ui (i = 1…5), laminate thickness t, and the out-of-plane 

lamination parameters ξi (i = 9…12) in accordance with 
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 (2) 

By defining a non-dimensional through-thickness coordinate, u, the out-of-plane lamination parameters are defined 

in terms of ply orientations θ(u) as 

 {𝜉9, 𝜉10, 𝜉11, 𝜉12} =
3

2
∫ {𝑐𝑜𝑠2𝜃(𝑢), 𝑐𝑜𝑠4𝜃(𝑢), 𝑠𝑖𝑛2𝜃(𝑢), 𝑠𝑖𝑛4𝜃(𝑢)}𝑢2𝑑𝑢
1

−1
 (3) 

where 

  𝑢 =
2𝑧

𝑡
 (4) 

B. Aeroelastic Stability 

The aeroelastic response of the plate is approximated using the Rayleigh Ritz method coupled strip theory29. 

Polynomial shape functions are assumed for the out-of-plane displacement in order to approximate energy terms, 

which are in turn minimised. Strain energy of the plate is given by 

 𝑈 =
1

2
∬𝜿𝑇𝐷𝜿𝑑𝑥𝑑𝑦 (5) 

where D is as defined in Eq. (2) and the curvature vector κ is given as 

 𝜿 = {−
𝜕2𝑤

𝜕𝑥2
−
𝜕2𝑤

𝜕𝑦2
−2

𝜕2𝑤

𝜕𝑥𝜕𝑦
}
𝑇

 (6) 

where w is the out-of-plane displacement. Kinetic energy is given by 

 𝑇 = −
1

2
𝜌𝑡∬ �̇�2𝑑𝑥𝑑𝑦 (7) 

where a dotted parameter denotes a derivative with respect to time. The applied load is determined using a modified 

unsteady strip theory. Lift and pitching moment are applied to infinitesimal strips at the quarter chord and integrated 

over the length of the plate. The loads applied to each strip are given by 

 𝑑𝐿 =
1

2
𝜌𝑎𝑉

2𝑐𝑎𝑤 (𝜃 +
�̇�

𝑉
) 𝑑𝑥 (8) 

 𝑑𝑀 =  
1

2
𝜌𝑎𝑉

2𝑐2 (𝑒𝑎𝑤 (𝜃 +
�̇�

𝑉
) + 𝑀�̇�

�̇�𝑐

4𝑉
) 𝑑𝑥 (9) 

where ρa and V denote the air density and velocity, c the chord length, e the eccentricity between quarter chord and 

flexural axis as defined in Fig. 1, and aw the effective lift curve slope. Elastic twist is denoted by θ, which is given as 
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the derivative of the out-of-plane displacement with respect to the chord-wise coordinate y. A simplified analysis is 

used whereby the unsteady aerodynamic derivative 𝑀�̇� is assumed to be constant with respect to frequency changes. 

Previous work has validated the use of this modified strip theory for high aspect ratio composite wings at low airspeeds 

through comparison with the standard Doublet Lattice based approach30. Work done by the applied load is given by 

 W=∫ (-dLδw+dMδ𝜃)dx
s

0
 (10) 

Neglecting dissipative energy, Lagrange’s Equation may be applied as 

 
𝑑

𝑑𝑡
(
𝜕𝑇

𝜕�̇�
) −

𝜕𝑇

𝜕𝒒
+

𝜕𝑈

𝜕𝒒
=

𝜕(𝛿𝑊)

𝜕(𝛿𝒒)
 (11) 

where q are the generalised displacements. Application of Eq. (11) gives the equation of motion as 

 A�̈� + 𝜌𝑎𝑉B�̇� + (𝜌𝑎𝑉
2C + E)𝒒 = 𝟎 (12) 

where A is the inertia matrix, B and C are the aerodynamic damping and stiffness matrices respectively, and E is the 

stiffness matrix. Eq. (12) is solved as an eigenvalue problem to assess the stability of the wing at different air-speeds. 

Instability occurs when the real part of one of the eigenvalues becomes positive; this instability is flutter if the 

imaginary part is non-zero and divergence otherwise. 

C. Deterministic Aeroelastic Behavior 

Aeroelastic stability is a complicated phenomenon involving the coupling of aerodynamic forces with the bending 

and torsion motions of the structure.  Aeroelastic tailoring enables the resulting characteristics to change; different 

laminate stacking sequences result in distinct instability mechanisms, and such changes can be observed across the 

design space of lamination parameters. Plots of the lowest instability speed can be seen to form a piecewise-smooth 

and continuous surface, with clearly visible boundaries where the surface is either non-smooth or discontinuous. Fig. 

2 displays contours of instability speed with respect to different lamination parameter planes, assuming a laminate 

thickness of 2mm. 

 

Figure. 2. Contours of Instability Speed (m/s) with Respect to the Lamination Parameters a) Uncoupled 

Parameter (ξ9-10) Plane, ξ11, 12 = 0 b) Bend-Twist Coupling Parameter (ξ11-12) Plane, ξ9, 10 = 0 

Three types of behavior are evident in Fig. 2; divergence, and two flutter modes which are henceforth referred to 

as ‘flutter 1’ and ‘flutter 2’. Through examination of the mode-shapes, flutter 1 can be attributed to coupling of the 

first bending and torsion vibration modes, and flutter 2 to coupling of the second bending and first torsion modes. 

Example eigenvalue plots for each instability mechanism are shown in Fig. 3. 

An eigenvalue of the equation of motion is denoted by λj; in each of the cases in Fig. 3, at V = 0 m/s, λ1 and λ2 

correspond to the 1st and 2nd bending modes and λ3 to the 1st torsion mode, though the mode-shapes change 

considerably with increasing velocity. Of particular note is the cross-over of the imaginary parts of λ2 and λ3 which 
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occurs in Fig. 3b but not Fig 3a, due to the coalescence of the different eigenvalues with λ1 in each case. Noting that 

a different eigenvalue becomes unstable for different types of flutter it is proposed that given a small variation in 

lamination parameters, such that the wind-off modes do not change in order, it is possible to separate different flutter 

types by considering the eigenvalues alone. Divergence may be distinguished from flutter as having eigenvalues with 

zero imaginary part, as shown in Fig. 3c. 

 

Figure 3. Eigenvalue plots for different instability Mechanisms: a) ‘Flutter 1’, b) ‘Flutter 2’, c) Divergence 

IV. Stochastic Model 

A. Stochastic Model Overview 

Uncertainty quantification often requires a large number of runs of computationally expensive models, it can 

therefore be desirable to use an emulator which mimics behaviour of the model at reduced computational cost. We 

use Gaussian processes to emulate the aeroelastic model by fitting them to the aeroelastic instability speed at a small 

number of points selected using a maximin Latin Hypercube Design of Experiments. Probability Density Functions 

(PDFs) for instability speed are estimated by Monte Carlo Simulation (MCS) of the emulator.  

In order to account for the discontinuities caused by the existence of different instability mechanisms, an emulator 

is fitted to each of the instability speeds, and the space of test points used for prediction in the Monte Carlo Simulation 

is partitioned according to the possible mechanisms. An overview of the process is illustrated in Fig. 4. 
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Figure 4. Uncertainty Quantification Overview 

B. Gaussian Processes 

A Gaussian process is a distribution over functions18. Rather than representing a function’s output at each point 

with a deterministic value, a Gaussian process returns a Gaussian distribution. When used as an emulator this 

distribution represents the uncertainty associated with the emulator fit.  
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The model output y, can be considered a function of input vector x, y = f(x). If the value of f(x) is known for a set 

of n training data points, {x1,…,xn}, uncertainty about these data points can be represented as a multivariate Gaussian 

distribution. The mean of this distribution can be parameterised by basis functions h(x)T as20 

 𝐸{𝑓(𝒙)|𝜷} = 𝒉(𝒙)𝑇𝜷 (13) 

conditional on the weight hyperparameter β. For linear regression the basis vector, h(x), is taken as (1, xT). 

A fundamental assumption is that the output can be accurately represented by a smooth function, such that, if the 

value of f(x) is known for point x, this gives some indication of the value of f(x’) for x’ close to x. This assumption is 

used in the covariance function 

 𝑐𝑜𝑣{𝑓(𝒙), 𝑓(𝒙′)|𝜎2, 𝐵} = 𝜎2𝑐(𝒙, 𝒙′) (14) 

where 

 𝑐(𝒙, 𝒙′) = 𝑒𝑥𝑝{−(𝒙 − 𝒙′)𝑇𝐵(𝒙 − 𝒙′)} (15) 

conditional on scaling factor σ2 and roughness B, which is a diagonal matrix of length-scales. It can be seen that the 

covariance decreases as |x – x’| increases, therefore points which are in close proximity are strongly correlated.  

Eqs. (13-15) are combined in a Gaussian process prior distribution. Conditioning upon training data y at n data 

points yields the predictive distribution to be the Gaussian process18 

 [𝑓(𝒙)|𝒚, 𝜎2, 𝐵, 𝜷]~𝐺𝑃(𝑚∗(𝒙), 𝑐∗(𝒙, 𝒙′)) (16) 

where 

 𝑚∗(𝒙) = 𝜷𝑇[𝒉(𝒙) − 𝐻𝑇𝐴−1𝒕(𝒙)] + 𝒚𝑇𝐴−1𝒕(𝒙) (17) 

 𝑐∗(𝒙, 𝒙′) = 𝑐(𝒙, 𝒙′) − 𝒕𝑇(𝒙)𝐴−1𝒕(𝒙) (18) 

and 

 𝒕(𝒙)𝑇 = {𝑐(𝒙, 𝒙1), … , 𝑐(𝒙, 𝒙𝑛)}, 𝐻
𝑇 = {𝒉𝑇(𝒙1), … , 𝒉

𝑇(𝒙𝑛)}, 

 𝐴 = (

1 𝑐(𝒙1, 𝒙2) … 𝑐(𝒙1, 𝒙𝑛)

𝑐(𝒙2, 𝒙1) 1 ⋮

⋮ ⋱
𝑐(𝒙𝑛, 𝒙1) … 1

) (19) 

noting that in Eqs. (16-19), x denotes a test-point for which the value of f(x) is unknown and to be predicted, and 

{x1,…xn} are the training data points for which {f(x1),…,f(xn)} is known. It should be noted that Eq. 16 is conditional 

upon hyperparameters, σ2, B, and β. These parameters are assumed to take their most probable values, and are 

estimated using Maximum Likelihood Estimation (MLE)18. 

The output probability distribution can be estimated using Monte Carlo Simulation. For simplicity, the emulator 

mean, m*(x) in Eq. (17), is taken as a reasonable approximation for realisations of the Gaussian process in Eq. (16)20. 

C.  Emulation of a Discontinuous Function 

In order to satisfy the requirement of smoothness imposed by the choice of covariance function, a separate 

Gaussian process is fitted to the different instability mechanisms indicated in Fig. 2. Provided the variation in material 

properties is small, the different instability mechanisms may be distinguished on the basis of the eigenvalue which 

becomes unstable. 

In order to accurately perform MCS with the multiple Gaussian processes, the test points are partitioned into 

regions. Inner boundaries of each of these regions are defined as a convex hull of the training data points for which 

the corresponding instability mechanism is possible, calculated using the ‘convhulln’ function in MATLAB31. Points 

which lie outside of the convex hulls are grouped into the region whose centroid has minimal distance from the test 

point, weighted by the size of the hull. This process is illustrated in Fig. 5. 

Once the test points are partitioned, the corresponding emulator  mean is calculated for all points in each region, 

noting that there can be some overlap. The critical instability speed is approximated as the minimum emulator mean 

for each point.  
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Figure 5. Partitioning the Test-points 

D. Uncertainty Quantification Examples 

In this section Probability Density Functions (PDFs) estimated using the approach described in Section C are 

compared with those determined using Monte Carlo Simulation of the plate model itself. A previous convergence 

study12 has shown that MCS with 5000 samples gives sufficiently accurate PDFs for the critical instability speed.  

For simple unimodal examples in which only one instability mechanism is possible, it is found that 30 training 

data points typically give sufficient accuracy. This result corresponds to an order of two magnitudes reduction in the 

number of model runs compared to Monte Carlo of the model itself. Fig. 6 compares an example PDF of a Gaussian 

process fitted with 30 training data points, to the PDF of the model itself, for a [02 902]2S laminate. 

 

Figure 6. PDFs for a [02 902]2S Laminate 

In order to demonstrate the ability to emulate the discontinuous behavior shown in Fig. 2, results for a [452 -452 02 

902]S and [45 -453 02 902]S laminate are shown in Figs. 7-9. 

Fig, 7a shows a surface plot of the critical aeroelastic instability speed with respect to bend-twist coupling 

parameters ξ11-12, with ξ9-10 set to their nominal values for the two examples. Two types of mode-switch can be 

observed; a switch from divergence to flutter at which point the instability speed is non-smooth, and a switch between 

two types of flutter where instability speed is discontinuous. Referring to Fig. 3, it is possible to see that instability 

speed is non-smooth at the divergence-flutter boundary since both divergence and flutter occur either side of the 

boundary, but occur in a different order with increasing velocity. The boundary between the two flutter modes is 

discontinuous since this requires the elimination of flutter 2, allowing flutter 1 to become critical. 

The example laminates have been chosen such that uncertainty in their bend-twist coupling lamination parameters, 

ξ11-12, cause these switches to occur. This effect is illustrated in Fig. 7b-c, which show enlarged details of contours for 

the critical instability speed overlaid with contours of the marginal PDF for ξ11-12
 for each examples. It can be seen 

that the PDF of the [452 -452 02 902]S laminate in Fig. 7b crosses a divergence-flutter boundary, and the [45 -453 02 

902]S laminate PDF in Fig. 7c crosses a flutter-flutter boundary. Figs. 8 and 9 compare emulator PDFs with the PDF 
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of the plate model for these laminates. It can be seen that the non-smooth and discontinuous instability speed results 

in a bi-modal output PDF.  

 

Figure 7. a) Surface of Critical Instability Speed 

with respect to ξ11–12, with ξ9 = 0.094, ξ10 = -0.75. 

Contour Details with ξ11-12 PDF overlaid for: b) [452 

-452 02 902]S and c) [45 -453 02 902]S 

 

 

Figure 8. Output PDFs for a [452 -452 02 902]S 

laminate 

 

Figure 9. Output PDFs for a [45 -453 02 902]S 

laminate 

The emulator used in Fig. 8 was fitted using 30 training data points, which can be seen to provide a good fit to 

base-line Monte Carlo results, thereby offering the same order of two magnitudes reduction in model runs as in the 

uni-modal example. This is found to be typical of examples in the viscinity of a divergence-flutter boundary because 

training data points on either side of the boundary give information about both mechanisms. The emulator used in Fig. 

9 required 100 training data points in order to provide a good fit, only offering an order of magnitude reduction in 

model runs compared to the baseline Monte Carlo. It was typically the case that extra training data was required in the 

vicinity of a boundary between flutter modes. We expect that this is in part due to the fact that information about 

flutter 2 is only available on one side of the boundary, and in part due to the inefficiency of the approach used to 

partition the test points. 

V. Robust Optimization 

A. Deterministic Optimization 

A benchmark deterministic optimum is obtained in order to assess the quality of robust optimization results. 

Numerous approaches have been undertaken for optimizing composite structures32. Since the aeroelastic instability 

speed is discontinuous, local optima may exist. Furthermore, it is common when optimizing composites to fix ply 

orientations to a set of discrete values, therefore a genetic algorithm has been chosen as the most appropriate method.  

The ply orientations are treated as the design variable. Two strategies are adopted, a first where orientations are 

fixed to 0°, 90°, and ±45°, and a second where ±30° and ±60° plies are also allowed. In this initial study instability 

speed is maximized. Although in practice it would be more useful to minimize weight and treat instability speed as a 
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constraint, having instability speed as an objective allows direct comparisons to be made with earlier parametric 

studies12. Laminates are assumed to be symmetric with 16 plies and a thickness of 2mm. The optimization is performed 

using the MATLAB global optimization toolbox31. 

Ply contiguity constraints are often applied to ensure no more than four plies of a given orientation are stacked 

together33,34. In order to maintain this constraint, a penalty function is added which counts the number of constraint 

violations. 

B. Probabilistic Optimization 

Numerous interpretations of robust design can be found in the literature. In this paper we adopt a strategy where 

the probability that aeroelastic instability occurs at design air speeds is minimised27. This strategy is equivalent to that 

which maximises the reliability of the structure23. The optimization problem can be stated as 

 min
𝑦
𝑃(𝑉𝑐𝑟𝑖𝑡(𝑦) < 𝑉𝑑𝑒𝑠) (20) 

subject to the constraints discussed in the previous section. Vdes denotes a design instability speed which is defined 

prior to the optimization. 

The failure probability of a given design is estimated using Gaussian processes. An initial Latin Hypercube is 

generated with 30 training data points, and the plate model is run for each point. If a switch between flutter modes is 

detected a further 70 training data points are generated in order to ensure sufficient accuracy. The emulator is fitted as 

illustrated in Fig. 4 and the probability of failure is estimated using Monte Carlo Simulation of the emulator mean as 

 P(𝑉𝑐𝑟𝑖𝑡 < 𝑉𝑑𝑒𝑠) ≈
1

𝑛
∑ 𝐼(𝑚𝑖

∗(𝒙𝑖) < 𝑉𝑑𝑒𝑠)
𝑛
𝑖=1  (21) 

where I(m*
i(xi) < Vdes) is an indicator function which returns the values 

 𝐼(𝑚𝑖
∗(𝒙𝑖) < 𝑉𝑑𝑒𝑠) = {

1, 𝑚𝑖
∗ < 𝑉𝑑𝑒𝑠

 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
  (22) 

where m*
i(xi) is the predicted emulator mean for test point xi, given by Eq. 17. The estimated failure probabilities are 

equivalent to the area of the output PDF which lies below the design speed. As no design speed is specified for the 

deterministic optimization, as would be the case in a minimum weight design, several design speeds are considered 

so as to observe the effect upon the resulting robust optima. 

C. Results 

Deterministic and robust optima for the two layup strategies, and design speeds of 145m/s and 150m/s are shown 

in Table 2, along with the nominal value, mean and standard deviation of the instability speed, and probability of 

failure for the two design speeds. Figs. 10 and 11 compares the Probability Density Functions for the critical instability 

speed of the deterministic optima, as well as robust optima determined using two different design speeds.  

Table 2. Optimization Results for 1) 0°, ±45° and 90° Plies and 2) 0°, ±30° ,±45°, ±60° and 90° Plies 

Layup 

Strategy 
Objective Layup 

Vcrit (m/s) Probability of Failure 

Nom. Mean 
Std. 

Dev. 

Vdes = 

145 m/s 

Vdes = 

150 m/s 

1 

Deterministic [-452 452 02 ∓45]S 164.5 153.4 9.3 0.28 0.38 

Robust 
Vdes = 145 m/s [-453 452 -452 45]S 157.5 154.1 2.8 0.002 0.079 

Vdes = 150 m/s [-45 ±45 0 -452 0 -45]S 158.5 155.5 3.7 0.022 0.054 

2 

Deterministic [-452 30 -45 302 45 30]S 167.3 156.1 8.7 0.16 0.31 

Robust 
Vdes = 145 m/s [∓45 -30 -453 ∓30]S 159.0 156.3 3.1 0.0006 0.028 

Vdes = 150 m/s [∓45 -302 -45 -30 ±45]S 161.0 158.4 3.8 0.002 0.022 

The failure probabilities for each of the deterministic optima are notably high. For example, there is a 28% chance 

that the optimal laminate with 0°, ±45°, 90° plies would fail due to aeroelastic instability at 145 m/s. Referring to Figs. 

2 and 7, it can be seen that the optimal instability speed is on the boundary between two flutter modes and therefore 
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at the edge of a discontinuity. When ply orientations are uncertain this results in bi-modal PDFs as shown in Figs. 10 

and 11. The high probability of a switch to a flutter mode with lower instability speed, indicated by the lower peak of 

the PDFs, leads to a high probability of failure, illustrated by the area under this peak below the design speed. 

 
Figure 10. Comparison PDFs for different Optimial Laminates with 0°, ±45° and 90° Plies 

 

Figure 11. Comparison PDFs for different Optimial Laminates with 0°, ±30° ,±45°, ±60° and 90° Plies 

With both layup strategies the robust optimization results in considerably more reliable designs, with significantly 

lower probabilities of failure. These lower failure probabilities are achieved by moving the design away from the 

discontinuity and therefore significantly reducing the size of the lower peak of the PDFs, or eliminating it completely. 

The probability of switching to a flutter mode with lower instability speed is therefore much recuced.  

Using different design speeds in the objective function results in different optima. Figs. 2 and 7 show that the 

instability speed for flutter 1 decreases with increasing distance from the discontinuity. This causes the upper peak of 

the PDF to shift to the left, as can be seen in Fig. 10 for the 145 m/s robust design. A trade-off therefore exists in 

which the probability of a switching to a different mode must be lowered, without significantly increasing the 

probability of failure by the same flutter mode. In Fig. 10, the 145 m/s robust design has a relatively large area of the 

upper peak below 150 m/s and therefore a higher probability of failure at this speed. As such, the 150 m/s robust 

design is slightly closer to the discontinuity, thereby lowering the total area below the design speed despite a higher 

probability of a mode switch.  

The long tails observed in Figs. 10 and 11 lower the mean instability speed relative to its nominal value for all of 

the optima. It is noteworthy that robust optimization results in both reduced variance and increased mean instability 

speed; this is atypical of robust design which is often considered to be a trade-off between mean performance and 

variance25. This improved averaged performance of the robust designs is thought to be due to the extent to which the 

mean instability speed of the deterministic optima is lowered by the bi-model behavior. 

Finally, it can be remarked that there is a clear benefit to using ±30° and ±60° plies in the robust design. In the 

deterministic optimization, a 1.7% improvement in nominal instability speed is achieved over laminates with only 0°, 

±45° and 90° plies. Much larger improvements to reliability are achieved by using ±30° and ±60° plies, the smallest 

being a 59% reduction in the probability of a failure of the 150 m/s robust design from 0.054 to 0.022. The PDFs in 

Fig. 11 are shifted to the right in comparison to those shown in Fig. 10. Therefore, it is thought that improvements in 

reliability are due to the extra available design space which gives access to higher instability speeds. This phenomenon 

is also thought to explain the lower failure probability of the deterministic optimum using the second layup strategy. 
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VI. Conclusions 

An efficient approach has been presented for robust design of composite plate wings with uncertain ply 

orientations. Gaussian process emulators are used as surrogates for the aeroelastic instability speed in order to estimate 

the Probability Density Functions and failure probabilities at reduced computational cost. Probability of failure has 

been minimized using a genetic algorithm, and results have been compared to deterministic optima which maximize 

the instability speed. Two layup strategies were undertaken, a first which limits ply orientations to 0°, ±45°, and 90°, 

and a second which also uses ±30° and ±60° plies. The following observations have been made: 

 The critical instability speed is discontinuous due to the existence of different instability mechanisms. This can 

result in bi-modal output Probability Density Functions when ply orientations are uncertain. The discontinuous 

behaviour can be efficiently approximated by fitting multiple emualtors to the different instability speeds. 

 30 training data points give sufficient accuracy for uncertainty quantification in the majority of examples, which 

corresponds to an order of two magnitudes reduction in model runs compared to MCS of the model itself. 

 100 training data points were required for sufficient accuracy in examples where a switch between flutter modes 

occurs, corresponding to an order of magnitude reduction in model runs. 

 The benchmark deterministic optima have high probabilities of failure, as close proximity to the discontinuity 

between flutter modes means it is relatively probable that small variations will causes a switch to a flutter mode 

with lower instability speed. 

 Through robust design a minimum improvement in reliability of 85.8% is achieved for laminates with 0°, ± 45° 

and 90° plies, and of 92.8% when ±30° and ±60° plies are introduced. The reliability is gained through moving 

designs away from the discontinuity thereby reducing the probability of a mode switch. This has the added benefit 

of increasing the average instability speed compared to the deterministic optima. 

 Use of ±30°, ±60° plies in addition to 0°, ±45° and 90° plies results in a modest 1.7% improvement in nominal 

instabililty speed, but improvements in reliability of at least 59%. 

It is noted, however, that the significantly larger number of training data points required to build the emulator in 

the region of a switch beween flutter modes limits the efficiency of the presented approach. It is anticipated that using 

classification techniques35 or prior specification of the discontinuity in the emulator definition36 could improve the 

efficiency. Efficiency is lost due to the need to recalculate Latin Hypercubes for each design, which prevents re-use 

of model outputs. It is proposed for future work that an active learning approach37, whereby previously obtained results 

are retained and the same emulator is updated throughout the optimization process, could lead to substantial efficiency 

gains. 
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