
                          Tan, G., Hartley, J. W., Withers, E., Kratz, J., & Ward, C. (2015). Towards
the development of an instrumented test bed for tufting visualisation. In
Proceedings of the SAMPE Europe Conference 2015 AMIENS.

Peer reviewed version

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/33131851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://research-information.bristol.ac.uk/en/publications/towards-the-development-of-an-instrumented-test-bed-for-tufting-visualisation(27592fca-d337-4054-b073-42494c555d05).html
http://research-information.bristol.ac.uk/en/publications/towards-the-development-of-an-instrumented-test-bed-for-tufting-visualisation(27592fca-d337-4054-b073-42494c555d05).html


 
 

 
 

TOWARDS THE DEVELOPMENT OF AN INSTRUMENTED TEST 
BED FOR TUFTING VISUALISATION 

GEORGE TAN, JAMIE HARTLEY, EMILY WITHERS, JAMES KRATZ, CARWYN 

WARD 

University of Bristol 

Advanced Composites Centre for Innovation and Science, University of Bristol, 

Queens Building, University Walk, Bristol BS8 1TR, UK 

SUMMARY 

This paper presents the development of a test bed for tufting as Through-Thickness 

Reinforcement (TTR). The setup provides understanding of quality implications of TTR 

processing parameters on composite sandwich panels. The main parameters are 

identified from a commercial TTR machine, then recreated in a test frame with a 

transparent rig containing the compacted preform, allowing visibility of tuft formation. 

Initially the needle is observed alone, inserting into and retracting from the preform at 

controlled rates, and resulting damage is detected with imaging techniques. Thread is 

then added to observe tuft formation.  Damage is found to comprise fragmentation of 

both the carbon fibre skin and foam core, and non-uniformity of the needle path 

dimensions. A prototype ‘quality matrix’ is developed, establishing a possible ideal tuft, 

i.e. uniformity and minimal preform disruption. Results suggest some correlation 

between improved as-measured tuft quality and insertion rate, potentially allowing 

greater control of component macro-mechanical properties.  

INTRODUCTION 

Sandwich assemblies offer very high levels of structural efficiency by delivering 

increased stiffness and strength for a relatively low increment of weight. A limiting 

factor of these materials is their resistance to inter-ply delamination, and debonding of 

the skins, ultimately reducing mechanical performance. 

Sandwich panels subjected to in-plane crushing loads can buckle, resulting in 

separation of the skins from the core (ref. 1).  Through-Thickness Reinforcement (TTR) 

can improve these properties, acting as a mechanical joint between top and bottom 

skins and altering the failure mechanisms of the component.  This can engage the in-

plane compression response of the fibres increasing the compressive resistance of the 

panel. The modified response can result in more efficient energy absorbing structures. 



 
 

Tufting is one such TTR method.  Like stitching it passes loops of thread through the 

panel to connect the two skins as originally developed by DLR Institute of Structural 

Mechanics with KSL GmbH (ref. 2).  A robotically actuated tufting head by KSL was 

studied to understand aspects of the tufting process. To form the tufts, thread is 

inserted without tension by a single hollow needle, much like a standard sewing 

machine needle. Friction within the panel, between the dry fabric and the tufting thread, 

prevents the yarn from being pulled out as the needle retracts. A presser foot compacts 

the preform and holds it in place during the insertion. In order to form a loop on the 

reverse face the needle must pass a certain 

distance beyond the back face before 

retraction and so the preform is placed on top 

of a backing foam, into which the needle and 

thread can pass (Figure 1). The robotic head 

allows control of the insertion rate, as well as 

the length and spacing of the individual tufts. 

Other TTR methods include z-pinning, which 

has been shown to improve delamination 

resistance compared to composites containing toughened resins, resins with nano-

particles or with thermoplastic interleaves (ref. 3).  The advantage of tufting is its use 

for preforming components of dry fibres, rather than more expensive prepreg material. 

Also access is only required from one side of the component, unlike stitching. The 

scope for using this technology on prepreg material is unknown, however the tackiness 

of the prepreg substrates would likely impede the passage of the needle. This would 

prevent the tufting thread from running freely, requiring greater insertion forces and 

increased risk of material or needle damage. Even without tension in the tuft thread, 

insertion of the needle can still cause fibre breakage and in-plane waviness, reducing 

the in-plane properties (ref. 3), but this should be seen as a trade-off for the 

improvement in other properties. Cartié et al. initially reviewed tufting as reinforcement 

for composite T-joints (ref. 4).  The effect of the tufting was likened to that of a staple, 

which restricted separation of the laminate. Dell’Anno et al. confirmed by C-scanning 

that tufted panels reduce the delamination within a laminate in compression-after-

impact compared to untufted panels (ref. 5) and Henao et al. found that tufted sandwich 

panels have higher failure loads in edgewise compression than untufted ones and fail 

by delamination and buckling of the skins (ref. 6).  While the TTR effects are noted 

there is no discussion in the literature regarding the quality of the tuft itself.  The tufts 

are difficult to observe given that they are embedded within the preform.  The aim of 

this research is to develop a controllable test bed for tufting that can deliver an 

understanding of the various parameters available in this processing of composite 

Figure 1: Tufting process control 



 
 

sandwich panels. This addresses the need to observe and quantify the quality of a tuft 

in order to better inform the manufacturing process and structural design.   

EXPERIMENTAL METHODOLOGY 

To simulate the tufting process, a representative sandwich preform and foam backing 

sheet was contained in a custom-made rectangular box manufactured from 

transparent acrylic. An overview of the tufting unit geometry is shown in Figure 2. 

A series of holes were made in the top of the box along the middle and one edge to 

allow the tufting needle to pass through. The holes were used rather than an open top 

to represent the compaction provided by the presser foot during the tuft insertion, and 

it also allows the needle to retract, holding the panel in place. The transparency of the 

acrylic allowed real time observation of the needle penetration through each layer of 

the preform. A tight fit of the preform within the box was necessary to maintain the 

integrity of the panel when tufting on the edge. 

The sandwich preforms were assembled using a uniweave carbon fibre fabric from 

SGL Automotive (300 gsm), and a Rohacell 110 IG-F closed-cell foam core by Evonik. 

Each of the skins comprised six plies, formed by hand layup, with a unidirectional ply 

orientation. The fibre direction was parallel to the long edge of the preform. The total 

preform thickness was approximately 14 mm with a closed-cell polystyrene backing 

sheet. To avoid slippage of the plies during needle insertion the preforms were pre-

consolidated before being placed in the test rig by being held under vacuum pressure 

at 1 bar, at 90°C for 2 hours. This activated the binder within the carbon fabric and 

 

Figure 2: Tufting Unit Design 



 
 

provided some unification of the core and skins. Tufts were formed of aramid thread 

(Tkt-40). 

An Instron 3343 electromechanical test machine was used to control the needle 

insertion. The tufting needle was fixed onto the test machine, with a 1 kN load cell, and 

the acrylic box was positioned below. A temporary frame was assembled around the 

box to prevent it from slipping under the force of the needle and to hold it in place as 

the needle was retracted. The test set-up is shown in Figure 3. 

The tufting test consisted of a compressive motion to a total distance of 30 mm through 

the preform and into the backing foam. This was then followed by the equivalent tensile 

displacement rate to withdraw the needle. The progression and associated damage by 

the needle as it passed through the preform was recorded by video through the side 

panel. This process was repeated for a range of tufting speeds, from 100 mm/min to 

1,000 mm/min, both at the edge of the preform and in the centre. Inserting at the edge 

of the preform allowed visibility of any damage created. Inserting at the centre of the 

preform more accurately represented the boundary conditions of a large panel and was 

therefore used to record the loading on the needle. 

RESULTS 

The measured load-displacement data at the maximum tested rate is shown in Figure 

4 for insertions in the middle of the panel. The results between inserting at the edge of 

the preform and at the centre showed similar trends with a reduction in load at the edge 

due to the smaller contact area of needle and preform.   

Figure 3: Experimental Set-up 

 



 
 

 

Figure 4: Load-displacement behavior of the tufting needle path 

The graph shows two distinct regions, where negative force indicates insertion and 

positive force is that which is required for retraction. Some deflection of the panel is 

seen as the needle contacts the top skin and tip penetrates (4.a). The widest part of 

the needle (indicated in the figure) passes through the top skin, concurrent with the tip 

contacting the core foam and there is peak localised force (4.b). The widest part of the 

needle then passes through the core foam and friction increases approximately linearly 

as contact length increases (4.c). The widest part of the needle then exits the core with 

some separation of the lower skin from the core occurring as the needle tip contacts 

the carbon fibre, causing a reduction in insertion force (4.d). The force increases again 

as the needle begins to penetrate the lower skin and peaks as the widest point passes 

through it (4.e). The needle then penetrates the backing foam and the force increases 

slightly with contact length.  The needle then retracts with a reversal of forces (4.f). 

For the needle insertions carried out at the edge of the preform, any interesting features 

observed were recorded. Examples of these are shown in Figure 5. 

 

Figure 5: Needle channel features; a: near ideal tuft, b: carbon fibre and core fragments, c: carbon fibre 

fragments, d: divergence of the needle channel 



 
 

 

Figure 6: Tufting process with thread (L); thread in needle channel (R) 

There are three common features observed, carbon fibre fragments, foam core pieces 

and the diverging opening of the column (Figure 5).  In order to rate these features the 

relative area covered by the carbon and core pieces were measured as was the width 

of the channel opening.  All image processing was carried out in ImageJ software. This 

can distinguish between different regions in the image and calculate the area covered. 

It also permits measurements of image dimensions.  

When the thread was inserted to form a tuft similar features were noted (Figure 6). The 

behaviour of the thread within the channel could also be observed. 

 

DISCUSSION 

A quality matrix was developed based around the three main features observed as 

shown in Table 1 and Table 2. A rating of 1 represents the best tufting quality possible 

while 0 represents what could be considered a worst case scenario. The percentage 

area of the carbon fibre and core debris was calculated relative to the total area of a 

perfect column (2mm x 10mm).  

The ideal tufting column rating at 1 is a clean channel without any carbon fibre 

fragments or core pieces with the opening of the column is exactly the diameter of the 

needle (2 mm). The upper limit on the channel opening diameter was selected based 

on the maximum measurement in the sample population.  Debris within the resin 

column is considered a negative feature as it potentially disrupts resin flow through the 

tuft increasing the chance of voids forming. It may also negatively affect the bonding 

of skin and core and is a potential crack initiator. 



 
 

The diverging opening seen in the columns was a result of the needle breaking through 

the surface of the core. During infusion, this increased volume would result in a resin-

rich region at the interface of the foam core and the skin, which due to its brittle nature, 

could increase the risk of fracture.  

 

Figure 7: Graph showing trend of quality vs insertion rate 

Initial results (Figure 7) of the quality analysis show some correlation between 

increasing the tufting speed and an improvement in tuft quality. The variation in the 

column opening dimension has the greatest effect on the assessed quality. Debris from 

carbon fragments and broken core did not vary significantly between insertion rates.  

 

Table 1: Image processing results 

 

Table 2: Criteria rating method 



 
 

The test rig allows insertion of thread loops but there was difficulty in keeping the edge 

tufts intact when extracting them for analysis.  The presence of the thread also 

obscures the detail of the criteria developed in the outlined matrix.  An extended quality 

matrix is therefore required, where the 3D nature of the tuft and needle channel are 

evaluated. 

While the test bed has successfully provided insight into the structure of tufts there are 

still a number of improvements to be made. Due to the fixed nature of the test bed, the 

edge of any preform samples that are slightly smaller than the dimensions of the box 

will not sit flush against the front panel. This can cause difficulties in aligning the needle 

and may result in the needle actually missing part of the preform. The current maximum 

insertion rate of 1000 mm/min is also relatively low when compared to current 

commercial models which can tuft at a rate of 5000 mm/min. There are also some 

issues with the current post-processing method. Because of the depth of the columns, 

it is difficult to capture all detail in the channels debris may not be picked up by the 

image processing software. The added complexity of thread inclusion showed that the 

metrics developed for needle insertion alone are not easily measurable in this case. 

CONCLUSIONS 

The initial testing and results of the tufting test bed show a promising method for 

characterizing the formation of tufts within sandwich preforms. The test bed allowed 

for visualisation of the insertion process, as well as recording of the loads exerted on 

the needle along its path. Current image analysis suggests a possible trend between 

increasing insertion speed and an increased quality of the column within the preform 

however more improved analysis methods are required to validate this. This is because 

the current imaging methods can only see two dimensional information and cannot 

capture the entire column. 
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