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Abstract—Correlated shadow fading has a detrimental effect 
on the performance of wireless systems. Neglecting shadowing 
correlations could lead to inaccurate simulation results and 
unreliable wireless system design. In this paper, we propose and 
analyze a correlated shadow fading model based on Gaussian 
random fields. The model enables the generation of spatially 
correlated shadow fading for all meshed links in wireless multi-
hop networks. Both analytical and numerical results show that 
the proposed model is in good agreement with the literature in 
terms of the statistical properties and correlation coefficients. 
Furthermore, the Circulant Embedding method of the proposed 
simulation model significantly reduces the computational cost.  

Keywords—wireless multi-hop networks; shadow fading; spatial 
correlation; Gaussian random field; Circulant Embedding method 

I.  INTRODUCTION  
There is a growing need for the performance evaluation of 

dense wireless multi-hop networks, including mesh, ad-hoc, 
and sensor networks. System-level simulations are generally 
considered as the most convenient approach to investigate the 
behavior of such networks. Nevertheless, the complexity of the 
channel model introduces a clear tradeoff between accuracy 
and computational cost in wireless network simulations.  

A wireless channel is typically modeled as a combination 
of three components: path loss, slow fading (also known as 
shadow fading or shadowing) and fast fading. The mean path 
loss is mostly determined by the distance between the 
transmitter and the receiver. Fast fading is caused by multi-path 
propagation and its statistical properties have been studied 
extensively in the literature [1]. Shadow fading is caused by 
obstacles in the communication path and is defined as the 
fluctuation in the received power averaged over a few tens of 
wavelengths. It plays an important role in wireless system 
design, including coverage prediction in network planning and 
performance evaluation of network algorithms. Therefore we 
focus on shadow fading in this paper. Shadow fading on a 
decibel (dB) scale is commonly modeled by independent and 
identically distributed (i.i.d.) Gaussian random variables in 
system-level simulations. This achieves low computational 
complexity. However, it fails to capture the spatial correlation 
of shadow fading. Several experimental studies have shown 
that shadowing is significantly correlated in various scenarios 
[2]-[5]. Correlated shadowing has a negative effect on the 
connectivity of wireless multi-hop networks [5]. In dense 

multi-hop networks, a large number of nearby meshed links 
magnify the detrimental effects of correlated shadow fading on 
network performance. Neglecting shadowing correlations in 
dense multi-hop networks could lead to inaccurate network 
simulation results and unreliable wireless system design. 
Taking the correlation into account usually means high 
computational costs. Therefore an important goal is to develop 
a realistic and computationally effective correlated shadowing 
model for use in dense wireless multi-hop networks.  

Most of the existing correlated shadowing models are based 
on cellular networks, where correlations are considered either 
between a base station (BS) and several mobile stations (MSs) 
or between a MS and several BSs. The model of Gudmundson 
[2] describes the autocorrelation function of shadowing and is 
widely used to predict received power correlations for the MS-
BS links as MS moves. Gudmundson’s model considers each 
MS to experience shadowing independently, thus resulting in 
uncorrelated shadow fading for neighboring MSs. This lack of 
correlation does not happen in the real world since nearby MSs 
have similar shadowing environment, thus experiencing 
correlated shadow fading. To overcome this limitation, a two-
dimensional shadow fading model has been proposed to 
generate correlated shadowing values for neighboring MSs [6]. 
A unique shadow fading map is generated for each BS to 
represent shadowing losses for geographic locations. On the 
other hand, the cross-correlation of shadow fading between two 
transmitting BSs to a common MS was considered in [7]. 
Recent work [8][9] took a step further by incorporating both 
spatial auto-correlation and site-to-site cross-correlation into 
system-level shadow fading models.  

For a multi-hop (ad-hoc, or sensor) network, it is assumed 
that all nodes have the same low antenna height. This is very 
different compared to a conventional cellular network, where 
the radio link is established between a high-antenna BS and a 
low-antenna MS. Moreover, the propagation distance in an ad-
hoc or sensor network is much shorter than that in a cellular 
network. Therefore none of the previously discussed correlated 
shadowing models can be applied directly to a multi-hop 
network. To fill this gap, Wang, Tameh, and Nix [9] extended 
Gudmundson’s model [2] to predict the shadowing correlation 
on a peer-to-peer (P2P) link when there is mobility on both 
ends of the link. Nevertheless, it has the same limitation as [2], 
resulting in uncorrelated shadow fading losses for MS-MS 
links that are in close vicinity to each other. Patwari and 



 

 

Fig. 1. Algorithm for proposed correlated shadowing model. 

 

Fig. 2. A pair of links in an underlying shadowing map. 

Agrawal [5] investigated the spatially correlated link 
shadowing in multi-hop networks and developed a joint path 
loss model (also known as the NeSh model) for arbitrary pairs 
of links in a wireless multi-hop network. However, we show in 
Section IV that the link shadowing loss model in [5] is only 
valid when the link distance is much greater than the de-
correlation distance. For dense networks, the NeSh model may 
produce inaccurate results due to the large number of short 
links involved. In the NeSh simulation model, the correlated 
path losses are generated by first generating i.i.d. Gaussian 
vectors and then multiplying them by the square root of an 
appropriate covariance matrix. This approach is impractical 
when applied to dense multi-hop networks due to the large size 
of the covariance matrix. It is particularly the case when 
considering node mobility, which requires the generation of a 
new covariance matrix for each node position change.  

In this paper, we take Patwari and Agrawal’s [5] empirical 
observations about the correlation structure in wireless multi-
hop networks as valid, and hence we do not present any 
additional experimental data. Instead, we focus on the realistic 
and efficient modeling of correlated shadow fading for system-
level simulation. Rather than calculating the covariance matrix 
as in [5], we directly generate link shadowing losses that have 
the desired statistical distribution and correlation properties. 
We propose a correlated shadowing model with two parts: a 
shadowing map and a link shadowing loss function.  The 
random shadowing map models the non-site-specific 
shadowing environment. By connecting the link shadowing 
loss with the underlying shadowing environment, we preserve 
the physical relationships which exist between links in the real 
world. We also propose the use of the Circulant Embedding 
method [11] to efficiently generate a Gaussian field as part of 
the simulation model. Both analytical and numerical results 
show that the proposed shadow fading model agrees well with 
the empirically-observed link shadowing properties. The link 
shadowing variance induced by the proposed model provides a 
better fit to the empirical results than the NeSh model. 
Furthermore, the proposed model significantly reduces the 
computational complexity on system-level simulations.  

The overview of the process of the proposed shadow fading 
model is given in Fig. 1. Section II describes the two-part 
correlated shadowing model and the assumptions made in this 
paper. Section III presents a step-by-step implementation guide 
for the model, together with suggestions on parameter settings. 
The evaluation of the proposed model is given in Section IV. 
Finally, the paper is concluded in Section V. 

II. MODEL DESCRIPTION AND ASSUMPTIONS 
The main assumption in this work is that the shadow fading 

losses experienced on links in a wireless multi-hop network are 
a result of signals passing through an underlying shadowing 
map. The physical model of a pair of links in a shadowing map 
is illustrated in Fig. 2. For an ad hoc, or sensor network, it is 
also assumed that all nodes have the same configuration (e.g., 
antenna height, transmission power). Therefore shadowing 
losses seen by the nodes at both ends of the radio link are 
identical, i.e., ijji XX ,, =  where jiX , denotes the shadowing in 
link ( )ji, . It is reasonable to consider that if the shadowing 

environments on two close links are highly correlated, the link 
shadowing losses may also be highly correlated.  

This section presents a correlated shadowing model which 
calculates the link shadowing loss deterministically from the 
shadowing map. We first outline some known properties of the 
link shadowing loss. Then we describe the proposed two-part 
shadow fading model that agrees with these known properties. 
Finally we show that our model leads to a positive correlation 
between shadowing losses on a pair of links. 

A. Shadowing Properties 
Several existing studies [1][12] have shown that the link 

shadowing loss in dB can be modeled by a zero-mean Gaussian 
random variable with environment-dependent variance.  

( )ShadowShadow NL 2,0~ σ                             (1) 



 

It is reported in [12] that the variability in shadowing 
process for low mounted wireless links in urban environments 
tends to increase with increasing distance. The shadowing 
standard deviation reaches a peak at a certain critical distance 
and then starts to fall. It can be modeled using the following 
function [12] 
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where d is the distance between the transmitter and the 
receiver, S is the maximum standard deviation, Ds is the growth 
distance factor in meters, and md 100 =  [12].  

We now seek a correlated shadowing model which has the 
following properties: 

Prop.1. Regardless of which end is the transmitter, the link 
shadowing loss is the same. 

Prop.2. The shadowing loss in dB is a zero-mean Gaussian 
random variable with a standard deviation of Shadowσ . 

Prop.3. The standard deviation Shadowσ  of link shadowing loss 
is distance dependent as in (2). 

B. Shadowing Map 
As in prior literature [5][6], we start with the assumption 

that the underlying shadowing map is a stationary and isotropic 
Gaussian random field with zero-mean and exponentially-
decaying spatial correlation. A review of the Gaussian random 
fields and correlation functions is provided in [13]. Here we 
briefly describe some characteristics and properties of the 
Gaussian random field for completeness. 

 A random field is a spatial stochastic process on the two-
dimensional Euclidean space 2ℜ . A stochastic process { tX , 

ℑ∈t } is said to be Gaussian if all its distributions are 
Gaussian, i.e., for any choice of n and ℑ∈ntt ,,1 … , we have 

 ( ) ( ) ( )Σ== ,~,,,,
11 μNXXXXX

nttn ……               (3) 

where μ  is the expectation vector and Σ  is the covariance 
matrix. A Gaussian process is determined completely by its 
expectation function ( )tt XE=μ  and covariance function  

( )tsts XX ,cov, =Σ . A Gaussian random field is called 
stationary if the expectation function is constant, and the 
covariance function is invariant under translations, i.e., 

( ) ( )tsutus XXXX ,cov,cov =++ . If the distribution remains the 
same under rotations, the field is said to be isotropic with a 
covariance function of the form 

 ( ) ( )tsXX ts −= cov,cov                           (4) 

where ts −  is the Euclidean distance between s and t.  

In this paper, we simulate a Gaussian random field ( )xf  on 
a rectangular grid of size mn ×  as the shadowing map. Let 

dΔ  denote the spacing along the grid. The shadowing map 

will cover a simulation area of size dmdnWL Δ×Δ=× . In 
particular, we will generate a zero-mean Gaussian random 
process on each of the grid points { ( )djdi ΔΔ , , 

1,,0 −= ni … , 1,,0 −= mj … } corresponding to a covariance 
function given by 
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where s
2σ  is the variance of the shadowing map, δ  is the de-

correlation distance, and ts −  is the Euclidian distance 
between s and t. A realization of the shadowing map is 
visualized in Fig. 2.  

C.  Link Shadowing Losses 
From [5], each link’s shadowing loss nmX ,  is calculated by 

a weighted integral of the spatial loss field ( )xp as 
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The variance of the link shadowing loss nmX ,  is given by 
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Although it is intuitively correct to approximate the link 
shadowing loss as the weighted sum of individual shadowing 
values along the communication path, the weighting 
coefficients need to be determined carefully. As can be seen in 
(6), all obstacles are given an equal weight of 211 mn XX − . 
In other words, the NeSh model [5] assumes that all obstacles 
in the communication path have the same effect on the link 
shadowing loss. However, in the real world, obstacles that are 
close to the antenna have higher impacts on link shadowing. 
This is because that the relative loss of diffracting or scattering 
over or around the object is more for the obstacles near the 
antenna. Therefore, the weighting coefficients must be 
distance-dependent to reduce the impact of obstacles in the 
middle of a link on shadow fading. 

 We further abstract this empirical observation by assuming 
that the shadow fading loss is dominated by the shadowing 
values in the near field at both ends of the link. A similar 
assumption has been made in [9]. The following function is 
therefore proposed for the shadowing loss ABX  of Link AB as  
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where ( )Af  and ( )Bf  represent the shadowing values in the 
near field of nodes A and B respectively, and ABd  is the 
Euclidian distance between the near field of nodes A and B. 



 

 The function in (8) clearly satisfies Prop.1(symmetry). 
Next, we prove that it also satisfies Prop.2 and 3 as follows. 

It is well known that the sum of two correlated Gaussian 
random variables (e.g. A and B) is Gaussian such that 

( )ABBABANBA σσσμμ 2,~ 22 ++++                 (9) 

The proposed model can be seen to have Prop. 2 since (8) is 
simply a scaled sum of )(Af  and )(Bf . Using (3) as the 
spatial covariance, the variance of the link shadowing loss is 
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and the standard deviation of the link shadowing is given by 
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It can be observed that (11) has the same form as (2), thus 
satisfying Prop.3. 

D. Link Pair Correlation 
Consider a pair of links Link AB and Link CD as shown in 

Fig. 2, with link shadowing loss ABX  and CDX  respectively. 
The covariance of ABX  and CDX is defined as 

( ) ( ) ( ) ( )CDABCDABCDAB XEXEXXEXX −=,cov           (12) 

and the correlation coefficient is given by 
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Using (8) as the link shadowing loss, (12) can be rewritten as 
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where ( )Af , ( )Bf , ( )Cf  and ( )Df  denote the shadowing 
value in the near field of nodes A, B, C and D, and ijd stands 
for the distance between the near field of nodes i and j.  

Substituting (10) and (14) into (13), the correlation function is 
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III. MODEL IMPLEMENTATION 
In this section, we show how the proposed model may be 

applied in wireless multi-hop network simulations to generate 
correlated shadow fading. As previously mentioned, the link 
shadowing losses are calculated deterministically from the 
underlying shadowing map. The accurate and efficient 
generation of the shadowing maps is a prerequisite for 
correlated shadow fading.  

A. Circulant Embedding Method 
 We propose to use the Circulant Embedding method [11] to 
generate the shadowing map as part of the simulation process. 
The Circulant Embedding method [11] allows the accurate and 
efficient generation of a Gaussian random field via the Fast 
Fourier Transform (FFT). The idea is to embed the covariance 
matrix into a block circulant matrix with each block being 
circulant itself. Then the matrix square root of the block 
circulant matrix is constructed using FFT techniques. Finally, 
the marginal distribution of appropriate sub-blocks of this 
Gaussian field has the desired covariance structure. The 
algorithm can be briefly described as follows. 

• Building and storing the covariance matrix. 

• Embedding in block circulant matrix (BCM). 

• Computing the square root of the BCM. 

• Extracting the appropriate sub-block.  

The computation of the covariance matrix is the most time-
consuming step. However, for more realizations of the 
Gaussian random field, we can store the results of the square 
root of the BCM and repeat the final step only. For further 
details on how to implement the Circulant Embedding method, 
the reader is referred to [14]. 

B. Simulation Process and Parameter Settings 
As shown in Fig. 1, the simulation process of the correlated 

shadowing model is explained as follows. 

Step.1.  Set the parameters of the underlying shadowing map, 
which include: dimensions of the simulated region 
L and W , spatial resolution dΔ , shadowing standard 
deviation sσ , and the de-correlation distance δ .  

Step.2.  Generate shadowing maps with the covariance given in 
(3) using the Circulant Embedding method. 

Step.3.  Set node locations, establish links and determine the 
near field of nodes. 

Step.4.  Calculate the link shadowing losses from the pre-
generated shadowing maps using (8) 

The shadowing map values are only generated on the 
spatial grid with resolution dΔ . For any node off those grid 
points, the shadowing value has to be spatially interpolated 
from the values at nearby grid points. A linear interpolating 
method has been proposed in [9] where dΔ  is set equal to δ . 
In this paper, we use the simplest interpolating method to 
approximate the shadowing value by returning the value of the 



 

Fig. 4. Dependence of link shadowing variance on link distance. 

Fig. 3. Histogram of link shadowing and Gaussian distribution fit. 

nearest grid point. In this case dΔ  must be much less than the 
distance up to which the shadowing value remains 
approximately constant. The empirically accepted bound is a 
few tens of wavelengths [9]. The shadowing standard deviation 
is often estimated by empirical measurements. Commonly 
accepted values for sσ  are between 8-12dB [9]. The de-
correlation distance describes the size of the obstructions in the 
environment. For a typical European city δ  is 20m [9]. The 
physical location of each node can be set manually or 
generated randomly using a mobility model. The locations are 
then transformed into their discrete forms using dΔ . The near 
field of a node is initially set to be δ  from the node location. 
However, this parameter can either be tuned to match existing 
models or estimated from measurements.  

IV. NUMERICAL RESULTS AND DISCUSSION 
In this section, a range of numerical results are presented 

using the proposed correlated shadowing model. The 
performance of the proposed model is studied with different 
parameter settings and compared against the existing models in 
terms of the statistical properties and correlation coefficients. 

For validation propose, we generate 10000 samples of the 
underlying shadowing map within a square area of 200×200 m2 
with a spatial resolution equal to 2×2 m2. The de-correlation 
distance and the maximal standard deviation of link shadowing 
are set to m20=δ  and dBs 8=σ . We then set node locations 
and calculate link shadowing losses from the pre-generated 
shadowing maps using (8).  

A. Single-Link Properties 
By varying the length of the link from δ  to δ10 , a set of 

shadow fading losses are obtained. Fig. 3 illustrates the 
generated shadowing values at a link distance of δ10  using the 
proposed model. The simulated data shows a good agreement 
with the Gaussian distribution assumed for the link shadowing 
loss. Furthermore, Fig. 4 depicts the normalized link 
shadowing variance ( ) sABXVar 2σ  as a function of the 
normalized link distance δ/ABd . For the purpose of 
comparison, the plot also includes the function in the NeSh 
model [5]. It can be observed that the link shadowing variance 

of the proposed model increases with the increasing link 
distance. It then converges at a normalized distance between 4 
and 6, and the value satisfies the desired property, i.e, 2

sσ . 
However, the NeSh model will only converge to the empirical 
model when the link distance is much greater than δ . For short 
links in a dense multi-hop network, our model is able to 
generate link shadowing losses that fit better to the empirical 
results than the NeSh model.   

B. Link Correlation Properties 
Let two links of the same length l  share a common end, 

and gradually increase the angle θ  between them. We define 
the near field of a node as δa  from the node location, and 
study the impact of parameter a  on the correlation between 
two links. Fig. 5 shows a plot of the correlation coefficient as a 
function of the angle between links using the proposed model. 
For both short links ( δ5=l ) and long links ( δ15=l ), the 
cross-link correlation coefficient decreases as the increasing 
angle. This is expected because when the angle becomes larger, 
the shadowing environment at both ends of the two radio links 
become less correlated. Moreover, we observe that for the 
same link distance and separation angle, the greater the value 
of a , the smaller the correlation coefficient. We also compare 
the predicted correlation coefficients using our model with the 
results using the NeSh model. As shown in Fig. 6, a fair fit 
between the proposed model and the NeSh model is achieved 
by tuning parameter a . It means that the proposed model 
allows link shadowing losses to be generated which have 
correlation properties that are consistent with the NeSh model. 
In addition, we observe that the value of a  is distance 
dependent and is greater for longer links.  

The results provided in this section are not intended as a 
full comparison but make some particular predictions. Analysis 
of the channel data between all meshed links in the network 
will allow the model to be enhanced.  

C. Simulation Complexity 
As mentioned in Section I, the NeSh simulation model is 

impractical for dense multi-hop network simulations due to the 
large number of meshed links. We consider a network of 100 
nodes deployed in a square area of 200×200 m2 with a spatial 
resolution of 2×2 m2. In the NeSh model, the size of the 



 

Fig. 6. Cross-link correlations of the proposed model and comparison 
to the NeSh model for different link distances.  

Fig. 5. Impact of a on cross-link correlations of the proposed model. 

covariance matrix is 4950 ×4950. The calculation of such a 
large matrix (2.45×107 numerical double integrations) takes 
around 90 hours on a 2.8GHz Intel Core i7 processor. 
Moreover, in the case of node mobility, the calculation of a 
new covariance matrix is needed for every node position 
change. Assuming that the nodes are mobile, we generate 100 
random topologies to represent snapshots of the locations of 
the mobile nodes. It will take the NeSh model around 9000 
hours to calculate the 100 covariance matrices. Our model 
significantly reduces the computational complexity by 
generating shadowing losses directly from the shadowing map 
without calculating the covariance matrix. The proposed model 
only needs 20 seconds to generate 10000 shadowing maps. 
TABLE I. shows the computational requirements for the 
generation of correlated shadowing losses using both the NeSh 
model and the proposed model. The reader is referred to [15] 
for the details of computational complexity. The low 
computational complexity of the proposed modeling method 
enables an efficient use of the correlated shadow fading model 
in dense multi-hop network simulations.  

TABLE I.  COMPUTATIONAL REQUIREMENTS FOR THE NESH MODEL 
AND THE PROPOSED MODEL 

 NeSh model Proposed model 
Diagnolization of the 
covariance matrix 

2.02×1010 
multiplications  

6.1×105 
multiplications 

Generation of one 
realization 

1.23×107 
multiplications 

6.1×105 
multiplications 

Storage 2.45×107 values 4×104 values 

V. CONCLUSIONS 
This paper presents a correlated shadow fading model that 

agrees well with the literature in terms of the statistical 
properties and correlation coefficients. The proposed model 
enables the generation of spatially correlated shadow fading for 
all meshed links in wireless multi-hop networks. With the 
dense deployment of wireless nodes in a multi-hop network, 
this model is crucial for the realistic performance evaluation of 
the network algorithms. Furthermore, the proposed simulation 
model significantly reduces the computational cost in dense 
multi-hop network simulations. Future work will explore the 
effect of the proposed correlated shadowing model on system-
level performance evaluation of wireless multi-hop networks. 
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