
                          Zhuo, L., Dai, Q., & Han, D. (2015). Metaanalysis of flow modeling
performances—to build a matching system between catchment complexity
and model types. Hydrological Processes, 29(11), 2463–2477.
10.1002/hyp.10371

Peer reviewed version

Link to published version (if available):
10.1002/hyp.10371

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Explore Bristol Research

https://core.ac.uk/display/33131805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1002/hyp.10371
http://research-information.bristol.ac.uk/en/publications/metaanalysis-of-flow-modeling-performancesto-build-a-matching-system-between-catchment-complexity-and-model-types(6d5bf0f7-c9bd-4caf-ba26-3d589e91d549).html
http://research-information.bristol.ac.uk/en/publications/metaanalysis-of-flow-modeling-performancesto-build-a-matching-system-between-catchment-complexity-and-model-types(6d5bf0f7-c9bd-4caf-ba26-3d589e91d549).html


Meta-analysis of flow modeling performances - to build a matching 

system between catchment complexity and model types 

Lu Zhuo1*, Qiang Dai1, Dawei Han1* 

1WEMRC, Department of Civil Engineering, University of Bristol, Bristol, UK, BS8 1US 

*Correspondence: lz7913@bristol.ac.uk and d.han@bristol.ac.uk 

Abstract 

Hydrological models play a significant role in modeling river flow for decision making support in 

water resource management. In the past decades, many researchers have made a great deal of efforts 

in calibrating and validating various models, with each study being focused on one or two models. 

As a result, there is a lack of comparative analysis on the performance of those models to guide 

hydrologists to choose appropriate models for the individual climate and physical conditions. This 

paper describes a two-level meta-analysis to develop a matching system between catchment 

complexity (based on catchment significant features CSFs) and model types. The intention is to use the 

available CSFs information for choosing the most suitable model type for a given catchment. In this 

study, the CSFs include the elements of climate, soil type, land cover and catchment scale. Specific 

choices of model types in small and medium catchments are further explored with all CSFs 

information obtained. In particular, it is interesting to find that semi-distributed models are the most 

suitable model type for catchments with the area over 3000km2, regardless of other CSFs. The 

potential methodology for expanding the matching system between catchment complexity and model 

complexity is discussed. 
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Hydrological models play a significant role in simulation of river flow and decisions on water 

resource management. Similar to most science and engineering fields, the development of 

hydrological models has been unprecedented, especially during the past decades, which is largely 

driven by the advancement of computers, modern hydrological instruments, remote sensing 

technology, geographic information systems (GIS), digital elevation models (DEM), 

telecommunication networking facilities and so on. The growth may be viewed in term of benefits 

from the more detailed fields created within hydrology such as surface hydrology, subsurface 

hydrology, groundwater, forest hydrology, mountain hydrology etc. (Sivakumar et al., 2011), as well as 

the frequent reference of cross disciplinary theories and application of mathematical algorithms such 

as artificial neural networks, support vector machine and genetic algorithms within the hydrological 

community. Complex hydrological models such as physically based distributed models have a great 

deal of advantages over lumped models in describing spatially detailed hydrological processes. For 

example, they are capable of incorporating different kinds of spatially varied datasets such as soil 

type, land cover, geology, high resolution rainfall, temperature and other meteorological forcing 

inputs (Carpenter et al., 2006). In addition, complex hydrological models are also capable of 

assessing pollutant and sediment movement (Anderson et al., 1985). It is generally recognized that 

physically based distributed models (with the use of spatially varied catchment characteristics) may 

offer outputs with higher resolution and accuracy than lumped models (Beven, 1992, 2002; Boyle et 

al., 2001; Smith et al., 2004). Although hydrological models are moving towards a direction with 

more complex structure and mathematical sophistication, the selection of a suitable model/ model 

type for a given catchment becomes even harder than it used to be. As stated in Irstea (2014), “It is 

difficult for a user to know which forecasting model to use ; each research institute develops its own 

model that they use for specifically defined purposes.” Meanwhile, despite the advantages of 

complex hydrological models, there are two major concerns dominating discussions and debates on 

the current hydrologic studies: firstly, many hydrological models developed are often overly 
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complicated, necessitating an enormous amount of parameters and require excessive data inputs 

which may not be available or needed and may even lead to over-fitting problems. As noted in Reed 

et al. (2004), the application of a fully distributed or a semi-distributed model may not improve flow 

modeling over lumped modeling. Secondly, models are often calibrated for a specific catchment 

(Irstea, 2014), and their extensions and generalizations to other catchment situations are rather 

difficult, especially the catchment classification is still in a state of infancy in current hydrology 

(Sivakumar et al., 2011). Some studies have shown the usefulness of catchment classification with 

respect to hydrologic similarity, with examples such as McDonnell et al. (2004); Parajka et al. (2013); 

Salinas et al. (2013); Sawicz et al. (2011); Wagener et al. (2007). Winter (2001) introduced the idea of 

hydrologic landscapes, which were defined on the basis of similarity of climate, topography and 

geology, assuming that catchments that were similar with respect to these indicators would behave 

similarly in a hydrological sense. Bormann (2010) adopted a hydrologic classification system based on 

soil texture categories, assuming soil to be a major controlling factor of hydrologic similarity. In a 

similar manner, Ramachandra et al. (2006) explored catchments located within Indiana using physical 

features (area, channel length, channel slope etc.) to classify physically similar catchments. However, 

these conclusions are only constrained to the catchments studied and it is still puzzling to link the 

performance of a model to the physical characteristics of a catchment (Irstea, 2014). Furthermore no 

particular attention has been given to a systematic review of modeling performances in the published 

literature. Therefore the objective of this study is to review a considerable number of model 

developments based on the studies that have been published in peer-reviewed papers and compare their 

modeling performances in flow estimation. Many researchers have spent a great deal of efforts on 

calibrating and validating models, but each study only addressed one or two models. It is possible 

that there would be alternative models/ model types that may better suit a given catchment. Hence 

the aim of this paper is to review a large number of studies, with the initial step of learning from the 

differences and similarities between various catchments and between different hydrological models 



by using meta-analysis. After that suitable catchment features are selected to present catchment 

complexity and explore if any patterns would emerge between the categorized catchments and model 

types. Due to insufficient coverage of model types and catchment diversities in the existing 

publications, only a simple version of the matching system is presented in this paper. The rest of this 

paper is organized as follows: Section 2 describes the methodology and paper selection criteria 

applied in this study. Section 3 shows the data used and summary of the chosen studies for river flow 

modeling. Section 4 gives the result of the matching system between catchment features and model 

types. Discussion and conclusion are written in Section 5 and Section 6 respectively. 

2. Methodology  

In order to build the matching system between catchment complexity and model types, a two-level 

exploration based on the method used in Parajka et al. (2013) and Salinas et al. (2013) is applied. 

Since catchment significant features (CSFs) could be important indicators in discriminating 

catchment complexity as well as a way of choosing the right model type, so the initial step is to 

meta-analyze the model performance in terms of different model types and different CSFs by 

learning from their dissimilarities and similarities in a general way, and then to build a matching 

system accordingly (Section 2.1). The reasons for choosing climate region, soil type, land cover and 

catchment scale as CSFs are discussed in Section 2.2. The difference between model versions is 

discussed in Section 2.3. 

2.1 Two Level Meta-analysis 

Meta-analysis was initially proposed in the field of medicine (Antman et al., 1992; DerSimonian et 

al., 1986; Lau et al., 1992), and then applied widely in engineering, science and management 

domains (Bork et al., 2007; Duval et al., 2000; Harsch et al., 2009; King et al., 2006). The benefit of 

using meta-analysis is that it covers a wide spectrum of possibilities (e.g. different models, various 

catchment characteristics) that go beyond what can be reasonably accomplished by a single case 



study. Generally speaking, there are five major steps towards a systematic literature survey in 

meta-analysis: framing the question, searching relevant publications, assessing study quality, 

summarizing the evidence and interpreting the findings (Khan et al., 2003).  

For the five steps introduced in the meta-analysis, the initial task is to choose suitable papers in the 

literature and then gather useful information to be used in this study. For paper selection, publications 

gathered from the international refereed journals are scrutinized for the results of river flow modeling. 

The databases of hydrological related disciplines (e.g. water resource management and flood risk 

management), ISI web of science and websites of hydrological organizations and environmental 

agencies with the relevant papers have been used, and various combinations of keywords such as ‘flow 

simulation’ and ‘hydrological model’ have been looked up. Furthermore, in order to improve the 

consistency of this study (e.g. the same performance indicator), several selection criteria are set for all 

the chosen papers to follow: 

a) this study only chooses the papers with Nash –Sutcliffe efficiency (NSE) (Nash et al., 1970) as the 

indicator for model accuracy. This is because NSE is the most common and important performance 

measure used in hydrology. It is understood that modelers in other fields of environmental sciences are 

not often familiar with NSE, and NSE is not always effective in assessing a model’s performance 

(Schaefli et al., 2007). However this study is based on other researchers’ modeling results, with 

alternative performance criteria rarely reported. Therefore, only NSE could be considered in this study. 

As amply demonstrated by Diskin et al. (1977), there is no such index that is of universal application. 

In addition, as reported in Hall (2001), no one indicator is perfect in evaluating the complex hydrologic 

system. Nevertheless it is strongly suggested that future modelers should consider and provide more 

performance criteria for model evaluation, and the selection of indicators should depend on catchment 

characteristics and purposes of the models. The work carried out by Schaefli et al. (2005) is 

recommended, who adopted three performance criteria to assess the performance of a semi-lumped 



conceptual glacio-hydrological model, on three very complex high mountainous catchments. 

b) papers with inappropriate model time interval are not included for assessment (the time interval 

should depend on the concentration time of a catchment, which is judged by the catchment scale), 

such as the studies carried out by Adamowski et al. (2010) and Saleh et al. (2004) who used daily 

time interval for small catchments (67km2, 8-11km2 respectively) which are not in line with other 

catchments.  

c) this study only focuses on flow modeling with the whole hydrograph, hence some of the papers on 

real time flood forecasting are excluded, such as the modeling results given by Adamowski et al. 

(2010) and Lin et al. (2009).  

For detailed information collection, since the idea of this study is to build a matching system 

between model complexity with various model types and catchment complexity with the 

identification based on CSFs, so comprehensive information on models, model types, temporal 

scales (e.g. flow modeling in hourly or daily time interval) and CSFs are required. In this study 

climate region, soil type, land cover and catchment scale are chosen as CSFs with the reasons 

discussed in the following section (Section 2.2). Moreover, it is observed that since there are a great 

variety of hydrological models used in the chosen studies, in order to generalize beyond individual 

studies, these models are grouped into four types as: black-box model, lumped model, 

semi-distributed model and fully-distributed model. Generally speaking lumped models are simpler 

with fewer parameters than fully distributed models.  Therefore, the judgment is based on the number 

of parameters utilized in a model. It is known in Akaike Information Criterion (AIC) that a model is 

appraised by two components: one is how good a model is in fitting to the data and another is the 

number of parameters.  Although it is true that model complexity can also depend on process 

complexity, there are few existing criteria to identify model process complexity in the literature, 

therefore adoption of the number of model parameters as model complexity is a pragmatic approach. 



After gathering all the information about CSFs and model type of each flow modeling case, the 

catchment indicator (Ψ) for individual cases can then be represented as: 

Ψ = {CSF, M}                                                                                   (1) 

CSF = {SI, C, S, L}                                                                              (2) 

where M is model type with its subsets M1 (black-box), M2 (lumped), M3 (semi-distributed) and M4 

(fully-distributed); SI is catchment scale with its subsets SI1 (small), SI2 (medium) and SI3 (large); 

C is climate type with its subsets C1 (continental), C2 (dry), C3 (mild temperate) and C4 (Tropical); 

S is soil type with its subsets S1 (clay), S2 (sand) and S3 (silt); L is land cover with its subsets L1 

(urban), L2 (forest), L3 (agriculture) and L4 (grasslands). The detailed Ψ for each flow modeling 

case is presented in Table 4 in Section 4.3 

After appraising the ability of each CSF on discriminating catchment complexity, two approaches of 

building the matching system between model types and catchment complexity are then carried out in 

Level 2 study. For the first attempt, the most suitable CSFs from Level 1 are classified into more 

detailed groups, which are then paired with model types. Alternatively, all CSFs are employed to 

represent catchment complexity and are then matched with suitable model types. 

2.2 CSFs 

The reasons of choosing climate region, soil type, land cover and catchment scale as CSFs are 

explained as: 

 Climate: an important factor which dominates evaporation, rainfall and temperature of a 

catchment. It is noticed that there is inconsistency of climate definition between different 

papers. Some papers do not provide climate information at all, while others provide climate 

information but are based on unknown climate classification. For example, Chen et al. (2013) 



describes the catchment as cold , dry climate which can either be arid or continental climate 

type; and Shi et al. (2011) defines the catchment as between northern subtropical and the warm 

temperate zone, which is rather difficult to summarize its main climate type. Therefore for the 

purpose of this study climate classification based on the Köppen climate classification system 

(Peel et al., 2007) is used, which is one of the most widely used climate classification systems. 

The classification combines information about temperature, precipitation, seasonality 

precipitation and native vegetation. Since precipitation represents water inflow, the 

temperature and vegetation represent evapotranspiration linked with energy and water, so they 

are representative of the water and energy balance. The Köppen classification includes five 

main groups as tropical, dry, mild temperate, continental and polar climates respectively with 

each having several subtypes. All the studies are categorized into the five main groups based 

on their locations and climate characteristics. However, two Swedish catchments in polar 

climate from the study of Lindström et al. (1997) have been removed, since they are the only 

two catchments from polar climate. 

 Soil type: another factor that relates to flow generation. The variation of soil properties (e.g. 

partial size, porosity, and hydraulic conductivity) can affect the model performance. For the 

purpose of meta-analysis, the global soil texture map compiled by Webb et al. (2000) is used 

for soil classification. Because the dataset is developed to improve land surface hydrology 

parameterization, it has been widely applied for hydrological soil classification. The dataset 

indicates the top and bottom soil depths and the percentage of sand, silt and clay of each soil 

horizons in each of the 106 soil types over nine continents (NASA, 2000). Here, all the 

studies are categorized into the aforementioned three soil types according to the most 

abundant soil type at their catchment locations.  

 Land cover: a significant catchment indicator. Different land covers such as urban, 

agriculture, forest can have different impacts on flow mechanism. Here, the land cover 



classification based on the Global Land Cover map from SPOT VEGETATION data in 2000 

GLC2000 (Bartholomé et al., 2005) is adopted. The map has been used rather widely in 

environmental fields. The dataset divides land covers into seven major groups (forest, urban, 

wetlands, grasslands, agriculture, deserts, and snow & ice), with each having several 

subgroups. Among the studies that pass the aforementioned selection criteria, most are under 

urban, forest, agriculture and grasslands land covers, with only a few catchments spread over 

deserts and snow & ice land covers which are therefore removed from this study. 

 Catchment scale: an indicator of the degree of aggregation of catchment processes related to 

scale effects, water storage within a catchment (Parajka et al., 2013), and catchment 

homogeneity because generally larger catchments tend to have more variations in land covers, 

soil types etc. And furthermore, an increase in the catchment area is often related to a 

decrease in the data availability and to the scale of the underlying information (Bormann et 

al., 1999). However, there is no generally accepted definition for small, medium and large 

catchment sizes in the literature. For the purpose of Level 1 meta-analysis, the catchment 

boundary is defined by using Northern Ireland Water Framework Directive (2005) and 

Skoulikidis et al. (2006) as the references, with the small catchment size defined as 0 to 

100km2, the medium catchment size as 100 to 1000km2 and the large catchment size as above 

1000km2. 

It is important to mention that in this study only the dominant types of soil, land cover and climate are 

used. Although the data pattern/ smoothness/ heterogeneity are important, there are no easy ways of 

discriminating patterns and then link them with modeling outcomes. This is similar to principal 

component analysis (PCA) which is used to condense information into the first a few principal 

components; the dominant soil, land cover and climate enable the representation of the key 

relationships between them and modeling results. 



2.3 Model versions 

Since model versions are not reported in most literatures, especially for lumped and semi-distributed 

models, it is difficult to further assort the models according to different versions. Nevertheless it is still 

interesting to find out if there are any rising/ falling trends of the hydrological model performance with 

time in a general way, based on publication years of the studies (i.e. it is assumed that lately published 

papers have adopted higher version of models than papers published in earlier years). For this purpose, 

the plot of NSE results against the publication years of the selected literatures is shown in Figure 1a). It 

is surprising to see that there is a drop of the performance towards recent years, although the decrease 

is not remarkable. Moreover, the plots based on each individual model type are presented in Figure 1b) 

for a detailed investigation. It can be seen that the improvement of the black-box model is tremendous; 

however this result may not be representative due to its small sample and short time span of the cases 

included in this model type. For the other three model types, the fluctuations are negligible, with only 

an insignificant rise found in distributed model type and small decreases discovered in lumped and 

semi-distributed model types. Therefore, in conclusion the impact of model version is considered to be 

insignificant in this study, and it will not be included for the follow-on work.      

3. Literatures and Data used 

Table 1 lists the papers that pass the aforementioned selection criteria. It provides the summary 

information about study regions, models used, catchment characteristics and model efficiencies. The 

numbers of models and catchments in those papers vary. For example, some papers compare several 

hydrological models in one catchment, while other papers test one model in various catchments, which 

result in several model/ catchment assessments within one paper.  As a result, a total of 119 

assessments of flow modeling over 76 catchments form the foundation of Level 1 study.  

It can be seen from Table 1 that most papers cover lumped and semi-distributed models 

(approximately 70% of the total papers) for flow modeling. Comparatively, a smaller number of the 



papers adopt fully-distributed models, which may be due to their complex model structure and vast 

data inputs. As in most fully-distributed models, flow generation is only a part of the system 

functions. As a result, they are used more widely in simulating water quality and sediment transport 

(Ahearn et al., 2005; Konz et al., 2011; Refshaard et al., 1995), and with the coupling between water 

balance and energy balance for climate change investigations (Christensen et al., 2004; Lin et al., 

2009).  

4. Results  

In order to build a matching system between catchment complexity and model types, assessments on 

each CSF and each model type must be carried out firstly which are presented in Section 4.1 (Level 

1). And catchment are then classified under two schemes: firstly by choosing the most significant 

CSF as shown in Section 4.2 (Level 2), and secondly by adopting all CSFs information as presented 

in Section 4.3 (Level 2).  

4.1 Comparative assessment of model types and CSFs (Level 1) 

4.1.1 Model types 

The model types used in Level 1 study include black-box, lumped, semi-distributed and 

fully-distributed models. Figure 2 illustrates the NSE performances in terms of different model types. 

It can be seen that the performance of lumped models are the best, followed by semi-distributed 

models. Although the general accuracy of semi-distributed models is good, there are still 5 studies 

that performed below 0.40 NSE. The excellent performance of lumped models may be due to their 

wide application and long history; hence they are relatively mature technique in hydrologic modeling 

and are also easier to be calibrated. In contrast, it is surprising to see that the fully-distributed models 

perform the second last with the mean NSE only at 0.58, which could be explained by the following 

three reasons. Firstly, fully-distributed models are comprehensive systems which couple both water 



and energy balances, hence they require a large amount of data and catchment information. Therefore, 

if the input data is not sufficient, then the model efficiency will clearly not be as good as expected. 

Secondly, since fully-distributed models have complex structures with many parameters, they tend to 

suffer from over-fitting problems. Thirdly, since fully-distributed models are more complex than 

lumped models, they require modelers to possess high level modeling skills and experiences; hence 

such a model type depends more on subjective factors. Among all models, black-box models perform 

the worst with the mean NSE only at 0.49. Because models in this type do not consider the physical 

meaning of hydrological processes, they could be easily misunderstood and poorly calibrated.  

4.1.2 Climate type 

Climate, as an important factor affecting evapotranspiration and precipitation, can be expected to 

influence the performance of flow modeling. The summary of climate types and corresponding main 

climate groups are presented in Table 2. As illustrated in Figure 3, the synthesis of the chosen studies 

indicates that most of the studies are carried out in Europe and USA, and majority studies are carried 

out in mild temperate climate rather than in dry and tropical climates. The results of NSE 

performances with respect to the four climate types are presented in Figure 4a), which shows that the 

average performance of flow modeling tends to be lower in mild temperate climate than in dry and 

tropical climates. For mild temperate climate, the range of NSE changes from below 0.30 (Bell et al., 

2001; Saleh et al., 2004; Smith et al., 2004; Xevi et al., 1997) to higher than 0.90 (Bell et al., 2001; 

Lindström et al., 1997), with 14 out of 92 studies exceeding 0.80. This is because more catchments are 

studied in locations covered with mild temperate climate; hence more diverse catchment situations are 

included, which lead to higher variations of the performance results. It is surprising to see that the 

performances of flow modeling in dry areas are quite stable, especially with the high accuracy 

(NSE=0.81) observed in Senthil et al. (2005). Similar results are obtained in tropical climate, with the 

mean NSE at 0.84, especially in the study carried out by Campling et al. (2002), who used a 



semi-distributed TOPMODEL in River Ebonyi, Nigeria and obtained almost 0.90 NSE. However, the 

results for both dry and tropical climates may not be representative due to the small number of cases 

included in both types. 

4.1.3 Soil type 

Soil plays a significant role in the hydrological cycle, because various soil properties can affect the 

formation of runoff. The assessment of NSE performances with respect to the three soil types is 

presented in Figure 4b). It is clear that the performances of flow modeling carried out in silt based 

catchments are the best with the mean NSE value of 0.76 and also with the narrowest NSE range 

between 0.49 and 0.91. Such catchments appear mostly in mid-USA (such as Iowa (Tokar et al., 

2000), Illinois, Indiana (Singh et al., 2005), Oklahoma (Khan, 1993; Yew et al., 1997)), Europe 

(such as Italy (Todini, 1996) and England (Bell et al., 2001)). Comparatively, in sandy catchments 

the efficiencies of the applied models are reasonably sparse, with an appreciable difference between 

the best performed case (0.91 NSE, by the semi-distributed HBV-96 model in a Swedish sandy 

catchment by Lindström et al. (1997) and the worst performed case (0.24 NSE, by the 

fully-distributed MIKE-SHE model in Neuenkirchen research catchment, Germany by Xevi et al. 

(1997). In conclusion, the performances of flow modeling in silt catchments are more stable than in 

sandy and clayey catchments. This is because the catchments covered with silt soil type are often 

located in humid areas, and hydrological models normally perform more stable in these locations than 

in arid and cold catchments. 

4.1.4 Land cover 

In addition to the impact of soil on flow modeling, land cover is also influential. As shown in Figure 

4c), the forest group performs the worst among all land covers. It also has the largest NSE difference 

between the worst and the best cases. Comparatively, the performance of flow modeling in 

grasslands is more efficient. As mentioned in Section 2, the influence of land cover is a composite 



indicator including a range of processes. For example, catchments covered with intensive vegetation 

like forests are sophisticated systems, so researchers tend to use complex distributed models. 

However, lacking of the physical measurements of individual parameters or arbitrarily fixing certain 

parameters can result in significant errors. For example, the results presented in ‘the distributed 

model intercomparison project’ (Reed et al., 2004; Smith et al., 2004) are extremely low (NSE range 

between -0.26 and 0.27), and it is interesting to find that most of these poor results are from the 

SWAT model. Compared with the extreme situation of the forest group, the performances of flow 

modeling in urban and agriculture are more acceptable with the mean NSE of 0.70 and 0.70 

respectively.  

4.1.5 Catchment scale 

Catchment scale may be a useful indicator of catchment homogeneity. The results in Figure 4d) 

present a rather clear increase trend of the efficiency with catchment scale for all the studies. The 

mean NSE performance is 0.39 in small catchments and rises to approximately 0.70 for large 

catchments. In addition, the precision rises when catchment area increases. For example, the standard 

deviation deceases dramatically from 0.76 for small catchments to only 0.18 for large catchments. 

This pattern of the performance with catchment scale may be due to the following reason: when the 

catchment area increases, some of the hydrological variability is averaged out due to an interplay of 

hydrological processes both spatially and temporally, hence the flow modeling is improved. Similar 

results are revealed in Merz et al. (2009, 2011) and Nester et al. (2011), and an ungauged catchment 

study (Parajka et al., 2013). Compared with climate, soil and land cover, catchment scale shows 

stronger evidence as an indicator of catchment complexity. Therefore, catchment scale would be 

used to further explore the detailed catchment complexity in Section 4.2. 

4.2 Catchment scale match with model types (Level 2) 

Considering the reason explained in Section 4.1.5, further exploration is implemented to examine the 



ability of catchment scale in representing the catchment complexity, and then to build a matching 

system between catchment complexity and model types. In this study, the catchment area varies from 

0.36km2 to 795,500km2; with such big differences, one model type is clearly incapable of covering 

all catchment scales. Hence in order to find the most suitable model types for various catchment 

scales, a correlation between catchment areas and model performances is explored in respect to the 

four model types. As shown in Figure 5, there is an evident elevation of performances across all 

model types when the catchment expands. Furthermore, it is found that the general performance of 

fully-distributed models is unsatisfactory with their majority NSE efficiencies lower than 0.80. 

However, it is noted that when the results of all model types are plotted in one figure, it is difficult to 

determine which model type is better for which catchment scale. The reason is because, 

semi-distributed models are widely used in large catchments, however this does not yield to the 

conclusion that they are better in large catchments, as the number of studies for lumped models in 

large catchments is too small to compare. In addition, a similar situation is found for lumped models 

in medium catchments. Therefore, in order to avoid the impacts of this preferred bias for catchment 

scale, cases are further divided into small, medium and large catchments. In Level 1 meta-analysis, 

only a rough definition of catchment size is adopted. In order to link between different catchment 

sizes and suitable model types, the border lines between small and medium catchments, and between 

medium and large catchments need to be discovered. Ultimately, the optimal boundary should reflect a 

clear pattern between the catchment sizes and the corresponding suitable model types, and the change 

of the border lines should have an appreciable impact on the pattern. For this purpose, the trial and 

error method is applied to discover a suitable definition of catchment size groups. The border line 

between small and medium catchments is tuned firstly while the boundary between medium and 

large catchments is kept unchanged (use 50km2 as changing steps). Until the pattern in small 

catchments is clear, the border line between medium and large catchments would then be tuned by 

applying the same method (with gradually increased changing steps from 50km2 to 1000km2). The 



final boundary is discovered as: small catchment between 0 and 200km2; medium catchment 

between 200 and 3000km2 and large catchment greater than 3000km2. This result agrees with the 

definition in Mnatsakanyan et al. (2007).  

Figure 6 presents the performances of flow modeling in terms of different catchment size groups. 

Since the number of studies using black-box models are too small, these results have been excluded 

in this part. Meanwhile, it is worth reaffirming that the results in Figure 6 are not shown in the order 

of catchment scales; instead they are sorted in the order of ascending NSEs. In the results presented 

in Figure 6, it is convincing to say that semi-distributed models give better modeling performance in 

large catchments. On the other hand, in small and medium catchments, there is no distinctive 

difference between model types, with only slightly better performance observed for lumped models 

in small catchments and semi-distributed models in medium catchments. In addition, it is obvious 

that there is still large disparity within each model type. For example, with medium catchments, 

some of the lumped models surpass the semi-distributed models with efficiency as high as 0.85, i.e. 

Tank and Sacramento models used in Smith et al (2004) and Todini (1996) and similar results are 

discovered in other cases (Boyle et al., 2001; Carpenter et al., 2001; Koren et al., 2004; Smith et al., 

1999; Vieux et al., 2003; Zhang et al., 2004). Therefore, it is necessary to perform a more specific 

classification within each model type. For this purpose, model names are used to stratify models in 

preferred and non-preferred (with 0.80 NSE as the threshold, because modelers lose interest when the 

result is below 0.8) groups as shown in Table 3. As discussed in Section 2.3, model version is not 

considered in this result. It can be seen from Table 3 that SAC-SMA is not as suitable as Midlands 

Catchment Runoff Model (MCRM) in small catchments. For medium and large catchments, the SWAT 

model is not efficient in both catchment sizes; comparatively, HBV model is better. The summary of 

Table 3 can be used as a simple matching system when other CSFs are deficient, especially for 

catchments with areas over 3000km2.  



4.3 All CSFs match with model types (Level 2) 

It can be seen from Section 4.2 that the disparity among three model types in small and medium 

catchments are still not as distinctive as the one found in large catchments. However, if all the CSFs 

information of a catchment is available, the matching system between catchment complexity and 

model types can be further developed based on the extra information. Table 4 presents the Ψ of all 

the studies, which corresponds to Table 1. Similar to the threshold set in the previous section, in 

order to enhance the reliability of the matching system, only studies with NSE performance greater 

than 0.80 are taken into consideration. Moreover, it is noted that the catchment size in this section is 

categorized based on the boundary found in Section 4.2. For the methodology, for catchments with 

identical CSF codes, their NSE performances via different model types are compared, and the model 

type with better accuracy is specified as the preferred model type. The matching system between 

catchment complexity and model complexity from this scheme is presented in Table 5. It can be seen 

that the efficiently performed semi-distributed models occupy most of the preferred model group, as 

well as the widest catchment cases (with 10 out of 19 CSFs situations). The performance is followed 

by lumped models (with 6 out of 19 CSFs situations). This matching system emphasizes the 

conclusion made in Section 4.2 that for large catchments (SI3), semi-distributed models (M3) are the 

optimal model choice regardless of other CSFs conditions.  

5. Discussion 

Catchment complexity and model complexity (model types in this study) are tightly associated with 

each other, and with the catchment complexity as the most important one. Therefore, until the 

catchment complexity is well defined, it will be difficult to provide model selection guidance.  

Firstly, how to measure the catchment complexity? As presented in Section 4.2 the size of a 

catchment is a way of measuring catchment complexity. However it should not be the sole indicator 

and there are other possible alternatives. As shown in Figure 6, using catchment size as a sole 



indicator in small and medium catchments is clearly insufficient. In order to improve the matching 

system, all CSFs are employed in the second approach as shown in Section 4.3. Although the results 

in Table 5 remedy the deficiency occurred in small and medium catchments, they do not cover the 

whole possibilities. There are some studies on catchment complexity with attempts to find guidelines 

to classify catchments into different groups, such as the studies carried out by Reed (1999); 

Sivakumar et al. (2011); Troch et al. (2013). However, these studies do not address directly the 

catchment complexity in relation to CSFs and are only preliminary and limited. Therefore measuring 

the catchment complexity is still an unsolved problem in hydrology. 

Secondly, how to deal with the model complexity? In the current literature, there is no generally 

accepted definition for the complexity of hydrological models and one way of measuring model 

complexity is by counting model parameters such as the AIC formula. Generally speaking, 

hydrological models are vaguely catalogued into three types: lumped, semi-distributed and 

fully-distributed models (with lumped models having the least number of parameters as compared with 

the fully distributed models which divide a catchment into thousand or even hundred thousand grids, 

with each grid having its own set of parameters); Somehow it is true that model complexity can also 

depend on process complexity and the parameter counting method is not always working in hydrologic 

modeling. Because a model with high process complexity may be lumped, a semi-distributed model 

may have a lot of insensitive parameters, and a fully-distributed model with a vast number of required 

parameters may have many parameters fixed for all the grids. However as there are few existing agreed 

criteria to evaluate process complexity, a better agreed system is urgently desired, probably with a 

weighting methodology (e.g. sensitive parameters should have higher weightings while less sensitive 

parameters should have less weightings). Sensitivity analysis could be useful in assigning weightings 

in this case. 

Apart from the aforementioned challenges in measuring catchment complexity and model 



complexity, the data sufficiency issue is also a big challenge that need to be solved in hydrology (e.g. 

how much data information is sufficient for a catchment). Somehow in order to solve these problems, 

a physically based fully distributed hydrological model as virtual catchments might be employed to 

tackle this challenge. Since they are virtual catchments, it will be rather easy to generate thousand or 

even hundred thousand by the Monte-Carlo method. A large number of cases could be generated to 

link catchment complexity with model complexity. In addition, the skill of a modeler also plays an 

important role. However it is impossible to judge modelers’ skill from their results published in 

international refereed journal papers. Since this study is based on peer-reviewed results, it is assumed 

that all modelers have adequate modeling skills. Albeit they do not, there are no appropriate ways to 

judge. Nevertheless there may be a way to tackle this issue , for example by a controlled study carried 

out between different groups of modelers with different skill levels, working on the same catchments 

and same datasets. However such studies have rarely been carried out and reported in the literature. It 

will be an interesting study to be implemented by the hydrological research community in the future. 

Moreover, could a multi-hydrological-model approach help improving flow simulations and forecasts, 

and thereby obtain more accurate outputs? Logically, the answer could be yes. A study carried out by 

the PREMHYCE project (PREMHYCE) led by Irstea has proven that a combination of five French 

operational hydrological models works more effectively than the models used individually. Recent 

advancement in Data Mining technology such as Fuzzy logic, Logistic Regression and Random Forest 

may also be used as a combination of models to simulate the complicated river systems. 

6. Conclusion 

Hydrologic modeling has become an important research domain in hydrology, particularly facilitated 

by the fast development of computing technology and mathematical algorithms. Hydrological 

models are increasingly complex and computationally intensive. Therefore, to choose a suitable 

model/model type for a given catchment is becoming a complex problem. Because there are some 



fundamental issues remain unsolved in the hydrological community such as what is the optimum 

way of measuring catchment complexity and how to discriminate various hydrological models (with 

parameter counting, or alternative ways). Hence the motivation behind this study is to gather a large 

number of publications with different types of hydrological models and various catchment situations, 

to build a preliminary matching system between catchment complexity and model types. We hope it 

will provide useful guidance for future hydrologists to assess various catchments and choose 

different hydrological models.  

In this study, a significant correlation between semi-distributed models and large catchments 

(>3000km2) are uncovered. Moreover, in order to improve the results in small and medium 

catchments, the relationships in terms of all CSFs are taken into further exploration. These two 

attempts provide specific choices of models and model types across a wide range of catchment scales. 

Since the hydrological community has already spent a great deal of effort and time in utilizing 

various hydrological models with a variety of catchments, a clear matching system between 

catchment complexity and model complexity is urgently needed. Several recent studies (Sawicz et al., 

2011; Sivakumar et al., 2011; Troch et al., 2013; Wagener et al., 2007) have attempted to classify 

catchment complexity based on hydrologic similarity; however an overarching method based on 

multiple factors such as CSFs. has yet to emerge. We hope that this study will be a useful step 

towards further engaging the hydrological community in advancing the research of matching 

catchment complexity and model complexity for better flow modeling and forecasting. 
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Figure 1. NSE performances against publication years of all the selected assessments. a) for all model 

types, b) for four individual model types with black-box, lumped, semi-distributed and fully 

distributed model types respectively. 

 

 

 

 

 

 

 

  



 

 

Figure 2. NSE of flow modelling stratified by model types (Level 1). The mean modelling results for 

each model type are 0.49, 0.58, 0.71 and 0.61 from the left to the right respectively. The number of 

catchments used for each model type is shown in parentheses on the x-axis tick labels. The boxes 

indicate 25-75% percentiles. The red dots present outliers.



 

Figure 3. Climate map representing the catchment locations included in Level 1 meta-analysis. 



 
Figure 4. The NSE results of flow modelling, stratified by CSFs (Level 1). a) Climate regions: the mean 

simulation results for individual climate types are 0.71, 0.72, 0.59 and 0.84 from continental climate to 

tropical climate; b) Soil type: the mean simulation results for clay, sand and silt are 0.60, 0.53 and 0.76 

respectively; c) Land cover: the mean simulation results for urban, forest, agriculture and grasslands are 0.70, 

0.56, 0.66 and 0.70 respectively; d) Catchment size: The mean simulation results for small (0-100km2), 

medium (100-1000km2), and large (>1000km2) catchments are 0.39, 0.63 and 0.71 respectively. The number 

of catchments used for each CSF group is shown in parentheses on the x-axis tick labels. The boxes indicate 

25-75% percentiles. The red dots represent outliers. 



 
Figure 5. Performances across all model types with catchment scales in log. The trend line indicates 

the increase of model performance with the rise of catchment area. 



 
Figure 6. Relationship between model types and performances of flow modelling in 

respect to the most suitable border lines for small, medium and large catchments. It is 

important to note that within each catchment size group, the results are not shown in the 

order of catchment scales; instead they are sorted in the order of ascending NSE. The 

number of studies for black-box models is too small for comparison, so these results are 

excluded. Also it is noted that only the NSE results above 0.60 are shown here for a 

better visual illustration (Level 2).  

  



Table 1. Summary assessment of hydrological models. Due to the limitation of paper 

layout, soil type and land cover are not shown here. In climate column, HC=Humid 

continental; HS= Humid subtropical; O=Oceanic; S=Subarctic; M=Mediterranean; 

SA=Semi-arid; TS=Tropical savanna; TR= Tropical rainforest; D= Desert. All studies 

with NSE performances less than 0 are not included in Figures. 2, 4, 5, 6 for better 

visual illustration. 

Study Region Catchment 

area (km2) 

Climate Model Model 

type 

Efficiency 

(NSE) 

1. Chen et al., (2013) China 121000 SA Xinanjiang, HBV, 

TOPMODEL,  

M2, 

M3 

0.70, 0.76 

2. Xie et al., (2013) Midwest 

USA 

17879-65742 HC SWAT/HSPF M3 0.65-0.73 

3. He et al., (2012) China 10000 HC Xinanjiang, 

Sacramento, 

HBV, 

TOPMODEL 

M2, 

M3 

0.64, 0.69 

4. Shi et al., (2011) Mideast 

China 

2550-10191 HS Xinanjiang, 

SWAT 

M2 , 

M3 

0.70-0.86,  

0.69-0.82 

5. Pechlivanidis et al., 

(2010) 

UK 10-1040 O PDM M2, 

M3 

0.67-0.77,  

0.66-0.83 

6. Im et al., (2009) Korea 258 S MIKE SHE M4 0.38 

7. Zhang et al., (2008) Northwest 

China 

12 HC MIKE SHE M4 0.31 

8. Cuo et al., (2008) USA 
(Washington) 

22 M DHSVM M4 0.68 

9. Takeuchi et al., (2008) China, Nepal, 
Sri Lanka, 

Japan, 

Southeast 
Asia,  

603-795500 SA, TS, 
TR, HS 

BTOPMC M3 0.70-0.87 

10. Cabus (2008) Belgium 800 O PDM M2 0.58 

11. Vischel et al., (2008) South Africa 4625 O TOPKAPI M4 0.65 

12. Rouhani et al., (2007) Belgium 383 O SWAT,  

MIKE SHE 

M3, 

M4 

0.71, 0.70 

13. Singh et al., (2005) USA (Illinois, 
Indiana) 

5568 HC SWAT, HSPF M3 0.74, 0.69 

14. Senthil et al., (2005) Southeast 
India 

515, 8570 SA, TS ANN M1 0.81, 0.84 

15. Ackerman et al., (2005) USA 

(California) 

286, 338 M, SA HSPF M4 0.63, 0.71 

16. Xiong et al., (2004) China 

(Henan) 

2623 HS TOPMODEL M2 0.80 

17. Smith et al., (2004) USA 

(Illinois) 

65-2484 HS SAC-SMA, 

SWAT, MIKE 
SHE, HRCDHM, 

HL-RMS 

M2, 

M3, 
M4 

-0.26-0.87, 

-2.58-0.60,  
0.10-0.75 

18. Saleh et al., (2004) USA (Texas) 175, 921 HS SWAT, HSPF M3 0.26-0.62,  

0.70-0.73 

19. Whitaker et al.,(2003) British 

Columbia 

26 S DHSVM M4 0.90 

20. Campling et al., (2002) Nigeria 379 TS TOPMODEL M3 0.90 

21. Bell et al., (2001) UK 11-298 O TCM, SAC-SMA, 

PDM, MCRM, 

IEM, TF, PRTF, 
Grid model,  

M2, 

M1, 

M4 

0.44-0.91,  

-0.85-0.82,  

0.54-0.85 



22. Tokar et al., (2000) USA (Iowa, 

Maryland) 

98, 960 HC, HS ANN, SAC-SMA, 

SCRR 

M1, 

M2 

0.64-0.83,  

0.84, 0.55 

23. Yew et al., (1997) 

 

Swaziland, 

Tanzania, 

USA 
(Oklahoma) 

2344-2682 HS, O, D Pitman, 

Sacramento, 

NAM, 
Xinanjiang, 

SMAR 

M2 0.42-0.65 

24. Xevi et al., (1997) Germany 1 O MIKE SHE M4 0.24 

25. Lindström et al., (1997) Sweden 343-5975 S, O HBV M3 0.80-0.91 

26. Todini (1996) Italy 840, 4000 O ARNO, 
TOPMODEL, 

Xinanjiang, 

Stanford IV, 
Sacramento, 

Tank, APIC, 

SSARR 

M2, 
M3 

0.78-0.87 

27. Ambroise et al., (1996) France 0.36 O TOPMODEL M3 0.87 

28. Khan (1993) USA 
(Oklahoma) 

2344 D Xinanjiang M2 0.75 



Table 2. Summary of climate types based on catchment locations and climate features, 

with corresponding major climate groups used for Level 1 meta-analysis, based on the 

Köppen climate classification system. 

Climate types Climate main groups 

Humid continental, subarctic,  Continental 

Desert, Semi-arid Dry 

Humid subtropical, oceanic, Mediterranean Mild temperate 

Tropical savanna, tropical rainforest,  Tropical  



Table 3. The preferred and non-preferred (with 0.80 NSE as threshold) models used for 

small (0-200km2), medium (200-3000km2) and large (>3000km2) catchments. The 

model names in the table are ordered from the most occurred to the least occurred, with 

the occurrence shown in brackets. When two models have the same number of 

occurrence, the one with lower NSE shows first in the non-preferred group, and the 

model with higher NSE is listed first in the preferred group (level 2). *PDM in small 

catchments is used as a semi-distributed model; TOPMODEL in medium catchments is 

used as a lumped model; ARNO in large catchments is used as a semi-distributed model 

Models Small catchment  Medium catchment  Large catchment 

M2 M3  M2 M3  M3 

 

Preferred  (NSE>0.8) 

MCRM(4) 

SAC-SMA(1) 

IEM(1) 

TOPMODEL(1)  SAC-SMA(4) 

Xinanjiang(2) 

Tank(1) 
Stanford(1) 

SSARR(1) 

 

HBV(2) 

TOPMODEL(2) 

SWAT(1) 
BTOPMC(1) 

 HBV(4)  

BTOPMC(3)  

ARNO*(1) 

Not preferred (NSE<0.8) SAC-SMA(2) 

PDM(1) 

PDM*(1) 

HSPV(1) 

 SAC-SMA(4) 

PDM(2) 

Xinanjiang(1) 
APIC(1) 

TOPMODEL*(1) 

SWAT(3) 

HSPF(1)  

BTOPMC(1) 

 SWAT(5)  

BTOPMC(2) 

HSPF(1) 
TOMODEL(1) 



Table 4. Catchment indicator Ψ for all the cases included in this study, in the format of 

{CSF, M} (i.e. four catchment significant features: catchment scale, climate region, soil 

type and land cover; and model type). The study no. is identical to the study no. in Table 

1. It is noted that due to page limitation NSE results below 0 are not shown in this table. 

SI1, SI2, SI3 are small, medium and large catchments respectively; C1, C2, C3, C4 are 

continental, dry, mild temperate and tropical climates respectively; S1, S2, S3 are clay, 

sand and silt soil respectively; L1, L2, L3, L4 are the land covers for  urban, forest, 

agriculture and grasslands respectively; M1, M2, M3, M4 are black-box, lumped, 

semi-distributed and fully-distributed models respectively. 

Study no. Case no. Ψ code Study no. Case no. Ψ code 

1 1 SI3,C2,S2,L4,M3 18 41 SI2,C3,S2,L4,M3 

1 2 SI3,C2,S2,L4,M2 19 42 SI1,C1,S2,L2,M4 

2 3 SI3,C1,S3,L3,M3 20 43 SI2,C4,S1,L2,M3 

2 4 SI3,C1,S3,L1,M3 21 44 SI1,C3,S2,L4,M2 

3 5 SI3,C1,S3,L1,M2 21 45 SI1,C3,S2,L4,M1 

3 6 SI3,C1,S3,L1,M3 21 46 SI1,C3,S2,L1,M2 

4 7 SI3,C3,S3,L3,M3 21 47 SI1,C3,S2,L1,M1 

4 8 SI3,C3,S3,L3,M2 21 48 SI1,C3,S2,L3,M2 

4 9 SI2,C3,S1,L3,M3 21 49 SI1,C3,S2,L3,M1 

4 10 SI2,C3,S1,L3,M2 21 50 SI1,C3,S3,L2,M2 

5 11 SI1,C3,S2,L3,M2 21 51 SI1,C3,S3,L2,M1 

5 12 SI1,C3,S2,L3,M3 21 52 SI1,C3,S3,L4,M2 

5 13 SI2,C3,S2,L3,M2 21 53 SI1,C3,S3,L4,M1 

5 14 SI2,C3,S2,L3,M3 21 54 SI1,C3,S1,L3,M2 

6 15 SI2,C1,S1,L2,M4 21 55 SI1,C3,S1,L3,M1 

7 16 SI1,C1,S2,L3,M4 21 56 SI1,C3,S1,L3,M4 

8 17 SI1,C3,S2,L1,M4 21 57 SI1,C3,S1,L1,M2 

9 18 SI3,C3,S3,L3,M3 21 58 SI1,C3,S1,L1,M1 

9 19 SI3,C4,S3,L3,M3 21 59 SI1,C3,S1,L1,M4 

9 20 SI3,C2,S2,L4,M3 21 60 SI2,C3,S1,L3,M2 

9 21 SI2,C4,S1,L3,M3 21 61 SI2,C3,S1,L3,M1 

9 22 SI2,C3,S2,L3,M3 21 62 SI2,C3,S1,L3,M4 

9 23 SI3,C4,S1,L4,M3 22 63 SI2,C1,S3,L2,M1 

10 24 SI2,C3,S2,L3,M2 22 64 SI2,C1,S3,L2,M2 

11 25 SI3,C3,S1,L3,M4 22 65 SI1,C3,S2,L2,M1 

12 26 SI2,C3,S2,L3,M3 22 66 SI1,C3,S2,L2,M2 

12 27 SI2,C3,S2,L2,M4 23 67 SI2,C3,S2,L2,M2 

13 28 SI3,C1,S3,L3,M3 23 68 SI2,C3,S1,L2,M2 

14 29 SI2,C2,S1,L3,M3 23 69 SI2,C2,S3,L3,M2 

14 30 SI3,C4,S3,L3,M3 24 70 SI1,C3,S2,L3,M4 

15 31 SI2,C3,S3,L2,M4 25 71 SI3,C3,S2,L4,M3 

15 32 SI2,C2,S3,L1,M4 25 72 SI3,C1,S2,L2,M3 

16 33 SI2,C3,S3,L3,M2 25 73 SI2,C3,S2,L2,M3 

17 34 SI1,C3,S1,L2,M2 25 74 SI3,C3,S2,L3,M3 

17 35 SI1,C3,S1,L2,M3 26 75 SI3,C3,S3,L2,M3 

17 36 SI1,C3,S1,L2,M4 26 76 SI2,C3,S3,L2,M3 

17 37 SI2,C3,S1,L2,M2 26 77 SI2,C3,S3,L2,M2 

17 38 SI2,C3,S1,L2,M3 27 78 SI1,C3,S3,L4,M3 

17 39 SI2,C3,S1,L2,M4 28 79 SI2,C3,S3,L1,M2 



18 40 SI1,C3,S2,L2,M3    
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Table 5. The preferred model types for each catchment situation are presented (i.e. model types with 

higher NSE accuracy). Where SI1, SI2, SI3 are small, medium and large catchments respectively; C1, 

C2, C3, C4 are continental, dry, mild temperate and tropical climates respectively; S1, S2, S3 are 

clay, sand and silt soil respectively; L1, L2, L3 are urban, forest, agriculture and grasslands lands 

respectively; M1, M2, M3, M4 are black-box, lumped, semi-distributed and fully-distributed models 

respectively. 

Small catchment 

(CSFs) 

Model 

Type 

Medium catchment 

(CSFs) 

Model 

Type 

Large catchment 

(CSFs) 

Model 

Type 

SI1,C1,S2,L4 M4 SI2,C1,S3,L2 M2 SI3,C1,S2,L2 M3 

SI1,C3,S1,L1 M4 SI2,C3,S1,L3 M2 SI3,C3,S2,L3 M3 

SI1,C3,S2,L2 M1 SI2,C3,S2,L2 M3 SI3,C3,S2,L4 M3 

SI1,C3,S2,L3 M2 SI2,C3,S3,L2 M2 SI3,C3,S3,L2 M3 

SI1,C3,S3,L2 M2 SI2,C3,S3,L2 M3 SI3,C3,S3,L3 M3 

SI1,C3,S3,L4 M3 SI2,C3,S3,L3 M2 SI3,C4,S1,L4 M3 

  SI2,C4,S1,L3 M3   

 

 


