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ABSTRACT 
This study proposes a rain rate retrieval algorithm for conical-

scanning microwave imagers (RAMARS), as an alternative of the 

NASA Goddard Profiling (GPROF) algorithm, that does not rely on 

any a priory information. The fundamental basis of the RAMARS 

follows the concept of the GPROF algorithm, which means, being 

consistent with the TRMM PR rain rate observations, but 

independent of any auxiliary information. The RAMARS is built 

upon the combination of state of the art machine learning and 

regression techniques, comprising of Random Forest algorithm, 

RReliefF, and Multivariate Adaptive Regression Splines. The 

RAMARS is applicable to both over ocean and land as well as coast 

surface terrains. It has been demonstrated that, when comparing with 

the TRMM PR observations, the performance of the RAMARS 

algorithm is comparable to the 2A12 GPROF algorithm. 

Furthermore, the RAMARS has been applied to two cyclonic cases, 

hurricane Sandy in 2012 and cyclone Mahasen in 2013, showing very 

good capability to reproduce the structure and intensity of the cyclone 

fields. The RAMARS is highly flexible, thanks to its four processing 

components, making it extremely suitable for use to other passive 

microwave imagers in the global precipitation measurement (GPM) 

constellation. 

 

Keywords: brightness temperature (TB); passive microwave (PMW); 

precipitation estimation; precipitation radar; global precipitation 

measurement (GPM); constellation; radiometer; hurricane;  

 

 

1. INTRODUCTION 

There have been on-going research efforts to improve the 

satellite precipitation estimate using passive microwave 

(PMW) radiometers for a few decades. The algorithms and 

validation results related to passive microwave estimate of 

precipitation can be found in [1], [2], [3], [4], and others. 

Among many proposed algorithms, the Goddard Profiling 

Algorithm (GPROF) is well-known and being used as an 
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operational algorithm for many PMW sensors, including the 

TMI [5-7]. Currently, the GPROF algorithm is based on a 

“look-up” table that is constructed rom observed TRMM radar 

and radiometer measurements with some ancillary 

atmospheric information for the rain adjustment [7, 8]. A 

Bayesian methodology is used to invert the measured 

brightness temperatures (TBs) to rain rate information based 

on this look-up table that matches the observed rain and TB 

profiles to those stored in the look-up database. 

 

Although, the use of ancillary information makes the GPROF 

algorithm robust and more physical, the drawback is that, the 

real-time application of GPROF satellite precipitation 

estimation becomes very limited. In one end, feeding the 

GPROF derived precipitation information to a numerical 

weather prediction (NWP) model for forecasting purpose gets 

trickier, since the ancillary NWP information is already a part 

of the GPROF retrieval. In other ends, it takes quite a while to 

obtain the ancillary information from an NWP model before 

applying the GPROF to the radiance measurements. This 

makes it unsuitable for real time application. 

 

In this study, we propose a rain rate retrieval algorithm for 

conical PMW imagers that use three data mining techniques- 

the random forest algorithm, the RReliefF, and the 

Multivariate Adaptive Regression Spline (hereinafter the 

algorithm is named as RAMARS). The RAMARS shares a 

common thought with the GPROF algorithm, that is, the 

microwave imagers based retrieval being consistent with the 

PR retrieval. This is logical, as the PR has better capability of 

providing rainfall measurement, and can be considered as 

“reference” for the imager estimate of rainfall. Furthermore, 

the RAMARS is specifically designed to provide rainfall 

estimate at high resolution, which is the PR’s resolution. 

Nonetheless, the RAMARS is independent of using any NWP 

or ancillary information, as opposed to the case for GPROF 

that uses ancillary information. The RAMARS is applicable to 

all surface terrains (ocean, land, and coast). 

 

2. DATA DESCRIPTION 

2.1. TMI calibrated brightness temperatures 

The TMI is a conical-scanning passive microwave imager 

operating at nine channels, at five frequencies, with a constant 
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incident angle of 52.8 degrees. Except for the water vapour 

absorption band channel at 21 GHz, each frequency has one 

vertically (V) and one horizontally (H) polarized channels. 

Nevertheless, the footprint size varies depending on the 

frequencies. The higher-frequency channels have smaller 

footprint sizes as compared to the lower frequency channels. 

For example, the instantaneous field of view (IFOV) for the 

85.5 GHz channel is 7 x 5 km, whereas for 10.65 GHz, the 

IFOV is 63 x 37 km. The TMI’s swath width is limited to 760 

km due to the low orbital altitude of the TRMM satellite. 

 

In the current study, the TMI calibrated brightness 

temperatures are taken from TRMM 1B11 data product. In 

1B11, the radiometer counts are converted to antenna 

temperatures by applying a linear relationship. Further, the 

antenna temperatures are corrected for cross-polarization and 

spill over to produce brightness temperatures. 

 

2.2. PR near surface rain rate 

The PR is a cross-track scanning radar that scans ±17º off 

nadir at intervals of 0.35º. Such geometry projects an almost-

regular grid on the earth’s surface with a horizontal footprint 

of about 5 km and a vertical resolution of 250 m at nadir. The 

PR operates at a frequency of 13.8 GHZ (2.17 cm 

wavelength). 

 

The PR surface rain rate is obtained by converting the 

reflectivity factor measured by the PR to rain rate, taking into 

account certain drop size distribution assumptions. Prior to the 

conversion, the measured reflectivity factor is corrected for 

attenuation following a hybrid method based on the 

Hitschfeld-Bordan method and the surface reference technique 

[9]. Some other factors related to surface echoes, non-uniform 

beam filling (NUBF), and the identification of the phase state 

(i.e., water, mixed or ice) are also considered. The derived rain 

rate is stored in the TRMM 2A25 product. In the present 

study, this 2A25 (V7) data product is used to obtain the PR 

near-surface rain rate, while the near surface rain rate is 

defined as the rain rate at the lowest range bin in the clutter 

free ranges. 

 

2.3. GPROF near surface rain rate 

In order to compare the RAMARS rain rate retrieval with the 

GPROF algorithm, the GPROF produced near surface rain rate 

is used, which is from the TRMM 2A12 V7 product. As 

mentioned earlier, the GPROF uses a Bayesian inversion 

methodology to produce instantaneous rain rate by matching 

the observed brightness temperatures to PR measurements. 

More detailed information about the GPROF algorithm can be 

found in Kummerow et al. [8]. 

 

3. ALGORITHM BASIS 

3.1. Random forest 

The random forest is an ensemble learning algorithm that 

combines the ideas of “bootstrap aggregating” [10] and 

“random subspace method” [11] to construct randomized 

decision trees with controlled variation, introduced by 

Breiman [12]. 

 

According to the theory of random forest algorithm, for a 

collection of classifiers h1(x), h2(x), . . . , hK(x), and with the 

training set at random from sampled random vector Y, X, the 

margin function is termed as: 
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where, I(.) represents the indicator function. This margin 

function measures the extent to which the fraction of correct 

classifications exceeds the fraction of the most voted incorrect 

classifications. The generalization error is given as: 

   0,,
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where, the probability is over the space X, Y. This depends 

upon the strength of the individual weak learners in the forest 

and the correlation between them. By definition, in random 

forests, 

    kk hh  ,XX
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Therefore, the margin function for a random forest would be: 
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(4) 

 

And the expected strength of the classifiers in a random forest 

is: 

  YmrEs YX ,, X
 

(5) 

 

The fundamental idea of the random forest is that at each tree 

split, a random sample of m features is drawn, and only those 

m features are considered for splitting, where m = √N, N being 

the total number of features. For each tree grown on a 

bootstrap sample, the “out-of-bag” strength is monitored. The 

forest is then re-defined based on this “out-of-bag” strength by 

de-correlating the irrelevant trees. 

 

3.2. RReliefF 

The RReliefF, also known as a regression version of ReliefF, 

is a feature selection algorithm that provides information 

about quality of attributes [13]. Theoretically, let W[A] is the 

quality of attribute A, which is an approximation of the 

following Bayes rule: 
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where, PdiffA and PdiffC, and PdiffC|diffA are defined as so that W[A] 

can directly be evaluated using the probability of the predicted 

values of two instances being different: 

 
PdiffA = P(different value of A | nearest 

instances) 
(7) 

 
PdiffC = P(different prediction | nearest 

instances) 
(8) 

 
PdiffC|diffA = P(different prediction | 

(different value of A and nearest instances) 
(9) 

 

The key idea of the RReliefF is to estimate the quality of 

attributes according to how well their values distinguish 

between instances that are near to each other. 

 

3.3. MARS 
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The multivariate adaptive regression splines (MARS) is an 

adaptive approach for multivariate nonparametric regression, 

introduced by Friedman [14]. The fundamental basis of the 

MARS approach is that it does not make any assumption 

about the underlying functional relationship between the 

response and predictor variables. As an alternative, it 

constructs the relationship through the use of basis functions 

coming from the datasets, in turn, partitions the input space 

into regions, having regression equation for each region. It is 

able to automatically model the non-linearities as well as can 

interact between the predictor variables. 

 

For the sake of explanation, let y be the single response 

variable (reference rain rate in our case) which depends on n 

predictor variables x = (x1, x2, …, xn) comprising of an M 

number of samples xm = (x1m, x2m, … …, xnm). Therefore, 

   mmm xfy 
 

(10) 

where, f(.) is assumed smooth in E(n) and [εm] are mean zero 

random variables. The primary objective is to identify a 

rational approximation of f(.) over the predictor domain. 

 

Friedman [14] proposed the MARS algorithm, a new way to 

approximate the multivariate function taking the subbasis from 

a n-variate complete spline basis tensor product in the form of 

two-sided truncated power basis functions: 

   qtx 
 

(11) 

where, knot t is the knot site selected from the observed values 

of corresponding components and q represents the order of the 

spline approximation. The jth basis function is expressed as: 
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where, Kj represents the interaction level in the basis function 

Tj, skj accepts two values (-1, +1), v(k,j) labels the predictor 

variable associated with the corresponding level of Tj, and tkj is 

a knot location for xv(k,j). In order to produce a set of basis 

functions, two-stage procedure, the forward stepwise addition 

and backward stepwise deletion are adopted. In forward stage, 

the procedure starts with only the constant function: 

   10 xT
 

(13) 

 

Following Jth iteration, there are 2J+1 basis functions: 

    J
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Subsequently, the J+1 iteration adds two new basis functions: 

 
      

      qvttvlxJ

q

vttvlxJ

txxTT

txxTT









,,,22

,,,12

 

(15) 

 

In this way, a large model is constructed with Jmax tensor 

product basis functions, that typically overfits the data. 

Therefore, a backward deletion algorithm is applied in order to 

achieve optimal functions by the help of generalized cross 

validation criterion (GCV): 
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The two-stage procedure produces a model in the form of:  
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where, the coefficients aj are computed by minimizing the 

residual sum-of-squares by standard linear regression. 

 

4. ALGORITHM DEVELOPMENT 

A flowchart illustrating the components of the RAMARS 

algorithm is shown in Figure 1. The RAMARS is comprised 

of four components: a pre-processing component for data 

preparation, the random forest component for rain/no rain 

screening, RRreliefF component for selecting the important 

features, and finally MARS component for retrieving the rain 

rates in a quantitative manner. However, note that the 

RRreliefF component is used offline only once, to identify the 

best possible features to feed into the MARS model. This 

RRreliefF component is somewhat useful, especially to reduce 

the computing powers and adapting the RAMARS for new 

sensors, principally for future use. The basic idea of the 

RAMARS is to retrieve rain rate in a robust manner, taking 

only the important attributes sensitive to hydrometeors 

depending on surface type. 

 

4.1. Pre-processing component 

Since the low frequency channels have the larger 

instantaneous field of view in comparison with the high 

frequency channels, it is important to bring all the channel 

information to a single domain. This is done in the pre-

processing component. That means, the pre-processing 

component is primarily responsible for gridding the TBs from 

all available channels to a particular designated resolution. 

Currently, the TMI TBs are interpolated to the high resolution 

PR grid, which is around 5 km, by employing a triangle based 

linear interpolation algorithm: 

  PRPRTMITMITMIPR LonLatTBsLonLatfTBs ,,,,
 (18) 

where, TBsTMI is the brightness temperatures at TMI footprint 

for a particular channel, LatTMI and LonTMI are the latitudes and 

longitudes for the corresponding channel’s measurements, 

LatPR and LonPR are the latitudes and longitudes for the PR’s 

measurements, and TBsPR is the brightness temperature 

interpolated at PR footprint. The algorithm fits a surface of the 

form TBsTMI = f(LatTMI,LonTMI) to the data (LatTMI, LonTMI, 

TBsTMI) and interpolates the surface at the points specified by 

(LatPR, LonPR) to produce TBsPR. The reason for gridding the 

information in latitude-longitude space rather than pixel scan 

position is in accounting the indirect variations in the relative 

pixel position connected to the satellite altitudes.   

  

After gridding, the TBs are then used to compute the 

necessary indices. In this study, the following indices are 
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computed from the TBs, and included in the input features 

[15]: 

 HV TBTBPCT 373737 20.120.2 
 (19) 

 HV TBTBPCT 858585 82.082.1 
 (20) 

where, the PCT37 and PCT85 are defined as polarization 

corrected temperature at 37 and 85 GHz, respectively, 

and, 

   85V8585 TBTBSI
Ve 

 
(21) 

    VVe TBTBSI 373737 
 

(22) 

where, SI85 indicates the scattering index at 85 GHz, SI37 

indicates the scattering index at 37 GHz, TB85V is the observed 

TB at 85 GHz, TB37V is the observed TB at 37 GHz, TBe(85V) is 

the estimated TB85V in scattering free case and TBe(37V) is the 

estimated TB37V in scattering free case. The TBe(85V) and 

TBe(37V) are calculated as follows [16]: 

Land  
2
22221985

00575.0775.144.09.451 VVVVe TBTBTBTB 
 

(23) 

Ocean  
2
22221985

00504.0439.272.04.174 VVVVe TBTBTBTB 
 

(24) 

   VVe TBTB 1937
773.018.62 

 
(25) 

where, TB19V and TB22V are the vertically polarized TBs for 

19 GHz and 22 GHz channels respectively. 

 

The main advantage of the above indices is their ability to 

decrease the background surface emissivity effects in complex 

surface conditions. In the radiative transfer process, radiation 

energy is scattered out by ice content and large raindrops. 

Therefore, such scattering indices could provide an indirect 

estimate of rainfall over complicated surface conditions. 

Furthermore, some of the earlier studies have reported that the 

different TB combinations may provide better insight of 

precipitation characteristics than the single channel TB 

information. More specifically, the polarization difference can 

provide scattering and the emission phenomenon along with 

the information of water vapour and temperature contents in a 

profile. You et al. [17] stated that the combination of TBs 

from 19 and 37 GHz (V19-V37) or from 21 and 37 GHz 

(V21-V37) could explain 10% more variance of near-surface 

rain rate than can the 85 GHz channel over land. As such, 72 

features from the combination of TBs (only “addition” and 

“subtraction” operators) along with the PCTs and SIs are 

considered, making it a total of 85 features for the inclusion as 

input features in the pre-processing component (Table 1). One 

should note that the PCT and SI features used in this work are 

actually developed for the SSM/I, which had a much coarser 

spatial resolution than TMI. Therefore, the calculated PCT and 

SI features could be different than the ones, if developed for 

the TMI. However, in this study, we are assuming such 

differences are expected to be very marginal. The 

development of new PCT and SI features exclusively for TMI 

could be a subject of future work.   

 

Another step that is done in the pre-processing component is, 

assigning ocean/land/coast mask in each grid. A topography 

database is loaded in order to accompany the surface masks, 

which is actually the same as the PR’s ocean/land/coast flag 

database. 

 

4.2. Random forest component 

The random forest component is particularly used for the 

screening of rain – no rain information based on the classifier 

developed with Breiman’s random forest algorithm. A detailed 

description of the approach and the validation results are well 

stated in our previous article [18]. However, for the sake of 

completeness, a brief outline of the approach is reminded here. 

The approach is particularly based on randomized decision 

trees with bootstrap aggregating associated between the TMI 

input features such as calibrated brightness temperatures and 

the TRMM PR rain/no rain information. The method is quite 

robust, easy to implement in the RAMARS system, and it has 

been shown in the previous article that it outperforms the 

GPROF algorithm based on various dichotomous skill scores. 

Overall, the accuracy reported with the random forest 

algorithm was around 97-98%. 

  

4.3. RReliefF component 

The primary idea of the RRreliefF component is to identify the 

best possible features sensitive to precipitation information 

depending upon the surface types. In other words, the 

RRreliefF is a feature selection technique that distinguishes 

the quality of attributes in a problem with strong dependencies 

between the attributes. The feature selection is a frequent term 

often used in artificial intelligence. The foremost benefit of the 

feature selection is that it reduces the number of features, 

allowing the inclusion of only the important features in the 

MARS model. In this way, model complexity of the MARS 

model is reduced, but without compromising the retrieval 

accuracy of the model. It is to be noted that, in the RAMARS, 

the RReliefF is run only once in offline and not used in “run 

time” within the RAMARS. 

 

Based on an offline investigation with a considerable number 

of orbital samples from the year of 2012-2013, the RReliefF 

weights are plotted in Figure 2. Top 5 indices from the ranking 

over three different surface terrains are tabulated in Table 2. 

The expectation is, the emission signatures will be somehow 

more correlated to the rain rate over the ocean, while over 

land, the scattering signatures at high frequency channels will 

be of great importance. This has been reflected in the RReleifF 

ranking, which suggests, the top-ranked indices over the ocean 

are more associated with emission signatures than the 

scattering signatures, and vice versa for land surface terrain. 

Although, there are exceptions, for instance, the polarization 

difference at 85 GHz (85V-85H), is ranked the fourth over the 

ocean. 

 

Figure 3 provides an example of the association between the 

top-ranked features and the rain rate in terms of scattergrams, 

for three different surfaces, taken from a few profiles. The 

linear fitting trend is quite evident, and this gives us the 

confidence of using the RReliefF ranked features to propagate 

into the MARS model. Note that, in this article, only these top 

5 features are allowed to participate in the MARS model. 

However, the choice of using the top 5 features is somewhat 

arbitrary. Eventually, the use of top 5 features will be 

computationally less expensive than the use of all the features. 

Nevertheless, there is flexibility in the RAMARS, to fine-tune 
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the number of features to be participated. Despite the use of 

only 5 features, the performance is found to be reasonable, 

which we will be demonstrating in Section 5. 

 

4.4. MARS component 

The MARS is the core component of the RAMARS system, 

which is responsible for producing quantitative rain rate 

information.   

 

In the present study, according to the definition, the 

development of the MARS model is engaged in two phases- 

the forward selection and backward deletion. The maximal 

number of basis function is set to 21. The GCV penalty per 

knot is fixed as 3. The piecewise-cubic modelling is adopted. 

Self-interactions for the input features are not allowed (s = 1), 

and the maximum degree of interactions between the input 

features is set to n x s, where n is the number of input 

variables. In our case, the value of n is 5 (5 input features), 

making the interaction levels to 5. Note that, during the 

backward deletion phase, one least important basis function is 

deleted one at a time based on the GCV information, and 

ultimately, a final model is produced. 

 

For the sake of sanity, we tabulate the predictive performance 

of the final MARS model by using 5-fold cross validation in 

Table 3. Again, the training is performed using a large number 

of orbital samples from the 2012-2013 time periods. It can be 

seen from the statistical measures, the model is well trained to 

be included in the RAMARS. The calculated correlations are 

in the range of 0.61 to 0.73 (GCV 13~32). The numbers of 

basis functions included in the model are 20, 20, and 16 for 

ocean, land, and coast, respectively. 

 

5. RAMARS ASSESSMENT 

In this section, we report the validation of the RAMARS 

algorithm taking the TRMM PR as “truth” estimate. For the 

sake of comparison, we also evaluate the performance of our 

algorithm in comparison with the GPROF 2A12. In order to 

do the assessment, a “considerable” number of orbital samples 

are taken into account, independent from the development 

datasets. The orbital samples are randomly chosen from the 

2012-2013 time periods. In the following sections, we include 

the dichotomous and descriptive assessments from these 

datasets. Furthermore, for the sake of evaluation, the 

RAMARS is applied to two cyclonic cases, and also described 

here. 

 

5.1. Dichotomous assessment 

The dichotomous assessment, in other words, “yes-no” 

assessment is crucial in understanding the accurate rain 

prediction of an algorithm. The dichotomous assessment is 

done through a contingency table, built upon “yes”, “no”, 

frequency of occurrences. Let us consider a contingency table 

(Table 4), in which joint distribution of observations and 

predictions are shown. Based on this, a large number of 

dichotomous scores can be computed. In this article, we 

consider the following scores: 
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where, POD, FAR, and CSI represents the probability of 

detection, false alarm ratio, and critical success index, 

respectively. 

 

In Figure 4, we construct the dichotomous scores as a function 

of rain rate over ocean, land, and coast surface terrains. It is 

worth mentioning that only those samples are considered 

where PR has estimated rain rate (R>0). As can be seen from 

the figure, the RAMARS performs reasonably well in most of 

the cases, especially in low rain rate spectrums. Among the 

dichotomous scores, the CSI is a balanced measure, taking 

into account both false alarms and missed cases. Nevertheless, 

the CSI could be somewhat sensitive to the climatology, 

tending to provide poorer measures for infrequent samples. 

This is reflected in the figure, showing an exponentially 

decreasing trend towards the high rain rates. 

 

5.2. Descriptive assessment 

Following the dichotomous assessment, here, we accompany 

the descriptive assessment of the RAMARS algorithm. Figure 

5 presents the scatter diagrams of the RAMARS retrieval and 

the TRMM PR surface rain rate for three surface cases. The 

scattergrams of 2A12-PR rain rate are also included in the 

figure. The performance is measured using four statistical 

metrics, which are- correlation coefficient (Corr), bias (Bias), 

fraction standard error (FSE), and root mean squared error 

(RMSE). It is evident that the RAMARS algorithm agrees 

better with the PR estimate than that of the TMI 2A12 GPROF 

algorithm. This is true over all three surface types. The 

correlation coefficients for the RAMARS algorithm are found 

as 0.48 (Bias -0.01), 0.49 (Bias -0.30), and 0.42 (Bias -0.12), 

respectively, over ocean, land, and coast surface terrains. In 

contrary for the 2A12 GPROF, the correlation coefficients are 

calculated as 0.44, 0.45, and 0.42 over ocean, land, and coast, 

respectively. The other two statistical measures, the FSE and 

RMSE, are also in favour of the RAMARS algorithm. 

 

5.3. Case studies (Sandy and Mahasen) 

The hurricanes/cyclones cover a large range of rain structures 

and intensities; therefore, they are very useful to validate the 

performance of an algorithm. For the sake of illustrating the 

rain structure field, the RAMARS has been applied to two 

recent hurricane/cyclone cases –Sandy and Mahasen. 

 

The hurricane Sandy was the most devastating hurricane 

among the hurricanes taking place in the 2012 Atlantic 

hurricane season, but having different cyclonic structure than 

the conventional ones. The Sandy was started with a typical 

tropical cyclone blowing through the tropics, however, it 

transitioned into an extra-tropical cyclone by merging with a 

frontal system coming from the west. Thanks to the TRMM 

satellite, that has taken a good number of overpass events 

during the occasion. Both TMI and PR data were able to see 

the hurricane, and as such, this gives us an excellent 
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opportunity to evaluate our algorithm to an extra-tropical 

cyclonic occasion. One such good overpass was on 28th 

October 2012 (orbit 85175), in which the RAMARS algorithm 

is applied to. Figure 6 provides the rain rate retrieval 

illustration of the event from the TMI RAMARS and PR 2A25 

product. The 2A12 GPROF (both gridded and non-gridded) 

retrieval was also included in the comparison. As the figure 

shows, at this particular time, the Sandy became a Category 1 

hurricane and its eyewall was modest, containing only light 

precipitation. However, surrounding its eyewall, the region 

was experiencing a high intense precipitation. Remarkably, as 

the figure reveals, the RAMARS algorithm is able to capture 

the precipitation intensity very well, in agreement with the PR 

2A25. Indeed, the performance is comparable to the GPROF 

2A12 outputs.  

 

In contrary, the Mahasen was the Northern Indian Ocean 

tropical cyclone that hit Bangladesh on mid-May 2013, before 

dissipating over eastern India. A good TRMM overpass 

occurred on 16th May 2013 UTC 0406. Similar to the Sandy 

case, we illustrate the Mahasen event in Figure 7. The eye of 

the storm is somewhat visible, free of precipitation. A band of 

thunderstorms can be seen in the figure. Apparently, the 

RAMARS provides a good estimate of the rain rate, taking the 

TRMM PR as a reference. 

 

6. CONCLUSIONS 

This paper proposed a rain rate retrieval algorithm for conical-

scanning microwave imagers through three different data 

mining techniques viz random forest, RReliefF, and MARS 

(RAMARS). The approach is developed for the tropical region 

by constructing a database based on the TMI and PR 

observations. It has been demonstrated that the RAMARS is 

likely to perform as reasonable as the TRMM PR estimate. 

Additional evaluation is shown on hurricane and cyclone 

cases, in which RAMARS is found to reproduce the structure 

and intensity of the precipitation field. 

 

The fundamental advantage of the RAMARS is that it is not 

dependent on any NWP or auxiliary information. However, 

currently, the RAMARS lacks the idea of using atmospheric 

radiative transfer equations in the retrieval process. Since there 

is no use of any radiative transfer model, the proposed 

algorithm can be termed as empirical, not physical. However, 

it should be fairly straightforward to replace the observed TBs 

in the database by simulated TBs through a radiative transfer 

model. Further, by using the radiative transfer model, the 

RAMARS can be adapted to other sensors with very little 

effort, such as the AMSR2 on-board GCOMW-1 and Madras 

on-board Megha tropiques in the GPM constellation. 
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