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Abstract: This work investigates the mechanical behaviour of cementitious composites (mortar) when 

quartz inclusions are totally or partially replaced with polyethylene terephthalate (PET) particles. A 

full factorial design is performed to identify the effect of the water/cement ratio and the range of quartz 

particles size used in the replacement on the different mechanical and physical parameters (bulk 

density, apparent porosity, water absorption, oxygen permeability, compressive strength and modulus 



of elasticity). The results show a general reduction of the mechanical properties when the replacement 

with quartz particles is put in place. The composites made by replacing the coarse quartz particles 

showed acceptable mechanical properties for non-structural civil engineering applications, with a 

significant amount of PET recycling to be used as aggregates for some specific end-user cases. 

 

Keywords: PET wastes, Cementitious composites, Mechanical properties, Microstructural analysis 

 

Introduction 

The use of synthetic fibres in different classes of materials, such as ceramics and polymers, has 

provided a sustainable alternative for the re-use of waste in the manufacturing of new lightweight 

materials (Wang and Tsai, 2006; Chandra and Berntsson, 2003; Choi etal., 2005). The increasing 

consumption of manufactured products has resulted in an uncontrolled increase of solid waste. In 

Brazil, the production of solid waste has grown more than six times the population rate (ABRELPE, 

2010). Nearly two hundred thousands of tonnes of solid waste are discarded daily in the country, 42.4% 

of the total ending up in landfills (ABRELPE, 2010; Williams, 1998). In Europe, approximately 1.8 

billion tonnes of waste are generated per year, with plastics representing 46.4 million of tonnes, and 

waste from polyethylene terephthalate (PET) bottles being near to 2.784 million of tonnes 

(PLASTICS-THE FACTS, 2011). The European Commission has set in 2006 the objective to reduce 

the amount of packaging waste by 70% (Coelho et al., 2011). On a global basis the consumption of 

PET for packaging is forecast to reach €24 billion by 2011. Statistics show that the United States is 

the largest user of PET packaging, followed by China and Mexico. Asia Pacific central and Eastern 

Europe, and parts of Latin America have shown the strongest growth of PET usage between 2001 and 

2006 (Butschili, 2006). 

Plastic materials have been investigated as potential aggregate into concrete and mortar 

(Batayneh etal., 2007; Kim et al., 2010). A well-known lightweight plastic material with a low density 



and porosity is Polyethylene terephthalate (PET) (Hannawi et al., 2010). PET is a thermoplastic 

polymer that has been used in a variety of products due to its lightweight characteristics, ease of 

handling and storing. Although it is mostly known for its use in plastic bottles, it was introduced first 

for applications in the textile industry. PET wastes have been recently considered as lightweight 

aggregates for cementitious composites (Satapathy and Nando, 2008) in civil engineering. The PET 

residues can also be used as matrix in laminates (Onal and Adanur, 2005) and particulate composites 

(Hannawi et al., 2010). Modro et al. have investigated the effect on the mechanical strength of Portland 

cement concrete when adding PET waste, observing a reduction in strength for increasing volume 

fraction of PET aggregates (Modro et al. 2009). Albano et al. have investigated the effect of adding 

PET bottle waste (10 and 20%), its particle size (0.26 to 1.14 cm) and water/cement ratio (0.50 and 

0.60) on the mechanical properties of concrete (Albano et al., 2009). The results from that work clearly 

show that when PET aggregates are used in increasing volume and sizes, the compressive strength and 

modulus of the concrete decreases and - at the same time - the water absorption increases significantly. 

Foti (2011) has proposed the use of PET bottles to produce fibres for reinforcement and improve the 

ductility of the concrete. Tests have shown that PET fibres could provide an increase in toughness of 

the concrete matrix. 

Although the use of recycled materials in cement products has substantially increased, most 

applications have to focus on the use of precast products, due to their intrinsic structural safety and the 

difficulty of controlling the homogeneity of recycled raw materials. The use of a robust statistical 

methodology based on full factorial design can reveal the effective contributions of individual 

constituents and material parameters on the overall physical and mechanical properties of these 

complex composite materials. This work describes a novel mortar material based on the use PET waste 

and quartz particles, and Portland cement. A full factorial design (2151) was conducted to evaluate the 

effect of quartz/PET particle replacement on the physical and mechanical properties of cementitious 

composites in masonry cement mortar. 



 

Materials and Methods 

Composite Material 

The composite was made of a matrix phase (Portland cement), inclusions consisting of particles 

of quartz and/or PET. The Portland cement (ASTM type III) was supplied by Cauê Industry (Brazil). 

PET flakes (washed and dried) were supplied by the MinasPet Packaging Company (Brazil). The PET 

flakes were milled using a lab knife mill to obtain particles. The quartz particles were supplied by the 

Moinhos Gerais Company (Brazil). Both quartz and PET particles were classified by sieving to achieve 

the particle size ranges as recommended by the ASTM C144 (2011) standard: 

 Coarse particles (C): 30wt% of particle size range from 4.75mm to 850μm (4-20 US-Tyler); 

 Medium particles (M): 50wt% of particle size ranging between 850μm and 300μm (20-50 US-

Tyler); 

 Fine particles (F): 20wt% of particle size from 300μm to 75μm (50-200 US-Tyler). 

Four reference conditions (i.e., samples) were produced as benchmark for the Design of 

Experiment (DoE). The four reference conditions are shown in Table 1, and were manufactured based 

on the combination of the factors (levels) such as the type of particle used for the dispersion (quartz 

and PET), and the water to cement ratio (0.45 and 0.55). All references conditions have followed the 

particle size distribution recommended by ASTM C144 (2011). 

Full factorial design (DoE) 

The Design of experiments (DoE) and the Analysis of Variance (ANOVA) are used to evaluate 

not only the direct effect of individual factors, but also their mutual interaction when affecting the 

responses at a confidence interval of 95%. A full factorial design (nk) is made from all possible 

combinations of the experimental factors (k) and its respective levels (n). The DoE approach was based 

on a randomized design to eliminate redundant observations and to reduce the number of tests, in order 



then to obtain statistically robust information about the interactions existing among variables 

(Montgomery, 2005). 

A full factorial design of 2151 (Table 2) was identified to perform the DoE process. The levels 

considered were the water/cement ratio (0.45 and 0.55) and particle size ranges of quartz replacement 

(coarse particles (C), medium particles (M), fine particles (F), coarse and medium particles (CM) and 

medium and fine particles (MF)). The responses of the DoE analysis were the density, porosity, water 

absorption, permeability, compressive strength and the modulus of elasticity of the composites. A 

microstructural analysis was performed to observe the particles distribution and the presence of 

internal pores. 

Fabrication and testing 

The composite samples were manually manufactured by mixing Portland cement, quartz 

particles, PET particles and water for 5 minutes at room temperature (22°C). The water/cement ratio 

levels used in this work were similar to the ones existing in commercial cement precast products. The 

paste was poured into cylindrical moulds of 50mm in diameter and 100mm in height. The presence of 

entrapped air was limited by the use of a vibrating table (5 min) to compact the samples. The specimens 

were kept inside sealed plastic bags to avoid the evaporation of water. The samples were taken out 

from the moulds after 28 days of curing time at room temperature (22°C). Eight specimens were 

fabricated for each experimental condition, leading to a total of 224 different samples. Replicate 

specimens allow to estimate the variability associated with the tested phenomenon (Wu and Hamada, 

2000). The magnitude of this error is important for the identification of significant effects attributed to 

the factor selection. A randomization procedure was also adopted during the manufacturing of the 

samples and the experimental tests, making the whole numerical process more robust against variables 

that are unknown to the experiment, but which may impact on the response (Montgomery, 2005; Wu 

and Hamada, 2000). 



Following the recommendations of the BS1881-121 (1993) standard, the two end cross sections 

of the cylindrical specimens were coated with sulphur paste to ensure the parallelism required during 

the compressive loading. The mechanical testing was performed using an Instron test machine with 

100kN load cell capacity. Four samples were tested for each experimental condition and replicate. 

The modulus of elasticity was determined according to the BS1881-121 (1993) standard. The 

bulk density was calculated by dividing the dry weight by the bulk volume of the samples. The apparent 

porosity Po represents the percentage of the volume of open pores in the bulk volume of the sample. 

The apparent porosity was determined using the vacuum saturation method (BS10545-3, 1997) using 

the equation: 
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Where W1 is the dry mass of the specimen, W2 is the mass of specimen saturated with water and 

W3 is the mass of the specimen fully submerged in water. The water absorption Ab was determined 

from the percentage of the water absorbed by a specimen after immersion in water on constant negative 

pressure: 
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The permeability coefficient was determined using the oxygen permeameter system developed 

by Cabrera and Lynsdale (1988). The system allows the measurement of the permeability coefficient 

by differential gas pressure. The repeatability and reproducibility of results, as well as the description 

of the operation of the system are reported in Cabrera and Lynsdale (1988). 

 

Results 

The statistical software Minitab 16 was used to perform the Design of Experiment (DOE) and 

the Analysis of Variance (ANOVA). The P-values from ANOVA (Table 3) indicate which effects are 

statistically significant based on the examination of the experimental data from replicates #1 and #2. 



If the P-value is less than or equal to 0.05, the effect is considered to be significant. A α-level of 0.05 

is the level of significance that implies a 95% probability of the effect being significant (Wu and 

Hamada, 2000). The results are presented via ‘main effect’ and ‘interaction’ plots. The main effect of 

a factor can be only interpreted individually if there is no evidence that it does not interact with other 

factors. When one or more interaction effects with superior order are significant, the factors that 

interact might be considered together (Montgomery, 2005). 

The value of ‘R² adjusted’ exhibited in the ANOVA provided how well the model predicts 

responses for new observations. The closer the coefficient is to 1 (or 100%), suggests models of greater 

predictive ability. The R² values for the responses varied from 74.40% to 99.21%, which indicates 

satisfactory accuracy of the models. The P-values underlined in Table 3 corresponds to the significant 

factors affecting the responses and those in bold text indicate the factors and/or interactions of superior 

order which will be illustrated in the effect plots. 

Reference conditions 

Table 4 shows the physical and mechanical properties for the reference conditions. The reference 

condition RC3 made of quartz particles (Q) has a higher strength and stiffness compared to RC1, which 

was fabricated using a smaller amount of water (see Table 1). The water is responsible not only for the 

hydration of the cement grains, but also provides improved manufacturability. However, a large 

amount of water can also cause a decrease of the mechanical performance of the composite, because 

water excess evaporates and forms internal pores. Table 4 however shows an opposite behaviour, since 

the apparent porosity and water absorption responses have been reduced for RC3 and RC4 when 0.55 

of water/cement ratio was considered. This behaviour possibly indicates that the water/cement ratio of 

0.45 (RC1 and RC2) was not sufficient to provide the complete hydration of the cement grains. 

Bulk density 

The bulk density varied from 1.63 g/cm³ to 2.18 g/cm³. The P-value of 0.002, lower than 0.05, 

reveals a significant interaction presented in the bulk density response (Table 3). Fig. 1 shows the 



interaction effect plot of water/cement ratio and the replacement of the quartz particle for the bulk 

density. A lower amount of water (w/c 0.45) provides an increase in the bulk density, except when 

coarse quartz particles (4-20US-Tyler) are replaced by PET particulates. In general, the replacement 

of the quartz particles by PET leads to a decrease of the bulk density of the composites, which is 

attributed to the significant physical difference between the aggregates. Moreover, the replacement of 

the quartz aggregate with a lighter material provides a larger volume of PET aggregates. A lower bulk 

density was achieved when coarse - medium (CM) and medium - fine (MF) quartz particles were 

replaced. Higher bulk densities were obtained by using coarse (C), medium (M) and fine (F) particles, 

with the highest value of the density corresponding to the case when fine (F) quartz particles were 

replaced by PET dispersions, which also represents the lower amount of particle replacement (20wt%). 

Table 4 shows that a total replacement of quartz by PET particles provides a reduction of 37.60% 

and 36.75% in bulk density when the composites are fabricated with water/cement ratios of 0.45 (RC1 

and RC2) and 0.55 (RC4 and RC3), respectively. 

Apparent porosity 

The apparent porosity varied from 10.57% to 33.33%. Fig. 2 shows the plot of the main effect 

provided by the water/cement ratio for the apparent porosity. A higher water/cement contribution 

(0.55) gives a 63.96% reduction of the average value of the apparent porosity. Since the rheology of 

the two systems was quite similar, this result indicates the likehood that the low level of w/c ratio 

(0.45) was not sufficient to fully hydrate the cement grains. This effect was intensified when the 

composites were manufactured with 100wt% of quartz particles, revealing an increase of 144% on 

porosity while w/c ratio of 0.45 was considered (see Table 4), likely to be caused by the internal pores 

of the mineral particles that absorb some water. The replacement with 100wt% of quartz particles has 

minimized this effect, showing a 19% increase of porosity when the w/c ratio of 0.45 was used (see 

Table 4). The particle volume fraction is also increased when the PET aggregates are used, leading to 

a reduction in the cement volume fraction that is also responsible for the porosity of the composite 



material. 

Fig. 3 shows the main effect plot related to the apparent porosity when the quartz particle 

replacement is considered. The use of monomodal PET particles rather than quartz leads to lower 

porosity in comparison to the use of bimodal PET inclusions (CM and MF). This result seems to 

indicate that the increase of PET inclusions damages the packing of the particles, with an increase of 

porosity of the composites. The irregular shape of the PET particles due to the milling process might 

have also provided a significant contribution (Albano et al., 2009). Table 4 shows that the total 

replacement of quartz by using PET particles is able to increase the porosity in a significant manner, 

by 97% and 302% when using 0.45 and 0.55 of w/c ratio respectively. This result indicates that the 

pore formation is due not only to cement hydration products, but also to the presence of the interfacial 

transition zone (ITZ). 

Water absorption 

The water absorption varied between 5.6% to 27.6%. Only the main factors were responsible for 

this response, since the P-values were lower than 0.05 (see Table 3). When observing Fig. 4 (main 

effect plot of the water/cement ratio related to the water absorption) it is possible to notice that the 

higher level of the w/c ratio has not only reduced the porosity but also the level of the water absorption 

response in the composites. Moreover, a w/c ratio of 0.45 may have compromised the level of 

hydration of the cement products. Table 4 indicates that the largest amount of water (0.55) has reduced 

the water absorption of both 100wt% quartz and 100wt% PET particles composites. 

Fig. 5 shows the plot related to the main effect on the water absorption when considering the 

quartz particle replacement factor. Similarly to the results related to the apparent porosity (Fig. 3), high 

water absorption is achieved when large amounts of quartz particles (CM and MF) have been replaced 

by PET. The replacement of the coarse quartz particles has shown to provide the lowest water 

absorption for all the composites considered. The total replacement of quartz by PET particles (Table 



4) does increase substantially the water absorption, up to 186% for w/c values of 0.45 and 302% when 

w/c = 0.55. 

Permeability 

The permeability is the most important factor to quantify the durability of cement-based 

composites when particles from waste sources are incorporated (Wang and Meyer, 2012; Zhou, 2014). 

Only a limited number of open literature papers have described the durability of concrete containing 

plastic aggregates. However, existing data indicate that the inclusion of plastic aggregate can reduce 

the permeability of the concrete, making it more durable against aggressive chemical attacks (Saikia 

and Brito, 2012). In the current study the permeability varied between 0.02x10-16 m2 to 0.18x10-16 m². 

Fig. 6 shows the main effect over the permeability against the water/cement ratio. The composites 

made from the highest water/cement ratio levels (0.55) presented lower permeability, apparent porosity 

(see Fig. 2) and water absorption (Fig. 5). The low level of w/c ratio (0.45) appears not to be able to 

hydrate entirely the cement paste.  

Fig. 7 shows the main effect provided by the size of the quartz particle replacement over the 

permeability. The permeability is significantly affected by the quantity of the PET particles added to 

the system. Increase of the permeability is observed with the replacement of the coarse-medium (CM), 

medium-fine (MF) and fine (F) quartz particles. This behaviour can be attributed to the increased 

amount of PET particles in the system, which raises the number of pores around the particle/matrix 

interface. The porosity around the ITZ is also observed when fine PET particles are incorporated, 

which cause the presence of larger surface area. 

Compressive strength 

Compressive strength values varied from 1.43 MPa to 14.88 MPa. Fig. 8 shows the plot related 

to the interaction effect between factors like water/cement ratio and quartz particle replacement. It is 

evident the influence that these factors have over the compressive strength (see Table 3). Low levels 

of w/c ratio lead to higher mechanical strength, mainly due to the reduction of pores existing in the 



composites microstructure (Choi et al., 2005; Neville, 1981). In this work, the w/c ratio of 0.45 results 

in a lower strength compared to the value of 0.55. The lowest level of water/cement ratio (0.45) 

corresponded to an increase in the bulk density, besides increasing at the same time the porosity, water 

absorption and permeability of the composites. This behaviour implies that the low amount of water 

might not be sufficient to hydrate totally the cement grains, therefore affecting the interfacial transition 

zone (ITZ). As previously observed, the increase of the quartz particle replacement on a weight basis 

also leads to higher PET volume fractions, which can also be responsible to the degradation of the 

physical and mechanical properties of the composites. 

Cota et al. (2012), Ollitrault-Fichet et al. (1998) and Sakai and Sugita (1995) have observed that 

ITZ affects the mechanical strength of modified cement composites and helps to enhance the particle-

matrix bond. The replacement of coarse quartz particles has provided the highest mechanical strength, 

followed by the replacement of fine quartz particles, in a similar way to what observed for the other 

physical parameters investigated The replacement of medium quartz particles (M and CM) has 

significantly reduced the compressive strength of the composites, a behaviour that can be explained 

by the packing factor effect. Table 4 shows that the total replacement of quartz with PET particles has 

led to a very significant reduction of the compressive strength (1436%). The coarse quartz replacement 

(C) provides however a compressive strength close to 14.9 MPa, which is an interesting value for non-

structural applications (Chandra and Berntsson, 2003). The addition of recycled PET does not 

contribute however to the strength of the cementitious composite, similarly to what observed by other 

authors (Nacif et al. 2013; Rossignolo and Agnesini, 2002; Akçaözoğlu and Ulu, 2014). 

Young’s modulus 

The modulus of elasticity of the composites varied from 0.28 GPa to 2.85 GPa. From the 

variation of the Young’s modulus according to water/cement ratio and quartz particle replacement 

(Fig. 9) it can be observed the lowest level of w/c ratio (0.45) has provided the lowest modulus of 

elasticity. Higher Young’s moduli were obtained using coarse (C) and fine (F) quartz particle 



replacements, in accordance with what has been observed for the compressive strength (Fig. 8). The 

medium size quartz particle (M, CM and MF) replacements have however substantially reduced the 

modulus of elasticity of the composites. Based on the properties of the reference condition fabricated 

with 100wt% of quartz particles and w/c ratio of 0.55 (Table 4), the moduli of elasticity found in the 

C6 and C8 composites (~2.85GPa) can be however considered valid for use in some engineering 

applications. 

Microstructural analysis 

The microstructure of the composites was inspected using a TM-3000 Hitachi Microscope with 

a backscatter detector and accelerating voltage of 15kV. It must be noticed that chemical components 

with high electron density, i.e. quartz particles, have high backscatter coefficients, and appear bright 

in the backscattered images. Pores are however represented by the darker and/or black images 

(Diamond, 2004). 

Fig. 10 shows the backscatter electron image of C1 (a) and C6 (b) composites at 100× of 

magnification. The C1 and C6 composites were made by replacing the coarse quartz particle sizes (4-

20 US-Tyler) using water/cement ratios of 0.45 and 0.55, respectively. It is possible to observe the 

existence of internal macro pores when low levels of w/c ratio are presented (Fig. 10a), which can be 

considered as being the main cause for the reduction in strength and the increase of porosity and 

permeability. Fig. 11 presents the SEM images associated to samples belong to the RC3 and RC4 

references, made of quartz particles (w/c = 0.55) and PET particles (w/c =0.55). Quartz particles (Fig. 

11a) appear to exhibit better packing within the cement-based matrix in comparison with composites 

having PET particles only (Fig. 11c). The Portland cement matrix in the RC3 composites (Fig. 11b) 

looked also brighter than the RC4 case for the same w/c ratio of 0.55 (Fig. 11d), implying a larger 

water consumption. 

Conclusions 



A cementitious composite material consisted of quartz/PET particles for non-structural 

applications of civil engineering has been evaluated using a DoE methodology. The interaction 

between water/cement ratio and quantity of quartz particle replacement significantly affected the bulk 

density, compressive strength and the Young’s modulus of these composite. Main DoE factors 

associated to w/c ratio and again quartz particle replacement significantly affected also the apparent 

porosity, water absorption and permeability. The replacement of coarse quartz particles by PET 

particles with 0.55 of w/c ratio has shown a significant decrease of the apparent porosity, the water 

absorption and permeability, and a maximisation of the compressive strength and modulus of the 

cementitious composites. It was not possible to achieve acceptable mechanical properties at low levels 

of water/cement ratio (0.45), possibly because of the lower cement hydration and the formation of 

internal pores. Quartz particles were instrumental on creating a more homogeneous microstructure 

texture in the cement-based matrix than the PET inclusions. Between the various types of composites 

produced, the samples with PET particles replacing coarse quartz inclusions and with a 0.55 w/c ratio 

have shown interesting mechanical properties, like a compressive strength and modulus at nearly 

15MPa and 3GPa respectively. These properties suggest the use of these particular types of sustainable 

composites to be used in precast non-structural applications, enabling at the same time the recycling 

of PET waste. In practice, the replacement of coarse quartz by PET particles not only represents a 

reasonable recycling amount (30wt%) to be used in a mortar aggregate, but also provides a cheaper 

alternative to non-structural casts at large scales, because that specific particle size is easier to obtain 

via grinding process. 
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