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RATIONAL POINTS ON INTERSECTIONS OF CUBIC

AND QUADRIC HYPERSURFACES

T.D. BROWNING, R. DIETMANN, AND D.R. HEATH-BROWN

Abstract. We investigate the Hasse principle for complete inter-
sections cut out by a quadric and cubic hypersurface defined over
the rational numbers.
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1. Introduction

Suppose we are given a pair of forms C,Q ∈ Q[x1, . . . , xn], with C
cubic and Q quadratic, whose common zero locus defines a complete
intersection X ⊂ Pn−1 defined over Q. The primary goal of this paper
is to establish the existence ofQ-rational points onX under the mildest
possible hypotheses.
One of the few results in the literature that specifically treats pairs

of cubic and quadratic forms appears in work of Wooley [25, 26]. This
deals with the special case in which C and Q are both diagonal, so that

C = a1x
3
1 + · · ·+ anx

3
n, Q = b1x

2
1 + · · ·+ bnx

2
n,
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for integers ai, bi, with the bi not all sharing the same sign. Assuming
that n > 13, it follows from the main result in [26] that X(Q) is non-
empty provided only that X(R) 6= ∅, with at least seven ai non-zero.
In our work we wish to handle general forms C,Q in so far as is

possible. All of the results that we obtain pertain to complete intersec-
tions X ⊂ Pn−1 cut out by a cubic hypersurface C = 0 and a quadric
hypersurface Q = 0, both defined over Q.
One way to produce rational points on X is first to find a large

dimensional linear space on the quadric Q = 0, which is defined over
Q. One is then led to the simpler problem of finding rational points
on the intersection of the cubic hypersurface C = 0 with the linear
space. Let us call a d-dimensional linear space Λ ⊂ Pn−1 a d-plane.
Let Q ∈ Q[x1, . . . , xn] be a quadratic form. For each prime p the
quadric Q = 0 contains a Qp-rational d-plane providing that

n > 5 + 2d.

The case d = 0 corresponds to the well-known fact that every quadratic
form in at least five variables is isotropic over Qp. The general case
follows from inserting this fact into work of Leep [18, Corollary 2.4 (ii)].
Moreover, the quadric Q = 0 contains a real d-plane, provided that
d 6 n− 1−max(r, s), where (r, s) is the signature of Q. The existence
of a d-plane in the quadric everywhere locally is enough to ensure the
existence of a Q-rational d-plane Λ contained in the quadric, by the
Hasse principle for linear spaces on quadratic forms (see the proof of
[5, Theorem 2], for example). As soon as d > 13 we may apply the
main result in work of Heath-Brown [16], which shows that C = 0 has
a rational point on Λ, giving a rational point on X . Finally, it is clear
that we may take d = 13 whenever n > 31 and n−max(r, s) > 14. We
record this observation as follows.

Theorem 1.1. Suppose that n > 31 and Q has signature (r, s), with
max(r, s) 6 n− 14. Then X(Q) 6= ∅.

It is worthwhile noting that when working over totally imaginary
number fields k, the assumption on the signature of the quadratic form
can be removed. Appealing to work of Pleasants [21], which is valid for
cubic forms in at least 16 variables over any number field, one concludes
that X(k) 6= ∅ provided only that n > 5 + 2(16− 1) = 35.
Our next results are established using the Hardy–Littlewood cir-

cle method directly. We write Xsm for the smooth locus of points
on X . Recall that the smooth Hasse principle is said to hold for a
family of such varieties when the existence of a point in Xsm(A) =
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Xsm(R) ×
∏

pXsm(Qp), where A denotes the adèles, is enough to en-
sure the existence of a smooth Q-rational point in X . Given a form
F ∈ Q[x1, . . . , xn], we define the h-invariant h(F ) to be the least posi-
tive integer h such that the F can be written identically as

A1B1 + · · ·+ AhBh,

for forms Ai, Bi ∈ Q[x1, . . . , xn] of positive degree. Taking R = 5,
r3 = r2 = 1 and k = 3 in work of Schmidt [22, Theorem II], we
obtain the smooth Hasse principle for X provided that h(C) > 480
and h(Q) > 30. We note here that one clearly has rank(Q) 6 2h(Q)
for any quadratic form, so that it suffices to have h(C) > 480 and
rank(Q) > 59. With this in mind we state the following result.

Theorem 1.2. Write rank(Q) = ρ. Then the smooth Hasse principle

holds for X provided that

(h(C)− 32)(ρ− 4) > 128.

In particular it suffices to have min(h(C), ρ) > 37.
If C is non-singular then the smooth Hasse principle holds for X

provided that

(n− 32)(ρ− 4) > 128.

There is an old result of Birch [3] which establishes the smooth
Hasse principle for complete intersections V ⊂ Pn−1 cut out by forms
F1, . . . , FR of equal degree d, provided that the inequality

n− dimV ∗ > R(R + 1)(d− 1)2d−1

holds, where V ∗ is the affine variety cut out by the condition

rank(∇Fi)16i6R < R.

It is not entirely clear how this method could be adapted to handle a
system of forms of differing degree, since the process of Weyl differenc-
ing involved in the proof eradicates the presence of the lower degree
forms. A satisfactory treatment of this issue is a key ingredient in
Theorem 1.2. Schmidt encounters the same problem in the work [22]
cited above, and deals with it in a simpler but less effective manner.
When the exponential sums involved have only one variable the “final
coefficient lemma” (see Baker [2, Section 4.2]) gives very good results.
However this relies ultimately on the use of strong bounds for com-
plete exponential sums, which are not available when one has several
variables.
When X is assumed to be non-singular we will show in Corollary 3.2

that the cubic form C can be taken to be non-singular with the qua-
dratic form Q having rank ρ > n − 1. Theorem 1.2 therefore implies
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that the Hasse principle holds for non-singular X provided that n > 37.
The following result improves on this further.

Theorem 1.3. Suppose that X is non-singular, with n > 29. Then

X(Q) 6= ∅ if and only if X(R) 6= ∅.
Theorem 1.3 establishes the Hasse principle for non-singular X , with

n > 29. The issue of determining when X has p-adic points for every
prime p is of considerable interest in its own right. Artin’s conjecture
would imply that it is sufficient to have n > 32+22 = 13. Indeed it has
been shown by Zahid [27] that an arbitrary intersection X : C = Q = 0
with n > 13 has X(Qp) 6= ∅ for every prime p > 293. However if
n > 29 we can in fact recycle the proof of Theorem 1.1 to deduce that
the quadric hypersurface Q = 0 contains a Qp-rational projective space
of dimension at least ⌈(ρ− 6)/2⌉. The existence of a point in X(Qp) is
then assured by an old result of Lewis [19], which shows that the cubic
C = 0 has a Qp-rational point on any Qp-rational projective linear
space of dimension 9 or more.
Our proof of Theorems 1.2 and 1.3 is based on the Hardy–Littlewood

circle method. We will give an overview of the proof in Section 2. As is
usual with the circle method our arguments show not only that X(Q)
is non-empty, but may even be developed to establish weak approxima-
tion. Moreover, we can prove a variant of Theorem 1.3 which applies
to singular X . Suppose that σ > −1 is the dimension of the singu-
lar locus of X , with the convention that σ = −1 if and only if X is
non-singular. Then an argument based on Bertini’s theorem can be
used to show that the smooth Hasse principle holds for X , provided
that n > 30 + σ. We leave the details of both of these remarks to the
reader.
To state our remaining result, we need to introduce some more termi-

nology. If F ∈ K[x1, . . . , xn] for some field K, then we define the order
of F to be the minimal non-negative integer m such that there exists a
matrix T ∈ GLn(K) with the property that in F (T(x1, . . . , xn)) only
m of the variables x1, . . . , xn occur with a non-zero coefficient. It is a
familiar fact that the order of F is independent of the field of definition
K. If Q ∈ Q[x1, . . . , xn] is a quadratic form, then we call a pair of cubic
forms C1, C2 ∈ Q[x1, . . . , xn] Q-equivalent if there exists a linear form
L ∈ Q[x1, . . . , xn] such that

C1 − C2 = LQ.

It is easily checked that this indeed defines an equivalence relation
on the set of rational cubic forms, and that the set of zeros of the
intersection C = Q = 0 does not change if one replaces C by another
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cubic form that is Q-equivalent to C. Finally, for a fixed quadratic
form Q ∈ Q[x1, . . . , xn] and cubic form C1 ∈ Q[x1, . . . , xn], we define
the Q-order ordQ(C1) of C1 to be the minimal order amongst all cubic
forms C2 that are Q-equivalent to C1. We are now ready to reveal the
following result.

Theorem 1.4. Suppose that n > 49 and ordQ(C) > 17, and that

Xsm(R) 6= ∅. Then X(Q) 6= ∅.
The hypothesis ordQ(C) > 17 in the previous theorem can be weak-

ened to ordQ(C) > 14, provided that we impose the additional as-
sumption that for any cubic form that is Q-equivalent to C, if the cor-
responding cubic hypersurface has rational points then they are dense
in the locus of real points.
Simple considerations show that Theorem 1.4 could not be true with-

out some sort of assumption on the Q-order of C. We assume that
n > 49, in order to fall within the range of the theorem. Let m 6 n
and suppose that C ∈ Q[x1, . . . , xm] is a cubic form for which C = 0
has no Q-rational point. In particular C must be non-degenerate, so
that m is the order of C. Let X be the variety cut out by C and the
quadratic form

Q(x1, . . . , xn) = −x2m + x2m+1 + · · ·+ x2n.

It is clear that Xsm(R) 6= ∅ and ordQ(C) = m. Any rational point on
X would lie on C = 0, so that x1 = · · · = xm = 0. Then Q = 0 implies
that xm+1 = · · · = xn = 0, whence in fact X(Q) = ∅. This example
shows that if one had a version of Theorem 1.4 in which the condition
on the Q-order of C were relaxed to ordQ(C) > 13 then we would be
able to deduce that any cubic over Q in 13 variables has a non-trivial
rational zero. In particular any such improvement of Theorem 1.4
would lead to a corresponding sharpening of the result of [16].
Mordell [20] has constructed a non-degenerate cubic form C in 9

variables for which C = 0 has no Qp-point for some prime p, and hence
has no point over Q. This shows that, aside from extending the range
for n, the best one can hope for in Theorem 1.4 is a reduction of the
lower bound on the Q-order of C to ordQ(C) > 10. Moreover, our
example shows that it is really the Q-order of C that matters rather
than the order, since we could replace C by C + LQ for a linear form
L and in this way increase the order of the cubic form.

Notation. Throughout our work N will denote the set of positive in-
tegers. For any α ∈ R, we will follow common convention and write
e(α) := e2πiα and eq(α) := e2πiα/q. The parameter ε will always denote
a small positive real number. We shall use |x| to denote the norm
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max |xi| of a vector x = (x1, . . . , xn). All of the implied constants that
appear in this work will be allowed to depend upon the coefficients
of the forms C and Q under consideration, the number n of variables
involved, and the parameter ε > 0. Any further dependence will be
explicitly indicated by appropriate subscripts.

Acknowledgements. Most of this work was carried out during the
programme “Arithmetic and geometry” at the Hausdorff Institute in
Bonn, for whose hospitality the authors are very grateful. While work-
ing on this paper the first author was supported by ERC grant 306457.

2. Overview of the paper

We have already established Theorem 1.1. In Section 3 we will col-
lect together some geometric facts that will be used in the proof of
Theorems 1.2–1.4. Theorems 1.2 and 1.3 will be established using the
Hardy–Littlewood circle method. This will occupy the bulk of our pa-
per (Sections 4–8). Finally, in Sections 9 and 10, we will turn to the
proof of Theorem 1.4.
The aim of the present section is to survey the key ideas in the

proof of Theorems 1.2 and 1.3. On multiplying through by a common
denominator we can ensure that C and Q have coefficients in Z. In
both results the goal will be to establish an asymptotic formula for the
quantity

Nω(X ;P ) :=
∑

x∈Zn

C(x)=Q(x)=0

ω(x/P ), (2.1)

as P → ∞, for a suitably chosen function ω : Rn → R>0 with support
in (−1/2, 1/2)n. All of our weight functions will be infinitely differen-
tiable, with bounded Sobolev norms. The starting point in the circle
method is the identity

Nω(X ;P ) =

∫ 1

0

∫ 1

0

S(α3, α2)dα3dα2,

where

S(α3, α2) :=
∑

x∈Zn

ω(x/P )e (α3C(x) + α2Q(x)) , (2.2)

for any α3, α2 ∈ R. The idea is then to divide the region [0, 1]2 into a
set of major arcs M and minor arcs m. In the usual way we seek to
prove an asymptotic formula

∫∫

M

S(α3, α2)dα3dα2 ∼ cXP
n−5, (2.3)
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as P → ∞, together with a satisfactory bound on the minor arcs
∫∫

m

S(α3, α2)dα3dα2 = o(P n−5). (2.4)

Here the constant cX will be a product of local densities, which is
positive when Xsm(A) is non-empty.
For any pair α3, α2 we will produce a simultaneous rational approx-

imation a3/q, a2/q using a two dimensional version of Dirichlet’s ap-
proximation theorem. To describe this we take positive integers Q3, Q2

satisfying

Q3 := [P 4/3] and Q2 := [P 1/3]. (2.5)

Then, by the pigeon hole principle, there will be a = (a3, a2) ∈ Z2 and
q ∈ N such that q 6 Q3Q2 and gcd(q, a) = 1, for which

∣

∣

∣

∣

α3 −
a3
q

∣

∣

∣

∣

6
1

qQ3

, and

∣

∣

∣

∣

α2 −
a2
q

∣

∣

∣

∣

6
1

qQ2

. (2.6)

It will therefore be convenient to write

α3 =
a3
q

+ θ3 and α2 =
a2
q

+ θ2.

Let δ ∈ (0, 1/3) be a parameter to be decided upon later (see (8.3)).
We will take as major arcs

M :=
⋃

q6P δ

⋃

a (mod q)
gcd(q,a)=1

Mq,a,

where

Mq,a :=

{

(α3, α2) (mod 1) :

∣

∣

∣

∣

αi −
ai
q

∣

∣

∣

∣

6 P−i+δ, for i = 3, 2

}

.

It is easy to see that Mq,a ∩Mq′,a′ = ∅ whenever a/q 6= a′/q′, provided
that P is taken to be sufficiently large. Moreover each major arc is
contained in the corresponding range given by (2.6).
Our treatment of (2.3) is relatively standard and is the focus of

Section 8.
The minor arcs are defined to be m = [0, 1]2 \ M. Thus they are

defined by having either q > P δ or max(|θ3|P 3 , |θ2|P 2) > P δ. Our
estimation of S(α3, α2) for (α3, α2) ∈ m will differ according to the
hypotheses placed on X . A common ingredient will be a more efficient
version of Weyl differencing, which draws inspiration from the work
of Birch [3], but which is specially adapted to systems of equations of
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differing degree. Suppose that

C(x1, . . . , xn) =

n
∑

i,j,k=1

cijkxixjxk,

for integer coefficients cijk that are symmetric in the indices i, j, k.
Define the bilinear forms

Bi(x;y) := 3!
n
∑

j,k=1

cijkxjyk, (1 6 i 6 n).

Using two successive applications of Weyl differencing, as in Birch’s
work, we can relate the size of the exponential sum S(α3, α2) to the
locus of integral points on the affine variety given by the simultaneous
equations Bi(x;y) = 0, for 1 6 i 6 n. When C defines a smooth cubic
hypersurface, or when h(C) is sufficiently large, we shall be able to get
good estimates for S(α3, α2) unless α3 happens to be close to a rational
number with small denominator. If this occurs then we shall use a
single Weyl squaring, modified in a way motivated by van der Corput’s
method so as to remove the effect of the cubic terms. This step marks
a departure from the approach of Birch, which is completely insensitive
to the quadratic form Q that appears in the sum. Our modified version
of Weyl differencing is the subject of Section 4, and is one of the more
novel parts of the paper. The work in this section will ultimately suffice
to establish Theorem 1.2 in Section 5.
When it comes to establishing Theorem 1.3, for which X is assumed

to be non-singular, the work in Section 5 only allows us to establish an
asymptotic formula for Nω(X ;P ) when n > 37. Instead, in Section 6,
we shall produce a companion estimate for S(α3, α2), which is based
on Poisson summation. Once combined with the work in Section 4,
this will lead to an asymptotic formula for Nω(X ;P ) when n > 29, as
required for Theorem 1.3. One inconvenient feature of this combined
attack is that, while both methods involve rational approximations to
α3 and α2, there is no a priori guarantee that the rational approxima-
tions occurring in the two methods are the same.

3. Geometric preliminaries

Let k be a field of characteristic zero. Suppose V ⊂ Pn−1 is a non-
singular complete intersection of codimension r, whose homogeneous
ideal in k[x] = k[x1, . . . , xn] is generated by r forms F1, . . . , Fr ∈ k[x].
Suppose that the maximum degree attained by any form is attained
by F1. One has a great deal of freedom in the choice of F1, since one
may equally take F1 +

∑

1<i6rHiFi for any forms Hi ∈ k[x] such that
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degHiFi = degF1. In this way it is reasonable to expect that one can
always arrange for the leading form F1 to be non-singular, provided
that V itself is non-singular. This is made precise in the following
result due to Aznar [1, §2].
Lemma 3.1. Let V ⊂ Pn−1 be a non-singular complete intersection

of codimension r, which is defined over a field k of characteristic zero.

Then there is a system of generators F1, . . . , Fr ∈ k[x] of the ideal of

V , with
deg F1 > · · · > degFr,

such that the varieties

Wi : F1 = · · · = Fi = 0, (i 6 r),

are all non-singular.

Proof. To be precise Aznar works with k = C, but the adaptation to
arbitrary fields of non-zero characteristic is straightforward. We give
the proof here for the sake of completeness. We argue by induction on
i, the case i = 0 being trivial.
Now let i be such that 1 6 i 6 r. Fix a system of generators

F1, . . . , Fi−1, Gi, . . . , Gr ∈ k[x]

for the ideal of V , with

degF1 > · · · > deg Fi−1 > degGi > · · · > degGr,

such that the varieties W1, . . . ,Wi−1 ⊆ Pn−1 are all non-singular. Sup-
pose that dk = degGk, for i 6 k 6 r. Let us write

f0 = Gi, fj,k = xdi−dkj Gk,

for 1 6 j 6 n and i < k 6 r. This gives a system

f = (f0, f1,i+1, . . . , fn,r)

of N = 1+n(r− i) forms in k[x] of degree di. The set of points in Wi−1

for which f(x) = 0 precisely coincides with the non-singular variety V .
We let U =Wi−1 \ V . Consider the morphism

π : U → PN−1,

given by [x] 7→ [f(x)]. Then an application of Bertini’s theorem (see
Harris [11, Theorem 17.6], for example) reveals that for a general hy-
perplane H ⊂ PN−1 the fibre π−1(H) is non-singular. This means that
for a general choice of λ0, λj,k ∈ k, the degree di form

Fi = λ0Gi +
∑

16j6n
i<k6r

λj,kx
di−dk
j Gk
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is defined over k and U ∩ {Fi = 0} is non-singular. This implies that

Wi : F1 = · · · = Fi = 0

is non-singular, since V is non-singular. The induction hypothesis
therefore follows, which completes the proof of the lemma. �

We apply this result to the complete intersection in Theorem 1.3 to
deduce the following consequence.

Corollary 3.2. Let X ⊂ Pn−1 be a non-singular complete intersection,

cut out by a cubic and quadric hypersurface defined over Q. Then there

exists a non-singular cubic form C ∈ Z[x] and a diagonal quadratic

form Q ∈ Z[x] of rank at least n−1, such that X is given by C = Q = 0.

Proof. Taking k = Q in Lemma 3.1 ensures the existence of a non-
singular cubic form C ∈ Q[x] and a quadratic form Q ∈ Q[x] such that
X is given by C = Q = 0. After a non-singular rational change of
variables we may further assume that Q is diagonal. By multiplying
through by a common denominator we can ensure that C and Q are
both defined over Z.
Showing that rank(Q) > n − 1 is equivalent to showing that the

quadric hypersurface Q = 0 in Pn−1 must have singular locus of dimen-
sion less than 1. But if the singular locus had positive dimension its
intersection with the cubic hypersurface C = 0 would be non-empty
and every point in it would be a singular point of X . This contradicts
the non-singularity of X , which thereby completes the proof. �

One of the hallmarks of Theorem 1.4 is that it applies to very general
complete intersections X ⊂ Pn−1 cut out by a cubic hypersurface C = 0
and a quadric hypersurface Q = 0. Let us define hQ(C) to be the
minimal value of h(C + LQ) as L varies over all linear forms defined
over Q. We remark at once that ordQ(C) > hQ(C) and

hQ(C) 6 h(C) 6 hQ(C) + 1. (3.1)

We will require easily checked criteria on the defining forms which are
sufficient to ensure thatX is absolutely irreducible. This is the purpose
of the following result.

Lemma 3.3. Let X ⊂ Pn−1 be a variety cut out by a cubic hypersurface

C = 0 and a quadric hypersurface Q = 0, both defined over Q. Assume

that rank(Q) > 5, that ordQ(C) > 4 and that hQ(C) > 2. Then X is

an absolutely irreducible variety of codimension 2 and degree 6.

We begin by showing that the lemma applies under the hypotheses
of Theorem 1.2. The condition rank(Q) > 5 is automatically met. For
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the first part of the theorem, which requires h(C) > 33, the remaining
conditions of Lemma 3.3 are clearly met since ordQ(C) > hQ(C) > 32,
by (3.1). For the second part of the theorem, which requires C to be
non-singular and n > 33, we claim that ordQ(C) > 4 and hQ(C) > 2.
Indeed, if hQ(C) = 1 then C takes the shape L1Q + L2Q2 for suitable
linear forms L1, L2 and a quadratic form Q2, all defined over Q. Since
n > 33 the intersection L1 = L2 = Q = Q2 = 0 is non-empty and
produces a singular point of C = 0. Alternatively, if ordQ(C) 6 3
then we could take C to have the shape C1(x1, x2, x3) + LQ, for a
suitable linear form L and a suitable cubic form C1, both defined over
Q. Again, since n > 33 we could find a singular point of C = 0 by
considering the intersection x1 = x2 = x3 = L = Q = 0. This shows
that the X considered in Theorem 1.2 are absolutely irreducible under
the hypotheses presented there.
For Theorem 1.3 we see from Corollary 3.2 that we will have

rank(Q) > n− 1 > 28 > 5.

Moreover a variety Q = L′Q′ = 0 will have singular points wherever
Q = L′ = Q′ = 0. Thus if X is non-singular we must have hQ(C) >
2. Similarly a variety Q(x1, . . . , xn) = C ′(x1, x2, x3) = 0 will have
singular points wherever Q(0, 0, 0, x4, . . . , xn) = 0, so that if X is non-
singular we will have ordQ(C) > 4. It follows that the lemma applies
for Theorem 1.3. Finally, for Theorem 1.4, the lemma will apply unless
hQ(C) 6 1 or rank(Q) 6 4.

Proof of Lemma 3.3. Under the hypotheses of the lemma, the forms C
and Q share no common factor of positive degree. Hence X is pure
dimensional. Suppose that X decomposes into irreducible components
Z1 ∪ · · · ∪ Zt. It follows from Bézout’s theorem (in the form given by
[10, Example 8.4.6]) that

deg(Z1) + · · ·+ deg(Zt) 6 6.

Each Zi is an irreducible codimension 1 divisor on the quadric hypersur-
face Q = 0. Let Z be one of these components. Since rank(Q) > 5, by
hypothesis, it follows from Klein’s theorem (see Hartshorne [12, Part
II, Ex. 6.5(d)]) that there is an irreducible hypersurface W ⊂ Pn−1

such that Z is the intersection of W with the quadric Q = 0, with
multiplicity 1. But then a further application of Bézout’s theorem (see
[10, §8.4]) implies that deg(Z) must be even.
In order to conclude the proof of the lemma it clearly suffices to show

that Z cannot have degree 2. Suppose, for a contradiction, that Z is
quadratic. Then Klein’s theorem shows that Z is given by L = Q = 0,
say, where L is a linear form defined over Q. It follows that C must
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take the shape LR + L̃Q, where L̃ and R are linear and quadratic
forms respectively, defined over Q. Indeed if k is the minimal field of
definition for L = 0 then we may choose R and L̃ in such a way that
they too are defined over k. Thus if k = Q we will have hQ(C) 6 1,
contrary to assumption. If k is a quadratic extension of Q then Z and
its quadratic conjugate will be distinct components of X , and there
will therefore be a third component of degree 2, which must be defined
over Q. We may then deduce as above that hQ(C) 6 1. We cannot
have [k : Q] > 3 since the number of components Zi is at most 3, so
that we are left with the case in which k is cubic.
Let L = L1, L2 and L3 be the three conjugates of L, and write C =

LiRi+ L̃iQ accordingly. Thus LR+ L̃Q = L2R2+ L̃2Q, so that LR = 0
whenever L2 = Q = 0. However the variety L2 = Q = 0 is absolutely
irreducible, since rank(Q) > 5, and it follows that one or other of L and
R must vanish whenever L2 = Q = 0. The only hyperplane containing
L2 = Q = 0 is the obvious one L2 = 0, so in the first case L and
L2 must be proportional. This however is impossible, since we have
eliminated the case in which the hyperplane L = 0 is defined over Q.
Thus R must vanish on L2 = Q = 0, so that R = L2L

′
2 + c2Q for some

linear form L′
2 and constant c2, both defined over Q.

In the same way we will have R = L3L
′
3 + c3Q, say. Then

(c2 − c3)Q = (R− L2L
′
2)− (R− L3L

′
3) = L3L

′
3 − L2L

′
2.

Since rank(Q) > 5 this can happen only when c2 = c3. We will write
c = c2 = c3 for this common value. We then have L3L

′
3 = L2L

′
2, and

since L2 and L3 are not proportional, by the argument above, we see
that L′

3 = γL2 for some constant γ. Thus R = γL2L3 + cQ, so that
C = γL1L2L3 + (cL1 + L̃1)Q.
We may now write C = γN +MQ where N = L1L2L3 is a cubic

norm form, defined over Q, and γ and M are a constant and a linear
form respectively, both over Q. Since N and Q have no common factor
this representation must be unique, so that in fact γ andM are defined
over Q. We then deduce that ordQ(C) 6 ordQ(γN) 6 3, contrary to
our hypotheses. The lemma therefore follows. �

To deal with the local solubility conditions in Theorem 1.4, we will
also need some information about varieties over local fields. The fol-
lowing fact is certainly well-known (see Kollár [17, §2.3], for example),
but we recall the proof here for completeness.

Lemma 3.4. Let k be R or a finite extension of a p-adic field Qp. Let

V be an absolutely irreducible projective variety defined over k with a

smooth k-point. Then V (k) is dense in V under the Zariski topology.
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Proof. Suppose we are given a smooth point x ∈ V (k), but that V (k)
is not Zariski-dense in V . Then one may find a non-singular curve C
in V which passes through x and which only contains finitely many
k-points. There is a non-constant rational map

C → P1,

which is unramified at x. As this map is unramified, the differential at x
is an isomorphism, and therefore, by the inverse function theorem (see
Serre [23, Part II, §III.9], for example) the induced map C(k) → P1(k)
is an isomorphism of analytic manifolds in a neighbourhood of x (in
the topology induced by the topology of k). Now P1(k) has infinitely
many k-points in any neighbourhood of any point, so by lifting such
points to C(k) by the inverse local isomorphism we find infinitely many
k-points on C, which is a contradiction. �

4. Weyl differencing

In this section we will use the Weyl differencing approach to give
bounds for S(α3, α2), defined in (2.2). Our overall strategy will be
to assume that S(α3, α2) is large, and to deduce that α3 has a good
approximation by a rational number with small denominator. Using
this information we then go on to show that α2 must also have a good
approximation by a rational number with small denominator. The
first phase of the argument will apply Weyl’s method to |S(α3, α2)|4.
In contrast the second phase will use |S(α3, α2)|2, and will incorporate
an idea related to van der Corput’s method. The reader will see that in
the first stage it is only the cubic form C(x) which is relevant, while in
the second stage it is primarily the quadratic form Q(x) which features.
For the first phase of the argument we write h = n if the form C

is non-singular, and otherwise take h = h(C). Notice that for Theo-
rems 1.2 and 1.3 we must have h > 29, as we henceforth assume. We
now define T3 = T3(α3, α2) ∈ R>0 ∪ {∞} by setting

|S(α3, α2)| = P nT−h
3 . (4.1)

We then call on Lemma 1 of Davenport and Lewis [7]. We will require
a version with some trivial modifications, as we will explain. Let R > 1
and define

n(R) := #{(x,y) ∈ Z2n : |x| < R, |y| < R, Bi(x;y) = 0 ∀i 6 n}.
Then if ε > 0 is given, the lemma, suitably modified, shows that either

n(R) > R2nP−εT−4h
3 , (4.2)
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or there exists a positive integer s ≪ R2 such that ‖sα3‖ < P−3R2.
In order to obtain the result in this form we must remove the weight
ω(x/P ) by partial summation. We must also verify that the proof of
the lemma still applies when the exponents θ and κ for which R = P θ

and T3 = P κ/h are not necessarily constant. Davenport and Lewis
require that 0 < θ < 1. However, if R > P then it is always true
that ‖sα3‖ < P−3R2 for some positive integer s 6 R2, by Dirichlet’s
approximation theorem. Finally the reader will need to verify that the
proof still goes through for sums of e(α3C(x)+α2Q(x)), as opposed to
the terms e(αϕ(x)) (involving a cubic polynomial ϕ(x)) considered by
Davenport and Lewis.
We now present two alternative estimates for n(R). Firstly, for any

form C, we can use Lemma 3 of Davenport and Lewis [7], which states
that N(R) ≪ R2n−h. On the other hand, if C is non-singular we
use Lemma 3 of Heath-Brown [13], which shows that there are O(Rr)
integer vectors in the region |x| < R such that the solution set

{y ∈ Rn : Bi(x;y) = 0 ∀i 6 n}
is (n− r)-dimensional. The set will therefore contain O(Rn−r) integer
vectors with |y| < R, and we deduce that n(R) ≪ Rn, on summing for
0 6 r 6 n. Thus n(R) ≪ R2n−h in this case too, since we have defined
h = n when C is non-singular.
It now follows that, if we choose R = P εT 4

3 , then (4.2) must fail, if P
is large enough. We must therefore have an integer s ≪ R2 for which
‖sα3‖ < P−3R2. We may therefore write

α3 =
b3
s
+ ϕ3 (4.3)

with b3 ∈ Z and s|ϕ3| < P−3R2. Thus s(1 + P 3|ϕ3|) ≪ R2 and on
replacing ε by ε/2 we conclude as follows.

Lemma 4.1. Let ε > 0 be given, and define T3 by (4.1). Then there

is a positive integer s such that (4.3) holds with gcd(s, b3) = 1 and

s(1 + P 3|ϕ3|) ≪ P εT 8
3 .

We should emphasise at this point that, as remarked in Section 2,
we cannot assume that we have b3/s = a3/q, for the approximation in
(2.6).
We turn now to our second application of Weyl’s method. We shall

suppose that (4.3) holds, where we think of both s and ϕ3 as being
small in suitable senses, and we write

f(x) = α3C(x) + α2Q(x)
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for brevity. Then

S(α3, α2) =
∑

x∈Zn

ω(x/P )e(f(x))

=
∑

u (mod s)

∑

x∈Zn

x≡u (mod s)

ω(x/P )e(f(x)).

Cauchy’s inequality yields

|S(α3, α2)|2 6 sn
∑

u (mod s)

∣

∣

∣

∣

∣

∣

∣

∣

∑

x∈Zn

x≡u (mod s)

ω(x/P )e(f(x))

∣

∣

∣

∣

∣

∣

∣

∣

2

= sn
∑

x,y∈Zn

x≡y (mod s)

ω(y/P )ω(x/P )e(f(y)− f(x))

6 sn
∑

|z|<P/s

∣

∣

∣

∣

∣

∑

x∈Zn

ω0(x/P )e(f(x+ sz)− f(x))

∣

∣

∣

∣

∣

,

where ω0(x) = ω0(x, z) = ω(x + sP−1z)ω(x). Although this remains
true even when s > P , it is sensible to impose the condition s 6 P for
the time being.
Since C(x+ sz)− C(x) is automatically divisible by s we see that

e(f(x+ sz)− f(x))

= e (ϕ3{C(x+ sz)− C(x)}+ α2{Q(x + sz)−Q(x)}) .
We now set

g(x) = g(x, z) = ϕ3{C(x+ sz)− C(x)}
and conclude that

|S(α3, α2)|2 6 sn
∑

|z|<P/s

∣

∣

∣

∣

∣

∑

x∈Zn

ω0(x/P )e
(

g(x) + sα2∇Q(z).x
)

∣

∣

∣

∣

∣

.

By the Poisson summation formula the inner sum is

P n
∑

m∈Zn

∫

Rn

ω0(t)e
(

g(P t) + Psα2∇Q(z).t− Pm.t
)

dt.

The integrals may be estimated by the multidimensional “first deriv-
ative bound”, see Heath-Brown [15, Lemma 10], for example. One
has

|∇
(

g(P t) + Psα2∇Q(z).t− Pm.t
)

| > λ
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on supp(ω0), with

λ = P |sα2∇Q(z)−m|+O(P 3|ϕ3|).
The second and third order derivatives are O(P 3|ϕ3|), and all higher
order derivatives vanish. It therefore follows from [15, Lemma 10] that
∫

Rn

ω0(t)e
(

g(P t)+Psα2∇Q(z).t−Pm.t
)

dt ≪A (P |sα2∇Q(z)−m|)−A

for any fixed A > 0, whenever P |sα2∇Q(z)−m| ≫ P 3|ϕ3|. In partic-
ular, if ε ∈ (0, 1) is given, and

‖sα2∇Q(z)‖ > P−1+ε(1 + P 3|ϕ3|) (4.4)

then
∑

x∈Zn

ω0(x/P )e
(

g(x) + sα2∇Q(z).x
)

≪ P n
∑

m∈Zn

(P |sα2∇Q(z)−m|)−A

≪ 1

provided that we choose P sufficiently large and take A > (n+1)/ε. Of
course if (4.4) fails then we may estimate the sum trivially as O(P n).
We therefore deduce that

|S(α3, α2)|2 ≪ sn#S1 + snP n#S2

with

S1 = {z ∈ Zn : |z| < P/s}
and

S2 = {z ∈ Zn : |z| < P/s, ‖sα2∇Q(z)‖ 6 P−1+ε(1 + P 3|ϕ3|)}.
We may omit the term #S1 from the above estimate since it is at most
O(P n), while S2 contains at least the element z = 0. If |z| < P/s one
has |∇Q(z)| 6 cP/s, for some constant c = c(Q). We now recall the
notation

ρ = rank(Q)

introduced earlier. Thus the values ∇Q(z) are restricted to a vec-
tor space of dimension ρ. Given w, the equation w = ∇Q(z) has
O((P/s)n−ρ) integral solutions z with |z| < P/s, and we conclude that

#S2 ≪ (P/s)n−ρN ρ,

where

N = #{w ∈ Z : |w| 6 cP/s, ‖sα2w‖ 6 P−1+ε(1 + P 3|ϕ3|)}.
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We therefore have

|S(α3, α2)|2 ≪ P 2n−ρsρN ρ.

We now define T2 = T2(α3, α2) by setting

|S(α3, α2)| = P nT−ρ
2 , (4.5)

whence
T 2
2 ≫ P/(sN ). (4.6)

Naturally our next task is to estimate N . Generally, if

W = {w ∈ Z : |w| 6W, ‖µw‖ 6 ξ},
then #W is at most the number of points of the lattice

Λ = {
(

W−1u, ξ−1(µu− v)
)

: (u, v) ∈ Z2}
lying in the unit square. The determinant of the lattice is (Wξ)−1,
and so the number of points is O(1 +Wξ + σ−1), where σ is the first
successive minimum of the lattice. From the definition of σ we see that
there will be a non-zero point (u, v) ∈ Z2 such that |u| 6 σW and
|µu− v| 6 σξ.
Thus in our situation we find that

N ≪ 1 + P εs−1(1 + P 3|ϕ3|) + σ−1

so that either N ≪ 1+P εs−1(1+P 3|ϕ3|) or σ 6 N −1. In the former
case (4.6) yields

T 2
2 ≫ min

(

P

s
,

P 1−ε

1 + P 3|ϕ3|

)

≫ P 1−ε

s + P 3|ϕ3|
.

In the latter case (4.6) shows that there is a non-zero point (u, v) with

|u| 6 cP/(sN ) ≪ T 2
2

and

|sα2u− v| 6 P−1+ε(1 + P 3|ϕ3|)/N ≪ P−2+εs(1 + P 3|ϕ3|)T 2
2 .

If there is any such point (u, v) for which u = 0, then v 6= 0 whence we
must have P−2+εs(1 + P 3|ϕ3|)T 2

2 ≫ 1. But in that case we may take
u = 1 and we will automatically have ‖sα2u‖ ≪ P−2+εs(1+P 3|ϕ3|)T 2

2 .
Thus we can assume with no loss of generality that there is a solution
in which u 6= 0. We now summarise our findings as follows.

Lemma 4.2. Define

|S(α3, α2)| = P nT−ρ
2

and suppose that (4.3) holds with gcd(s, b3) = 1. Then for any fixed

ε > 0 one of the following must happen:



18 T.D. BROWNING, R. DIETMANN, AND D.R. HEATH-BROWN

(i) there is a positive integer u≪ T 2
2 such that

‖suα2‖ ≪ P−2+εs(1 + P 3|ϕ3|)T 2
2 ;

or

(ii) we have

T 2
2 ≫ P 1−ε

s+ P 3|ϕ3|
.

Note that we assumed that s 6 P during the proof. However the
result is clearly trivial when s > P since we then have T 2

2 ≫ 1 ≫ P/s.

5. Minor arc contribution: the Weyl bound

In this section we will see what can be said about the size of the minor
arc integral (2.4) on the basis of Lemmas 4.1 and 4.2. For convenience
we write

I(m) :=

∫∫

m

S(α3, α2)dα3dα2.

We begin by considering values α3 for which case (i) of Lemma 4.2
holds.
Our first move is to show that on the minor arcs T3 (and hence also

T2) cannot be too small. Lemma 4.1 and case (i) of Lemma 4.2 produce
positive integers s and u such that

su ≪ P εT 8
3 T

2
2 .

Moreover there will be integers b3, b2 for which

|suα3 − ub3| = su|ϕ3| ≪ uP−3+εT 8
3 ≪ P−3+εT 8

3 T
2
2

and

|suα2 − b2| = ‖suα2‖ ≪ P−2+εs(1 + P 3|ϕ3|)T 2
2 ≪ P−2+2εT 8

3 T
2
2 .

It follows that we would have su 6 P δ and
∣

∣

∣

∣

α3 −
b3u

su

∣

∣

∣

∣

6 |suα3 − ub3| 6 P−3+δ,

∣

∣

∣

∣

α2 −
b2
su

∣

∣

∣

∣

6 |suα2 − b2| 6 P−2+δ,

if T 8
3 T

2
2 6 P δ−3ε say, with P sufficiently large. Thus if (α3, α2) ∈ m we

must have T 8
3 T

2
2 > P δ−3ε. It is clear from (4.1) and (4.5) that

T2 = T
h/ρ
3 . (5.1)

We therefore deduce that

T3 > P δρ/(16ρ+4h) (5.2)
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provided that ε 6 δ/6, as we henceforth assume.
In estimating the minor arc integral I(m), it will be convenient to

consider the contribution It3(m), say, from all pairs α3, α2 for which T3
lies in a dyadic range

t3 < T3 6 2t3.

In view of (5.2) we may assume that t3 > P δρ/(16ρ+4h). Moreover, (5.1)
implies that

t
h/ρ
3 < T2 6 (2t3)

h/ρ.

We put t2 = t
h/ρ
3 .

We proceed to consider the contribution to It3(m) from all pairs
α3, α2 for which the first alternative of Lemma 4.2 holds. We begin by
considering the measure of the available α2 ∈ (0, 1]. For each positive
integer u≪ t22 there will be an integer v ≪ su such that

|suα2 − v| ≪ P−2+εs(1 + P 3|ϕ3|)t22.
Thus the total measure for the values of α2 will be

≪
∑

u≪t22

∑

v≪su

(su)−1P−2+εs(1 + P 3|ϕ3|)t22 ≪ P−2+εs(1 + P 3|ϕ3|)t42.

According to Lemma 4.1 we will have s(1+P 3|ϕ3|) ≪ P εt83 so that the
above is O(P−2+2εt83t

4
2). We may calculate the available measure for α3

in much the same way, given that s ≪ P εt83 and |ϕ3| ≪ P−3+εs−1t83,
by Lemma 4.1. This yields

meas{α3 : s(1 + P 3|ϕ3|) ≪ P εt83} ≪
∑

s≪P εt83

∑

v≪s

P−3+εs−1t83

≪ P εt83.P
−3+εt83

= P−3+2εt163 . (5.3)

Returning to our estimation of the contribution to It3(m) from the
first case of Lemma 4.2, we obtain the overall contribution

≪ P nt−h3 .P−2+2εt83t
4
2.P

−3+2εt163 ≪ P n−5+4εt
−h+4h/ρ+24
3 .

If (h − 24)(ρ − 4) > 96 then h − 4h/ρ − 24 > 1/ρ. Thus if we sum
over all relevant dyadic ranges for t3 > P δρ/(16ρ+4h), we will obtain an
overall contribution

≪ P n−5+4ε−δ/(16ρ+4h),

which is satisfactory if we choose ε sufficiently small. We record our
conclusions as follows.



20 T.D. BROWNING, R. DIETMANN, AND D.R. HEATH-BROWN

Lemma 5.1. The contribution to I(m) arising from pairs α3, α2 for

which the first alternative of Lemma 4.2 holds, is o(P n−5) providing

that

(h− 24)(ρ− 4) > 96.

Turning to the contribution to It3(m) from those pairs α3, α2 for
which the second alternative of Lemma 4.2 holds, we first consider
the situation when t3 > P 3/19. According to (5.3) the available set
of values for α3 has measure O(P−3+2εt163 ), but there is no restriction
on the values of α2. It follows that the contribution to the minor arc
integral is

≪ P nt−h3 .P−3+2εt163 . (5.4)

We proceed to sum over dyadic values t3 > P 3/19 to obtain a total

≪ P n−3+2ε−3(h−16)/19 6 P n−5+2ε−1/19,

provided that h > 29. This gives us the following result.

Lemma 5.2. Suppose that h > 29. Then the contribution to I(m)
arising from pairs α3, α2 for which the second case of Lemma 4.2 holds,

and T3 > P 3/19, is o(P n−5).

The simplest way to handle the remaining case is to combine the
inequalities s(1 + P 3|ϕ3|) ≪ P εT 8

3 and T 2
2 ≫ P 1−ε/(s + P 3|ϕ3|) from

Lemma 4.1 and part (ii) of Lemma 4.2, respectively, to deduce that

T 8
3 T

2
2 ≫ P 1−2εs+ sP 3|ϕ3|

s+ P 3|ϕ3|
> P 1−2ε.

Then (5.1) implies that T
8+2h/ρ
3 ≫ P 1−2ε. We therefore see from the

bound (5.4) that the total contribution to the minor arc integral is
O(P n−ψ) with

ψ = 3− 2ε+ (h− 16)
1− 2ε

8 + 2h/ρ
.

By taking ε sufficiently small we can make ψ > 5 provided that

h− 16 > 2(8 + 2h/ρ).

This gives us the following lemma, which is exactly what we need for
Theorem 1.2.

Lemma 5.3. Suppose that (h− 32)(ρ− 4) > 128. Then

I(m) = o(P n−5).
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An alternative way to deal with the case T3 6 P 3/19 is to use an
analysis based on the Poisson summation formula. We will carry this
out in Section 6. It is an essential feature of the method that one uses
simultaneous rational approximations a3/q, a2/q to α3 and α2, as given
by (2.6).
We will want to know whether the approximation a3/q corresponds

to the approximation b3/s given by (4.3). However if b3/s 6= a3/q then

1

sq
6

∣

∣

∣

∣

a3
q

− b3
s

∣

∣

∣

∣

6

∣

∣

∣

∣

α3 −
a3
q

∣

∣

∣

∣

+

∣

∣

∣

∣

α3 −
b3
s

∣

∣

∣

∣

6
1

qQ3
+ |ϕ3|.

It would then follow from Lemma 4.1 and (2.5) that

1 6 s/Q3 + sq|ϕ3|
≪ P εT 8

3 (Q
−1
3 + P−3Q3Q2)

≪ P 24/19+ε.P−4/3

6 P−4/57+ε,

providing that T3 6 P 3/19. This will produce a contradiction if ε is
small enough and P is large enough, thereby proving that a3/q = b3/s.
We record this conclusion as follows.

Lemma 5.4. Suppose that h > 29 and T3 6 P 3/19. Then we will have

a3/q = b3/s if P is large enough.

6. Poisson summation

In this section we suppose that X ⊂ Pn−1 is non-singular. By Corol-
lary 3.2 we may assume that the cubic form C is non-singular and that
Q takes the shape

Q(x) =

n
∑

i=1

dix
2
i , (6.1)

with d1, . . . , dn ∈ Z such that d1 · · ·dn−1 6= 0. Thus Q has rank at least
n− 1. We are now ready to begin our analysis of the exponential sums

S(α3, α2) =
∑

x∈Zn

ω(x/P )e (α3C(x) + α2Q(x)) ,

for α3, α2 ∈ R, based on an application of Poisson summation.
We will assume throughout this section that α3 = a3/q + θ3 and

α2 = a2/q + θ2, as in Section 2. Thus a = (a3, a2) ∈ Z2 and q ∈ Z
satisfy

1 6 a3, a2 6 q 6 Q3Q2, gcd(q, a) = 1, (6.2)
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and θ = (θ3, θ2) ∈ R2 satisfies

|θi| 6 q−1Q−1
i , (i = 3, 2). (6.3)

We recall that Q3, Q2 are positive integers given by (2.5). Our first
step involves introducing complete exponential sums modulo q. The
following result is standard.

Lemma 6.1. We have

S(α3, α2) =
P n

qn

∑

m∈Zn

S(a, q;m)I(θ3P
3, θ2P

2; q−1Pm),

where

S(a, q;m) :=
∑

y (mod q)

eq(a3C(y) + a2Q(y) +m.y), (6.4)

I(γ; z) :=

∫

Rn

ω(x)e(γ3C(x) + γ2Q(x)− z.x)dx. (6.5)

Proof. Write x = y + qz, for y (mod q). Then we obtain

S(α3, α2) =
∑

y (mod q)

eq(a3C(y) + a2Q(y))

×
∑

z∈Zn

ω((y + qz)/P )e(θ3C(y + qz) + θ2Q(y + qz)).

The statement of the lemma follows from an application of Poisson
summation, followed by an obvious change of variables. �

We begin by analysing the complete exponential sums S(a, q;m)
given by (6.4), for gcd(q, a) = 1 and m ∈ Zn. They satisfy the multi-
plicativity property

S(a, rs;m) = S(as, r;m)S(ar, s;m), for gcd(r, s) = 1, (6.6)

where

at := (t2a3, ta2).

The proof of this fact is standard (see [4, Lemma 10], for example). In
view of this it will suffice to analyse S(a, q;m) for prime power values
of q.
It will be convenient to give a separate treatment of the moduli q

that are built from prime divisors of a3. Recall the shape (6.1) that Q
takes, with d1 · · ·dn−1 6= 0. For a given prime p we let pv be the largest
power of p dividing any of 2d1, . . . , 2dn−1. Since Q is fixed we will have
pv ≪ 1. We can now state our result.
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Lemma 6.2. Suppose that p1+v | a3 and let r > 1. Then for any

m ∈ Zn, we have

S(a, pr;m) ≪ pr(n+1)/2.

Proof. Since p | a3 we may assume that p ∤ a2. Let S = S(x) be the
sum

∑

x1,...,xn−1 (mod pr)

epr
(

a2Q(x1, . . . , xn−1, x) + a3C(x1, . . . , xn−1, x)
)

.

We will show that S ≪ pr(n−1)/2 for every x, which will suffice. Our
approach is based on applying Weyl’s method to |S|2. This gives

|S|2 6
∑

y1,...,yn−1 (mod pr)

∣

∣

∣

∣

∣

∣

∑

x1,...,xn−1 (mod pr)

epr(f)

∣

∣

∣

∣

∣

∣

(6.7)

where f = f(x1, . . . , xn−1; y1, . . . , yn−1) has the shape

2a2

n−1
∑

i=1

dixiyi + p1+v
n−1
∑

i=1

yigi(x1, . . . , xn−1; y1, . . . , yn−1),

since p1+v | a3. Here the gi are suitable polynomials defined over Z.
Suppose now that we have an exponent h 6 r − v − 1 such that

ph|y1, . . . , yn−1, but some yi is not divisible by ph+1. Let us suppose
that ph+1 ∤ y1, say. Writing x1 = s+ pr−h−v−1t, with s running modulo
pr−h−v−1 and t modulo ph+v+1, one finds that

f ≡ 2a2d1y1p
r−h−v−1t+ f0(s; x2, . . . , xn−1; y1, . . . , yn−1) (mod pr),

for some integral polynomial f0. It follows that the sum over t vanishes
unless ph+v+1 | 2a2d1y1. However this latter condition would contradict
the facts that p ∤ a2, p

v+1 ∤ 2d1 and ph+1 ∤ y1.
We therefore deduce that the inner sum of (6.7) vanishes unless pr−v

divides each of y1, . . . , yn−1. There are therefore pv ≪ 1 choices for
each of these, and for each such choice the inner sum has modulus
at most pr(n−1). We then deduce that |S|2 ≪ pr(n−1), and the lemma
follows. �

We are now ready to begin in earnest our treatment of the exponen-
tial sum S(a, q;m) for q ∈ N. Let us write q = q0q1q2, where

q0 =
∏

pe‖q
p1+v|a3

pe, q2 =
∏

pe‖q, e>3
p1+v ∤a3

pe. (6.8)
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Thus q1 is cube-free, and gcd(q1q2, a3) divides
∏

p p
v, which in turn

divides 2
∏n−1

i=1 di, where di are the coefficients of Q. It follows that
gcd(q1q2, a3) ≪ 1.
Lemma 6.2 and (6.6) will suffice to deal with the sum associated

to the modulus q0. The cube-free modulus q1 will be handled via the
following result.

Lemma 6.3. Let ε > 0. Suppose that q is cube-free, and is a product

of primes p for which p1+v ∤ a3. Then for any m ∈ Zn, we have

S(a, q;m) ≪ qn/2+ε.

Proof. By (6.6) it will suffice to show that S(a, pr;m) ≪ prn/2, for
r ∈ {1, 2} and each prime with p1+v ∤ a3. The result is trivial for the
finitely many primes with v 6= 0. Indeed we may assume that p ≫ 1,
where the implied constant is taken large enough to ensure that C is
non-singular modulo p. When r = 2 the result therefore follows from
work of Heath-Brown [14]. Suppose next that r = 1. We wish to apply
the estimate

∑

x∈Fn
p

ep(f(x)) ≪d,n p
n/2,

of Deligne [8], which applies to any polynomial f over Fp of degree d,
in n variables, whose leading homogeneous part is non-singular modulo
p. Taking f(x) = a3C(x)+ a2Q(x)+m.x we get S(a, p;m) ≪ pn/2, as
required. �

It is now time to turn our attention to the cube-full modulus q2,
with gcd(q2, a3) ≪ 1. Our next goal is the following variant of [13,
Lemma 14].

Lemma 6.4. Let ε > 0 and let m0 ∈ Rn. Suppose that q is cube-full,

with gcd(q, a3) ≪ 1. Then we have
∑

|m−m0|6V

|S(a, q;m)| ≪ qn/2+ε
{

V n + qn/3
}

,

for any V > 1.

For the proof we will modify parts of the argument from Browning
and Heath-Brown [4, §5]. We will be fairly brief, since the changes
necessary are minor, if somewhat tedious. We will write our square-
full modulus q as q = c2d with d square-free.
Firstly, in analogy to [4, Lemma 11], one may show that

|S(a, q;m)| 6 (c2d)n/2
∑

u (mod c)
c|(∇g(u)+m)

Md(u)
1/2, (6.9)
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where
g(u) = a3C(u) + a2Q(u)

and
Md(u) = #

{

x (mod d) : ∇2g(u).x ≡ 0 (mod d)
}

.

Corresponding to the sum S (V, a;m0, c, d) in [4, Eq. (5.9)] we define

S (V ) = S (V, a3, a2;m0, c, d) :=
∑

|m−m0|6V

∑

a (mod c)
c|(∇g(a)+m)

Md(a)
1/2.

We would like to adapt [4, Lemma 16] to our present situation. Note
that [4, Section 5] is concerned with exponential sums associated to
general cubic polynomials g for which the cubic part is non-singular
and ‖g‖P = ‖P−3f(Px1, . . . , Pxn)‖ 6 H for some parameter H . In
our setting one may verify that it is possible to replace H by 1 in the
various estimates of [4]. A number of trivial adjustments need to be
made since we have gcd(c2d, a3) ≪ 1, rather than gcd(c2d, a) = 1.
Note that [4, Lemma 13] can be applied directly with H ≪ 1 since

it pertains only to the cubic part C of g, where ‖g0‖P = ‖g0‖ ≪ 1.
Moreover, [4, Lemma 14] can also be applied, with D ≪ 1. Turning to
the analogue of [4, Lemma 16], which relies on [4, Lemmas 13 and 14],
the proof goes through unchanged, with D ≪ 1 and H ≪ 1. For any
ε > 0, this leads to the estimate

S ≪ qεV n
(

1 +
c2d

V 3

)n/2

.

But then, taking
V1 = V + (c2d)1/3,

we have

S (V ) 6 S (V1) ≪ qεV n
1

(

1 +
c2d

V 3
1

)n/2

≪ qε
(

V n + (c2d)n/3
)

.

Lemma 6.4 now follows from (6.9).

We next turn to the analysis of the exponential integral

I = I(θ3P
3, θ2P

2; q−1Pm)

=

∫

Rn

ω(x)e
(

θ3P
3C(x) + θ2P

2Q(x)− q−1Pm.x
)

dx.

For this it will be convenient to write

f(x) = θ3P
3C(x) + θ2P

2Q(x).

We will proceed by adapting the proof of [4, Lemma 6], noting that our
weight function ω belongs to the class of weight functions considered
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therein. Let ν ∈ R be a parameter in the range 0 < ν 6 1, to be
chosen in due course. We decompose I into an average of integrals over
subregions of size at most ν. It follows from [15, Lemma 2] that there
exists an infinitely differentiable weight function wν(x,y) : R

2n → R>0,
such that

ω(x) = ν−n
∫

Rn

wν

(x− y

ν
,y
)

dy.

Moreover, supp(wν) ⊆ [−1, 1]n × supp(ω). Then on making this sub-
stitution into I, and writing x = y + νu, we obtain

|I| = ν−n
∣

∣

∣

∫

Rn

∫

Rn

wν
(

ν−1(x− y),y
)

e(f(x)− q−1Pm.x)dxdy
∣

∣

∣

6

∫

Rn

∣

∣

∣

∫

Rn

wν(u,y)e(f(y + νu)− νq−1Pm.u)du
∣

∣

∣
dy

=

∫

supp(ω)

|K(y)|dy,
(6.10)

say.
Let us write F (u) = f(y + νu)− νq−1Pm.u, for fixed y. It is clear

that f(y+ νu) ≪ Θ for any (y,u) ∈ supp(ω)× [−1, 1]n, where we put

Θ = 1 + |θ3|P 3 + |θ2|P 2. (6.11)

For such (y,u) it follows that the k-th order derivatives of F (u) are all
Ok(ν

kΘ), for k > 2. Likewise, one finds that

∇F (u) = ν∇f(y)− νq−1Pm+O(ν2Θ).

Let R > 1 and suppose that |∇f(y)−q−1Pm| > ν−1R. Then it follows
that there exists a constant c(n) > 0 such that |∇F (u)| ≫ R, provided
that

R > c(n)ν2Θ.

We will take ν = Θ−1/2, so that 0 < ν 6 1. An application of [15,
Lemma 10] now reveals that K(y) ≪N R−N for any N > 1, when
R > c(n). Inserting this into (6.10) gives

I ≪N R−N +measS (R)

for any N > 1 and any R > c(n), where we have written

S (R) =
{

y ∈ supp(ω) : |∇f(y)− q−1Pm| 6 R
√
Θ
}

.

If we choose R = P ε with some fixed ε > 0 then R−N can be made
smaller than any given negative power of P , via a suitable choice of N .
This leads to the following result.
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Lemma 6.5. Let ε > 0 and N ∈ N be given. Then

I(θ3P
3, θ2P

2; q−1Pm) ≪N P−N +measS (P ε).

Alternatively, if |m| > cΘq/P with a suitably large constant c, then
|∇f(y)| 6 1

2
q−1P |m| for y ∈ supp(ω). Thus, if we take

R = 1
3
q−1P |m|Θ−1/2,

say, then S (R) will be empty. Moreover, if |m| > P ε−1qΘ for some
positive ε < 1 then we will have

R

(P |m|)ε/3 =
(P |m|)1−ε/3

3q
√
Θ

>
P ε(1−ε/3)Θ1/2−ε/3

3qε/3
>
P ε(1−ε/3)

3P 2ε/3
>

1

3
,

since Θ > 1 and q 6 P 2. It follows that R ≫ (P |m|)ε/3 whenever
|m| > P ε−1qΘ. This leads to the following conclusion.

Lemma 6.6. Let ε > 0 and let N ∈ N be given. Then

I(θ3P
3, θ2P

2; q−1Pm) ≪N P−N |m|−N

whenever |m| > P ε−1qΘ.

We are now ready to deduce a final estimate for the exponential sum
S(α3, α2) in (2.2), for any (α3, α2) ∈ R2. We suppose as before that
αi = ai/q + θi, with a = (a3, a2) ∈ Z2 and q ∈ Z satisfying (6.2) and
θ = (θ3, θ2) ∈ R2 satisfying (6.3). Here Q3, Q2 ∈ N are given by (2.5).
Our starting point is Lemma 6.1. We use Lemma 6.6 to handle the

tail of the summation over m, so that

S(α3, α2) ≪ 1 +
P n

qn

∑

|m|6P ε−1qΘ

|S(a, q;m)|.|I(θ3P 3, θ2P
2; q−1Pm)|

for any fixed ε > 0. Next we employ the multiplicativity property (6.6)
in conjunction with Lemmas 6.2 and 6.3 to show that the second term
is

≪ P n+ε

qn
q
(n+1)/2
0 q

n/2
1

∑

|m|6P ε−1qΘ

|S(aq0q1, q2;m)|.|I(θ3P 3, θ2P
2; q−1Pm)|.

We then use Lemma 6.5 which shows that this is

≪ 1 +
P n+ε

qn
q
(n+1)/2
0 q

n/2
1

∫

supp(ω)





∑

|m−m0(y)|6V

|S(aq0q1, q2;m)|



dy,

where

m0(y) = q
(

θ3P
2∇C(y) + θ2P∇Q(y)

)
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and
V = P ε−1q

√
Θ.

Finally Lemma 6.4 produces the bound

S(α3, α2) ≪ 1 +
P n+ε

qn
q
(n+1)/2
0 q

n/2
1 q

n/2+ε
2

{

V n + q
n/3
2

}

.

We have therefore established the following result, on re-defining ε.

Lemma 6.7. Let ε > 0, and let q0, q2 and Θ be defined as in (6.8) and
(6.11), respectively. Then we have

S(α3, α2) ≪ q
1/2
0 P ε{qn/2Θn/2 + P nq−n/2q

n/3
2 }.

We should comment at this point that the first term on the right is
more or less what one would hope for. The second term on the right
could probably be improved, but suffices for our purposes. When q
and Θ are both of order 1, so that (α3, α2) lies in the major arcs, we
expect that S(α3, α2) is approximately P nq−nS(a, q, 0)I(0, 0; 0). This
corresponds to the second term on the right in Lemma 6.7. However
when Θ is a little larger than 1 we would expect to have a non-trivial
bound for I(θ3P

3, θ2P
2; 0), and the lemma does not take any account

of this.

7. Minor arc contribution: Theorem 1.3

In this section we will combine the work of Sections 5 and 6 so as
to handle the minor arcs for Theorem 1.3. Thus we will assume that
h = n > 29 and that ρ > n − 1. Lemma 5.1 then gives a satisfactory
result under the first alternative of Lemma 4.2, provided that n > 29.
Indeed we see that one cannot hope to handle the case n = 28, even
when ρ = n. Moreover Lemma 5.2 gives a satisfactory result under
the second alternative of Lemma 4.2 when T3 > P 3/19. We therefore
investigate the second alternative of Lemma 4.2, under the assumption
that T3 6 P 3/19 and n > 29. Furthermore, it follows from Lemma 5.4
that we may proceed under the assumption that b3/s = a3/q.
We will assume that T3 lies in a dyadic range t3 < T3 6 2t3, with

P δρ/(20n) 6 P δρ/(16ρ+4h) 6 t3 6 P 3/19, (7.1)

where the lower bound comes from (5.2). It follows from (5.1) that

t2 < T2 6 2h/ρt2, with t2 = t
h/ρ
3 .

We can rapidly dispose of the case in which s 6 P 3|ϕ3|. If this
happens then the second part of Lemma 4.2, together with Lemma 4.1,
yields

1 ≪ P 2+εt22|ϕ3| ≪ P 2+εt
2n/(n−1)
3 .P ε−3t83s

−1,
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whence
1 ≪ P−2+4εt

16+4n/(n−1)
3 s−2.

We now write P1 for the set of α3 for which s 6 P 3|ϕ3| and the value
of T3 lies in our dyadic range t3 < T3 6 2t3. Then if α3 ∈ P1 we have

S(α3, α2) ≪ P nt−n3 ≪ P n−2+4εt
16+4n/(n−1)−n
3 s−2.

Moreover, since ϕ3 ≪ P ε−3t83s
−1 we have

∫

P1

s−2dα3 ≪
∑

s≪P εt83

s−2
∑

b3 (mod s)

P ε−3t83s
−1 ≪ P ε−3t83.

The contribution to the minor arc integral is therefore

≪ P n−2+4εt
16+4n/(n−1)−n
3 .P 2ε−3t83.

In view of (7.1) this provides a satisfactory bound if n > 24+4n/(n−1),
so that n > 29 will be sufficient. Thus in applying Lemma 4.2 we may
henceforth take

s≫ P 1−εt−2
2 . (7.2)

We proceed to examine the case in which the first term on the right
in Lemma 6.7 dominates the second. Thus we will assume that

S(α3, α2) ≪ q
1/2
0 P εqn/2Θn/2.

It follows from (2.5), (2.6) and (6.11) that qΘ ≪ P 5/3, whence

S(α3, α2) ≪ q
1/2
0 P 5n/6+ε. (7.3)

We now consider the contribution from the set P2 of pairs (α3, α2) for
which (7.3) holds and t3 < T3 6 2t3. It will be convenient to write
It3(m) for the corresponding part of the minor arc integral. From (4.1)
we will have

S(α3, α2) ≪ P nt−n3 . (7.4)

As in (5.3) the measure of the available set of points α3 is O(P
2ε−3t163 ),

whence
meas(P2) ≪ P 2ε−3t163 . (7.5)

Thus we certainly have

It3(m) ≪ P 2ε−3t163 .P
nt−n3 . (7.6)

For an alternative bound we consider two cases. We give ourselves a
parameter Q0 > 1, to be chosen shortly, and consider separately the
ranges q0 6 Q0 and q0 > Q0. If q0 6 Q0, the bounds (7.3) and (7.5)
show that the contribution to It3(m) is

≪ P 2ε−3t163 .Q
1/2
0 P 5n/6+ε. (7.7)
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To investigate the second alternative we consider the subset, P3 say,
of P2 for which the corresponding value of q0 is at least Q0. Using the
facts that α3 and α2 satisfy (2.6), and that q0 is given by (6.8), we have

meas(P3) ≪
∑

q6Q3Q2
q0>Q0

∑

a3

∑

a2

(qQ3)
−1(qQ2)

−1 ≪ P−5/3
∑

q6Q3Q2
q0>Q0

∑

a3

q−1.

If we define

q3 =
∏

p|q0

p

then q3 | a3, so that there are O(q/q3) available values for a3, and we
deduce that

meas(P3) ≪ P−5/3
∑

q6Q3Q2
q0>Q0

q−1
3 ≪

∑

q0>Q0

q−1
3 q−1

0 .

However a standard estimation via Rankin’s method shows that
∑

q0>Q0

q−1
3 q−1

0 6 Qε−1
0

∑

q0>Q0

q−1
3 q−ε0

6 Qε−1
0

∞
∑

q0=1

q−1
3 q−ε0

= Qε−1
0

∏

p

{

1 + p−1−ε + p−1−2ε + p−1−3ε + · · ·
}

≪ Qε−1
0 .

We therefore deduce that

meas(P3) ≪ P 2εQ−1
0 ,

so that the estimate (7.4) shows that the contribution to It3(m) is

≪ P 2εQ−1
0 .P nt−n3 .

Comparing this bound with (7.7) we see that we have an estimate

It3(m) ≪ P 2ε−3t163 .Q
1/2
0 P 5n/6+ε + P 2εQ−1

0 .P nt−n3 ,

for any Q0 > 1, covering both cases q0 6 Q0 and q0 > Q0. We choose

Q0 = 1 + P n/9+2t
−2n/3−32/3
3

so as to balance the two terms approximately, and then deduce that

It3(m) ≪ P 3ε{P 5n/6−3t163 + P 8n/9−2t
(32−n)/3
3 }.
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We now combine this with (7.6) to produce

It3(m) ≪ P 3ε{min
(

P n−3t16−n3 , P 5n/6−3t163
)

+min
(

P n−3t16−n3 , P 8n/9−2t
(32−n)/3
3

)

}.
If n > 16 then we use the inequality min(A,B) 6 A16/nB(n−16)/n to
conclude that

min
(

P n−3t16−n3 , P 5n/6−3t163
)

6 P n−5−(n−28)/6.

If 16 6 n 6 32 we use min(A,B) 6 A(32−n)/(2n−16)B(3n−48)/(2n−16) to
deduce that

min
(

P n−3t16−n3 , P 8n/9−2t
(32−n)/3
3

)

6 P n−5−η

with

η =
(n− 29)(n− 8) + 8

6(n− 8)
.

These bounds make it clear that It3(m) ≪ P n−5−ε for a small ε > 0,
when 29 6 n 6 32; and if n > 33 then

min
(

P n−3t16−n3 , P 8n/9−2t
(32−n)/3
3

)

6 P 8n/9−2t
(32−n)/3
3

6 P 8n/9−2

6 P n−5−2/3.

We may therefore conclude as follows.

Lemma 7.1. If h = n and ρ > n−1 then the contribution to the minor

arc integral when the first term on the right in Lemma 6.7 dominates

the second, will be o(P n−5), provided that n > 29.

We turn now to the pairs (α3, α2) for which the second term on the
right in Lemma 6.7 dominates the first, so that

S(α3, α2) ≪ q
1/2
0 P n+εq−n/2q

n/3
2 .

We now recall that we may assume that a3/q = b3/s with gcd(s, b3) = 1.
Thus in particular we will have s | q. In view of the definitions (6.8)
we therefore deduce that

q
1/2
0 q−n/2q

n/3
2 = q

(1−n)/2
0 q

−n/2
1 q

−n/6
2

6 (q0q1q2)
−(n+4)/6q

2/3
2

= q−(n+4)/6q
2/3
2

6 s−(n+4)/6q
2/3
2
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as soon as n > 4. Moreover, if pe‖q2 then we have pe | qb3 = a3s and
p1+v ∤ a3, whence p

e | spv. It follows that q2 | Ds, with

D = 2
n−1
∏

i=1

di

for the coefficients di in (6.1). Now let P4 be the set of pairs (α3, α2)
for which the corresponding values of s, q2 and T3 lie in given dyadic
ranges S < s 6 2S, Q2 < q2 6 2Q2 and t3 < T3 6 2t3, so that

S(α3, α2) ≪ P n+εS−(n+4)/6Q
2/3
2

on P4. Since q2 | Ds and D ≪ 1 there are O(S/q2) choices for s, given
q2. We have s|ϕ3| ≪ P ε−3t83 by Lemma 4.1 and so we may calculate
that

meas(P4) ≪
∑

Q2<q262Q2

∑

S<s62S

∑

b3 (mod s)

P ε−3s−1t83

≪
∑

Q2<q262Q2

P ε−3t83Sq
−1
2

≪ P ε−3t83SQ
−2/3
2 ,

since q2 runs over cube-full numbers. This yields the bound
∫

P4

|S(α3, α2)|dα3dα2 ≪ P n−3+εt83S
−(n−2)/6. (7.8)

Alternatively, (7.4) produces
∫

P4

|S(α3, α2)|dα3dα2 ≪ P nt−n3 meas(P4) ≪ P n−3+εt8−n3 S.

We may combine these to give
∫

P4

|S(α3, α2)|dα3dα2

≪ P n−3+εmin
(

t83S
−(n−2)/6 , t8−n3 S

)

≪ P n−3+ε
(

t83S
−(n−2)/6

)6/(n+4) (
t8−n3 S

)(n−2)/(n+4)

= P n−3+εt−κ13 ,

with

κ1 =
n2 − 10n− 32

n + 4
.

We may also couple (7.8) with (7.2) to produce a bound

≪ P n−3−(n−2)/6+nεt83t
(n−2)/3
2 ≪ P n−3−(n−2)/6+nεtκ23 ,
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with

κ2 = 8 +
(n− 2)n

3n− 3
.

Comparing this with the previous bound we deduce that
∫

P2

|S(α3, α2)|dα3dα2

≪ P nεmin
(

P n−3t−κ13 , P n−3−(n−2)/6tκ23
)

6 P nεmin
(

P n−3t−κ13

)(n−14)/(n−2) (
P n−3−(n−2)/6tκ23

)12/(n−2)

= P n−5+nεt−κ3

with

κ =
n− 14

n− 2
κ1 −

12

n− 2
κ2

=

(

n− 14

n− 2

)(

n2 − 10n− 32

n+ 4

)

− 12

n− 2

(

8 +
(n− 2)n

3n− 3

)

.

A slightly unpleasant calculation confirms that κ > 0 whenever n > 28.
This completes our treatment of the minor arcs, which we summarize
as follows.

Lemma 7.2. If h = n and ρ > n − 1 then the claimed minor arc

estimate (2.4) holds as soon as n > 29.

This will suffice for our application to Theorem 1.3.

8. Major arc contribution

The purpose of this section is to complete the proof of Theorems 1.2
and 1.3, by establishing (2.3) under suitable hypotheses on M and the
forms C and Q. In what follows we will put h = n if C is non-singular
and h = h(C) otherwise. Moreover, we continue to adopt the notation

ρ = rank(Q),

for the rank of the quadratic formQ. By Corollary 3.2 we have ρ > n−1
when the intersection C = Q = 0 is non-singular.
It is now time to reveal the weight functions ω that we shall use in

the definition (2.1) of our counting function

Nω(X ;P ) =
∑

x∈Zn

C(x)=Q(x)=0

ω(x/P ).

There is nothing to prove unless the variety X contains a non-singular
real point. Consequently, we let x0 ∈ Rn be a non-zero vector such
that C(x0) = Q(x0) = 0 and ∇C(x0) is not proportional to ∇Q(x0).
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We will find it convenient to work with a weight function that forces
us to count points lying very close to x0. For any ξ ∈ (0, 1], we define
the function ω : Rn → R>0 by

ω(x) := ν
(

ξ−1‖x− x0‖
)

,

where ‖y‖ =
√

y21 + · · ·+ y2n and

ν(x) =

{

e−1/(1−x2), if |x| < 1,

0, if |x| > 1.

We will require ξ to be sufficiently small, with 1 ≪ ξ 6 1. It is clear
that ω is infinitely differentiable, and that it is supported on the region
|x−x0| 6 ξ. Moreover, there exist constants cj > 0 depending only on
j and ξ such that

max
{∣

∣

∣

∂j1+···+jnω(x)

∂j1x1 · · ·∂jnxn

∣

∣

∣
: x ∈ Rn, j1 + · · ·+ jn = j

}

6 cj,

for each integer j > 0.
We are now ready to begin our analysis of the exponential sums

S(α3, α2) on the set of major arcs M defined in §2, for δ ∈ (0, 1
3
). Let

us define

S(a, q) :=
∑

y (mod q)

eq
(

a3C(y) + a2Q(y)
)

,

for a = (a3, a2) with gcd(q, a) = 1. Our work in this section will lead
us to study the truncated singular series

S(R) =
∑

q6R

1

qn

∑

a (mod q)
gcd(q,a)=1

S(a, q), (8.1)

for any R > 1. We put S = limR→∞ S(R), whenever this limit exists.
Next, let

I(R) =

∫ R

−R

∫ R

−R

∫

Rn

ω(x)e
(

γ3C(x) + γ2Q(x)
)

dxdγ3dγ2, (8.2)

for any R > 0. We put I = limR→∞ I(R), whenever the limit exists.
The main aim of this section is to establish the following result.

Lemma 8.1. Assume that (h− 24)(ρ− 4) > 96. Then the singular se-

ries S and the singular integral I are absolutely convergent. Moreover,

if we choose

δ = 1/7 (8.3)
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then there is a positive constant ∆ such that
∫∫

M

S(α3, α2)dα3dα2 = SIP n−5 +O(P n−5−∆).

Taking the statement of Lemma 8.1 on faith, let us indicate how it
can be used to complete the proof of Theorems 1.2 and 1.3. In the
context of Theorem 1.3, for which h = n > 29 and ρ > n − 1, we
combine Lemma 7.2 and Lemma 8.1 to deduce that

Nω(X ;P ) = SIP n−5 + o(P n−5),

as P → ∞, with bothS and I absolutely convergent. The same asymp-
totic formula holds when (h(C)− 32)(ρ− 4) > 128, as in Theorem 1.2.
This can be seen by combining Lemma 5.3 with Lemma 8.1.
In order to complete the proof of Theorems 1.2 and 1.3 we need

to show that SI > 0 whenever Xsm(A) 6= ∅. Indeed, if SI > 0 for
any [x0] ∈ Xsm(R) then it will follow from our asymptotic formula for
Nω(X ;P ) that X(Q) is Zariski-dense in X , whence the existence of a
point in Xsm(Q) is assured. The proof that S > 0 follows a standard
line of reasoning, as in [3, Lemma 7.1], and makes use of the fact that
S is absolutely convergent. To show that I > 0, it will suffice to show
that I(R) ≫ 1 for sufficiently large values of R. This again is standard
and will follow from an easy adaptation of work of Heath-Brown [13,
§10] on the corresponding problem for a single cubic form. The only
difference lies in the choice of weights used and the fact that we now
have a complete intersection of codimension 2, but neither of these
alters the nature of the proof. Performing the integrations over γ3 and
γ2, and writing x = x0 + y, it follows from (8.2) that

I(R) =

∫

Rn

ω(x)
sin(2πRC(x)) sin(2πRQ(x))

π2C(x)Q(x)
dx

=

∫

Rn

ν(ξ−1‖y‖)sin(2πRC(x0 + y)) sin(2πRQ(x0 + y))

π2C(x0 + y)Q(x0 + y)
dy.

Let ai = ∂C/∂xi(x0) and bi = ∂Q/∂xi(x0) for 1 6 i 6 n. We may
assume without loss of generality that a1b2 − a2b1 6= 0. The need for
ξ > 0 to be sufficiently small emerges through an application of the
inverse function theorem. Since |y| 6 ξ, if we write

z3 = C(x0 + y) = a1y1 + · · ·+ anyn + P2(y) + P3(y),

z2 = Q(x0 + y) = b1y1 + · · ·+ bnyn +Q2(y),

for forms Pi of degree i and Q2 of degree 2, then z3, z2 ≪ ξ and we
can invert this expression to represent y1 and y2 as a power series in
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z3, z2, y3, . . . , yn, if ξ is sufficiently small. We refer the reader to [13]
for the remainder of the argument.

To prove Lemma 8.1 we begin by recalling that q 6 P δ, that we
have a = (a3, a2) with gcd(q, a) = 1, and that (α3, α2) ∈ Ma,q, with
αi = ai/q+ θi, for i = 3, 2. We will use the argument of [3, Lemma 5.1]
to show that

S(α3, α2) = q−nP nS(a, q)I(θ3P
3, θ2P

2; 0) +O(P n−1+δ), (8.4)

where S(a, q) is given above and I is given by (6.5).
To see this we write x = y+qz in (2.2), where y runs over a complete

set of residues modulo q, giving

S(α3, α2) =
∑

y (mod q)

eq
(

a3C(y) + a2Q(y)
)

∑

z∈Zn

f(z), (8.5)

with

f(z) = ω

(

y + qz

P

)

e (θ3C(y + qz) + θ2Q(y + qz)) .

We now want to replace the summation over z by an integration. If
t ∈ [0, 1]n then

f(z+ t) = f(z) +O( max
u∈[0,1]n

|∇f(z+ u)|).

Hence
∣

∣

∣

∫

Rn

f(z)dz−
∑

z∈Zn

f(z)
∣

∣

∣
≪ meas(B)max

z∈B

|∇f(z)|

≪
(P

q

)n
(

q/P + q|θ3|P 2 + q|θ2|P )

= q1−nP n−1 + |θ3|q1−nP n+2 + |θ2|q1−nP n+1,

where B is an n-dimensional cube with sides of order 1+P/q 6 2P/q.
Substituting this into (8.5) and making the change of variables Pu =
y + qz, we therefore deduce that

S(α3, α2) = q−nP nS(a, q)I(θ3P
3, θ2P

2; 0)

+O(qP n−1 + |θ3|qP n+2 + |θ2|qP n+1).
(8.6)

This completes the proof of (8.4), since |θi| 6 P−i+δ and q 6 P δ on
the major arcs.
Using (8.4), and noting that the major arcs have measure O(P−5+5δ),

it is now easy to deduce that
∫∫

M

S(α3, α2)dα3dα2 = P n−5S(P δ)I(P δ) +O(P n−6+6δ), (8.7)
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where S(P δ) is given by (8.1), and I(P δ) is given by (8.2).
We proceed to use (8.4) in conjunction with our Weyl estimates,

Lemmas 4.1 and 4.2, to bound S(a, q), with the aim of proving the
following result.

Lemma 8.2. Let ε > 0 be given. If h and ρ are both positive then

S(a, q) ≪ qn+ε
(

q

gcd(q, a3)

)−h/8

(8.8)

and

S(a, q) ≪ qn+ε gcd(q, a3)
−ρ/2. (8.9)

Proof. To prove this, we reverse our normal point of view, and think
of q as given and of P as being large in terms of q. Specifically it will
suffice to take

P = q8n. (8.10)

When θ3 = θ2 = 0 we have I(0, 0; 0) ≫ 1, whence (8.4) yields

S(a, q) ≪ 1 + qnP−n|S(a3/q, a2/q)|
= 1 + qnT−h

3 = 1 + qnT−ρ
2 ,

(8.11)

since (8.10) shows that P 1−δ ≫ qn.
We proceed to apply Lemma 4.1, bearing in mind that the integer s

is not necessarily equal to q. Thus we have a3/q = b3/s+ ϕ3 and

s(1 + P 3|ϕ3|) ≪ P εT 8
3 . (8.12)

If a3/q 6= b3/s then |ϕ3| > (sq)−1, whence

T 8
3 ≫ P 3−εs|ϕ3| > P 3−εq−1.

Then, taking ε < 1, we see that (8.11) leads to the estimate

S(a, q) ≪ 1 + qnT−1
3 ≪ 1 + qn.P (ε−3)/8q1/8 ≪ 1 + qn+1P−1/4 ≪ 1

in view of (8.10). This is more than sufficient for the lemma, and so we
henceforth assume that a3/q = b3/s and that ϕ3 = 0. Thus sa3 = qb3
with gcd(s, b3) = 1, whence s = q/ gcd(q, a3). Moreover (8.12) reduces
to s ≪ P εT 8

3 , so that T3 ≫ P−ε/8(q/ gcd(q, a3))
1/8. Inserting this into

(8.11) leads to the estimate

S(a, q) ≪ 1 + qn.P εh/8

(

q

gcd(q, a3)

)−h/8

.

This is suitable for (8.8), given our choice (8.10), on re-defining ε.
To obtain (8.9) we apply Lemma 4.2 which either shows that

T 2
2 ≫ P 1−εs−1

> P 1−εq−1,
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or produces a positive integer u≪ T 2
2 for which

‖sua2/q‖ ≪ P−2+εsT 2
2 . (8.13)

If the first alternative holds then, taking ε < 1/2, we find that (8.11)
produces a bound

S(a, q) ≪ 1 + qnT−1
2 ≪ 1 + qn.P (ε−1)/2q1/2 ≪ 1 + qn+1P−1/4 ≪ 1,

in view of (8.10). Again, this is more than sufficient for the lemma,
and so we examine the second alternative.
If q ∤ sua2 the bound (8.13) would imply that q−1 ≪ P−2+εsT 2

2 , so
that

T 2
2 ≫ P 2−ε(sq)−1 > P 2−εq−2.

Just as above this would produce an acceptable estimate

S(a, q) ≪ 1 + qnT−1
2 ≪ 1 + qn.P (ε−2)/2q ≪ 1 + qn+1P−1/4 ≪ 1.

On the other hand, if q | sua2 then gcd(q, a3) | ua2, since we have
s = q/ gcd(q, a3), as noted above. Recalling that gcd(q, a3, a2) = 1 we
deduce that gcd(q, a3) | u, so that gcd(q, a3) 6 u ≪ T 2

2 . Thus (8.11)
yields

S(a, q) ≪ 1 + qn gcd(q, a3)
−ρ/2,

as required for (8.9). This completes the proof of the lemma. �

We can now handle the singular series. Let

A(q) =
∑

a (mod q)
gcd(q,a)=1

|S(a, q)|.

Then we have

A(q) ≪ q
∑

a3 (mod q)

qn+εmin

(

(

q

gcd(q, a3)

)−h/8

, gcd(q, a3)
−ρ/2

)

.

There are at most q/d values of a3 for which gcd(q, a3) = d, and each
one contributes a total

≪ qn+1+εmin
(

(q/d)−h/8 , d−ρ/2
)

≪ qn+1+ε
(

(q/d)−h/8
)(4ρ+8)/(4ρ+h) (

d−ρ/2
)(h−8)/(4ρ+h)

= qn+1+ε−ξd

with

ξ =
h(ρ+ 2)

8ρ+ 2h
.
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It follows that

A(q) ≪
∑

d|q

qd−1.qn+1+ε−ξd≪ qn+2+2ε−ξ,

so that the singular series is absolutely convergent when ξ > 3, and

S(R) = S+O(R2ε−(ξ−3)).

Since ξ > 3 when (h− 24)(ρ− 4) > 96 the claim in Lemma 8.1 follows.
We now estimate the exponential integral I(γ; 0), for general values

of γ = (γ3, γ2).

Lemma 8.3. We have I(γ; 0) ≪ 1 for any γ. Moreover if h and ρ
are positive, and if ε ∈ (0, 1/8), then

I(γ; 0) ≪ |γ3|−h/8|γ|ε (8.14)

and

I(γ; 0) ≪
( |γ2|
1 + |γ3|

)−ρ/2

|γ|ε. (8.15)

Proof. The estimate I(γ; 0) ≪ 1 is trivial. Moreover it implies both
(8.14) and (8.15) when |γ| 6 1. We assume henceforth that |γ| > 1,
and follow an argument analogous to that used for Lemma 8.2
Taking a3 = a2 = 0 and q = 1 in (8.6), and setting α3 = P−3γ3 and

α2 = P−2γ2, we deduce that

I(γ; 0) = P−nS(α3, α2) +O(P−1|γ|)
= T−h

3 +O(P−1|γ|)
= T−ρ

2 +O(P−1|γ|),
for any P > 1. We will choose P to be large, given by

P = |γ|2n(2n+8), (8.16)

so that

I(γ; 0) = T−h
3 +O(|γ|−n) = T−ρ

2 +O(|γ|−n). (8.17)

We now need estimates for the quantities T3 and T2. We begin by
applying Lemma 4.1, which shows that

P−3γ3 = α3 =
b3
s
+ ϕ3

with

s(1 + P 3|ϕ3|) ≪ P εT 8
3 . (8.18)

If b3 6= 0 then

s−1
6 |b3|s−1

6 P−3|γ3|+ |ϕ3| 6 P−3|γ|(1 + P 3|ϕ3|).
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It follows that s(1 + P 3|ϕ3|)|γ| > P 3, whence

T 8
3 ≫ P 3−ε|γ|−1 ≫ |γ|8n

for ε < 1, in view of our choice (8.16) of P . The estimates (8.14) and
(8.15) then follow from (8.17), for the case b3 6= 0.
We therefore assume that b3 = 0 and hence that ϕ3 = P−3γ3. To

prove (8.14) we observe that (8.18) yields

T 8
3 ≫ P−εs|γ3| ≫ P−ε|γ3|.

Inserting this into (8.17) leads to the bound

I(γ; 0) ≪ P hε|γ3|−h/8 + |γ|−n.
The relation (8.16) allows us to replace P hε by |γ|ε on re-defining ε,
and (8.14) follows.
We turn now to the estimate (8.15), for which we use Lemma 4.2.

This tells us that either

T 2
2 ≫ P 1−ε

s+ P 3|ϕ3|
or that there is a positive integer u≪ T 2

2 for which

‖suα2‖ ≪ P−2+εs(1 + P 3|ϕ3|)T 2
2 . (8.19)

In the first case we have

P 1−ε ≪ T 2
2 (s+ P 3|ϕ3|) ≪ T 2

2 .P
εT 8

3

by (8.18). Thus if ε < 1/4 we will have

P 1/2 ≪ T 2
2 T

8
3 = T

2h/ρ+8
3 6 T 2n+8

3 .

Our choice (8.16) then shows that T3 > |γ|n, so that (8.15) follows
from (8.17).
If the second alternative (8.19) holds we can write

α2 =
b2
su

+ ϕ2

with

ϕ2 ≪ u−1P−2+ε(1 + P 3|ϕ3|)T 2
2 . (8.20)

If b2 6= 0 then

(su)−1 6 |b2|(su)−1 6 P−2|γ2|+ |ϕ2|,
so that (8.18) yields

P 2 ≪ su|γ2|+ suP 2|ϕ2| ≪ P εT 8
3 .T

2
2 |γ|+ P εT 8

3 T
2
2 .
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This produces P 2 ≪ PT 8
3 T

2
2 on taking ε < 1/2 and using the crude

bound |γ| 6 P 1/2 from (8.16). We can then deduce (8.15) just as in
the previous paragraph.
We are left with the case in which b2 = 0, so that P−2γ2 = α2 = ϕ2.

Since ϕ3 = P−3γ3 it follows from (8.20) that

γ2 ≪ P ε(1 + |γ3|)T 2
2 .

Thus (8.17) produces

I(γ; 0) ≪ P ερ/2

( |γ2|
1 + |γ3|

)−ρ/2

+ |γ|−n.

The first term on the right dominates the second, and we may replace
P ερ/2 by |γ|ε after re-defining ε, in view of our choice (8.16) of P . This
establishes (8.15), thereby completing our treatment of Lemma 8.3. �

We are now ready to show that the singular integral converges. We
have

I− I(R) =

∫∫

|γ|>R

I(γ; 0)dγ (8.21)

and we split the region of integration into two parts, to use the two
estimates of Lemma 8.3. When |γ2| 6 |γ3|1+h/(4ρ) and |γ| > R we have

I(γ; 0) ≪ |γ3|−h/8+ε

and

|γ3| > R4ρ/(h+4ρ).

The corresponding contribution to (8.21) is then

≪
∫ ∞

R4ρ/(h+4ρ)

x1+h/(4ρ)x−h/8+εdx≪ R−µ+ε,

with

µ =
hρ− 16ρ− 2h

2h+ 8ρ
.

Similarly, when |γ2| > |γ3|1+h/(4ρ) and |γ| > R we have

I(γ; 0) ≪ (1 + |γ3|)ρ/2|γ2|−ρ/2+ε

and

|γ2| > R.
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In this case the contribution to (8.21) is

≪
∫ ∞

R

x−ρ/2+ε
∫ x4ρ/(h+4ρ)

0

(1 + y)ρ/2dy dx

≪
∫ ∞

R

x−ρ/2+εx(1+ρ/2)4ρ/(h+4ρ)dx

≪ R−µ+ε,

with the same µ as before. Thus we have absolute convergence when
µ > 0, or equivalently when (h − 16)(ρ − 2) > 32. This suffices for
Lemma 8.1.
To complete the proof of the lemma it remains to show that we can

replace the truncated singular series and integral in (8.7) by their limits,
with an acceptable error. This is clear however since we have shown
that S and I are finite, and differ from S(R) and I(R) respectively by
negative powers of R.

9. Proof of Theorem 1.4

In this section we will establish Theorem 1.4, subject to various lem-
mas, all of which we will delay proving until the next section. These will
involve the parameters n, ρ = rank(Q), ordQ(C) and the h-invariants
h(C) and hQ(C). The latter, in particular, satisfy the inequalities
hQ(C) 6 h(C) 6 hQ(C) + 1, as recorded in (3.1). The reader should
note that in Theorem 1.2 one can replace C by C + LQ for a generic
L, and hence that it is the maximal value of h(C + LQ) which is of
relevance there.
We begin by recording some basic deductions about the above pa-

rameters. We may assume that

ρ > n− 13 > 36, (9.1)

because otherwise Q vanishes on a Q-rational 13-plane, and we can
conclude as in the proof of Theorem 1.1. We will always have hQ(C) 6
ordQ(C), and indeed

hQ(C) 6 ordQ(C)− 1, if ordQ(C) > 14. (9.2)

To see this, suppose that C = C(x1, . . . , xm) with m = ordQ(C) > 14,
after a suitable change of variable. Then, by the result of Heath-Brown
[16] the form C has a non-trivial rational zero, which we may take to
be (0, . . . , 0, 1). We can then write

C = x1Q1(x1, . . . , xm) + · · ·+ xm−1Qm−1(x1, . . . , xm),

which shows that hQ(C) 6 m− 1.
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We may also eliminate the case in which hQ(C) = 1, which would
mean that one could take C to factor as LQ′, say, over Q. If this were
to happen, then a smooth real point on C = Q = 0 would lie either
on Q = L = 0 or Q = Q′ = 0. In the first case the Hasse–Minkowski
theorem suffices to complete the proof, since n > 49 > 6. In the second
case we apply Lemma 9.2 below, using the fact that n > 49 > 9. If
some combination aQ + bQ′ were to have rank at most 4, then b 6= 0
by (9.1). However bC + aLQ = L(aQ + bQ′) would have order at
most 5, giving ordQ(C) 6 5 in contradiction to our hypotheses. Thus
the conditions needed for Lemma 9.2 do indeed hold. In what follows
we will therefore be able to assume that hQ(C) > 2, and hence, via
Lemma 3.3, that X is absolutely irreducible.
Our strategy for the proof of Theorem 1.4 is now to combine two

basic arguments, one of which covers the case in which hQ(C) 6 n−13
and the other which deals with larger values of hQ(C). We begin by
discussing the second of these, which is more straightforward. The idea
is to apply Theorem 1.2, which will require us to have smooth solutions
for every completion of Q. A smooth real solution is provided by our
hypothesis, and we will then require the following lemma to give us
suitable p-adic solutions.

Lemma 9.1. If ordQ(C) > 4, hQ(C) > 2 and ρ > 23 then we have

Xsm(Qp) 6= ∅ for every prime p.

We will prove this in the next section. The conditions given are
sufficient for our purposes but are probably not optimal.
The conditions of the lemma are amply met, in view of (9.1), and

Theorem 1.2 completes the argument if hQ(C) > n− 12, since then

(hQ(C)− 32)(ρ− 4) > (n− 44)(n− 17) > 5× 32 > 128,

via a further application of (9.1).
We will henceforth assume that hQ(C) 6 n− 13 and we will replace

C by C + LQ so that hQ(C) = h(C) = h, say. Then after a suitable
non-singular linear change of variables, we can write

x = (x1, . . . , xn) = (u1, . . . , uh; v1, . . . , vs)

where s = n− h, so that C and Q take the shapes

C(x) = A(u) +
s
∑

j=1

vjDj(u) +
h
∑

i=1

uiBi(v) (9.3)

and

Q(x) = R(u;v) + S(v).
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Here A(u) is a cubic form, while Dj(u), Bi(v), R(u;v) and S(v) are
quadratic forms, such that R(u;v) contains no quadratic terms in v.
We remark at once that if rank(S) < n − h then there is a vector
v0 ∈ Qs − {0} such that S(v0) = 0. Thus C(0,v0) = Q(0,v0) = 0,
so that our system has a nontrivial rational zero. We may therefore
assume that rank(S) = n − h from now on. We can then apply a
suitable linear transformation so as to reduce Q(x) to the form

Q(x) = R(u) + S(v),

while leaving C(x) in the shape (9.3), but with new forms A, Dj and
Bi.
In what follows it will also be useful to adopt the notation

Ca(t, v1, . . . , vs) := A(a)t2 +

{

s
∑

j=1

Dj(a)vj

}

t +

h
∑

i=1

aiBi(v),

Qa(t, v1, . . . , vs) := Q(ta,v) = R(a)t2 + S(v).

(9.4)

Note that both Qa and Ca are quadratic forms in t, v1, . . . , vs. If we
can show that there is a non-zero vector a ∈ Qh such that the forms
Qa and Ca have a common rational zero (t0,v0), then C and Q will
have the common zero (t0 a,v0), which will complete the the proof.
Here we will employ the following result, which will be an easy corol-

lary of Theorem A of Colliot-Thélène, Sansuc and Swinnerton-Dyer [6].

Lemma 9.2. Let f, g be quadratic forms over the rationals in m > 9
variables, and suppose that the equations f = g = 0 have a smooth

solution over R, and that every form in the rational pencil has rank at

least 5. Then the forms have a common rational zero.

Note that in applying Lemma 9.2 we will have forms in s+1 variables,
where

s+ 1 = n− h+ 1 > 14.

We call a non-zero real vector a ∈ Rh good if the system of equations

Qa(t, v1, . . . , vs) = Ca(t, v1, . . . , vs) = 0

has a non-singular real zero. We shall then prove the following result.

Lemma 9.3. If n − h > 5 and ordQ(C) > max(h + 1, 4) then the set

of [a] ∈ Ph−1(Q) such that a is good, is Zariski-dense.

In our case we have n− h > 13 and

ordQ(C) > max(h+ 1, 17),

by (9.2) and the hypotheses of Theorem 1.4.
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If there is any good rational a for which every form in the rational
pencil generated by Qa and Ca has rank at least 5, then Theorem 1.4
will follow from Lemma 9.2. We therefore proceed on the alternative
assumption that for every good a ∈ Qr there is a form αCa + βQa

with (α, β) ∈ Q2 − {(0, 0)}, having rank at most 4. We will prove the
following lemma.

Lemma 9.4. Suppose that n−h > 13 and that there is a Zariski-dense

set of [a] ∈ Ph−1(Q) for each of which there is a form αCa + βQa with

(α, β) ∈ Q2 − {(0, 0)}, having rank at most 4. Then after replacing

C by C + LQ for a suitable linear form L defined over Q, and after

making a suitable linear change of variables, we may write C(x) in the

shape

C(x) = C(u,v) =
∑

16i6j6H

uiujLij(u,v),

with linear forms Lij defined over Q, and with H = h+ 4.

The reader should notice that our vectors u and v now have different
lengths from before.
We now define Qa(t,v) as previously, and set

La(t,v) =
∑

16i6j6H

aiajLij(ta,v).

Thus a rational solution (t,v) of Qa(t,v) = La(t,v) = 0 produces a
corresponding point [ta,v] on X . We now have the following result,
which plays a similar role to Lemma 9.3, but is much easier to prove.

Lemma 9.5. In the situation of Lemma 9.4, assume that at least one

linear form Lij depends explicitly on v. Then there is a non-empty

Zariski-open set of [a] ∈ PH−1(Q) such that the equations Qa(t,v) =
La(t,v) = 0 have a real solution.

Let us now show how to proceed under the assumption of Lemma 9.5.
The equations

Qa(t,v) = La(t,v) = 0

describe the intersection of a quadric hypersurface with a hyperplane.
In general such an intersection will have a rational point whenever there
is a real point, as long as rank(Qa) > 6. However

Qa(t,v) = R(a)t2 + S(v)

with new quadratic forms R and S, where as before we may assume
that rank(S) = n−H . Thus

rank(Qa) > rank(S) = n−H = n− (h+ 4) > 9, (9.5)
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which suffices to complete the proof of Theorem 1.4.
It remains to consider the possibility that the assumption is not met

in Lemma 9.5. Thus all of the linear forms Lij are independent of v
and so C(x) = C(u). It is enough to find a non-trivial rational zero of
the system C(u) = 0 and

Qu(1,v) = R(u) + S(v) = 0,

where, as above, rank(S) > 9. Since X is absolutely irreducible the
same is true for C. Likewise, on making a suitable linear change of
variables, we may assume that C is a non-degenerate cubic form in
H ′ 6 H variables. We will also assume, temporarily, that the locus of
rational solutions to C = 0 is dense in the locus of real solutions. We
call this the “real density hypothesis”, for convenience.
If S is indefinite or is singular, then it suffices to take u = 0 and to

solve S(v) = 0 non-trivially over the rationals. This will certainly be
possible, since S has rank at least 9. We therefore suppose S is definite,
and without loss of generality we take S to be positive definite.
We now make use of our assumption that there is a non-singular real

zero of the system C = Q = 0 under consideration. The variety X
cannot be contained in Q = R = 0, since the latter will be irreducible
of degree 4. It therefore follows from Lemma 3.4 thatX has a real point
(u0,v0) with R(u0) 6= 0. Our assumption that S is positive definite
then shows that we must have R(u0) < 0.
In view of the real density hypothesis we can now find a rational zero

u of C sufficiently close to u0 that R(u) < 0. Then, since rank(S) > 9,
there will be a rational vector v such that S(v) = −R(u). This pro-
duces a non-trivial rational point [x] = [(u,v)] on X , thereby complet-
ing the proof in the second case, subject to the real density hypothesis.
Finally we claim that the real density hypothesis holds if ordQ(C) >

17. If h > 14, a straightforward modification of the main result in [16]
establishes the desired conclusion (cf. [24, Lemma 1]). Alternatively, if
h 6 13, then it follows from our lower bound for ordQ(C) that

H ′ > ordQ(C) > 17 > h+ 4.

But then the claim follows from work of Swarbrick Jones [24, Lemma 2].

10. Proof of Lemmas 9.1–9.5

It remains to establish Lemmas 9.1 to 9.5, and we begin with the first
of these. For the proof we work over Qp. The quadratic form Q may
be written as a non-singular form in variables x1, . . . , xρ, and vanishes
on a linear space of projective dimension at least ⌈(ρ − 6)/2⌉ > 9, in
terms of these variables. Hence, as remarked in the introduction in
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connection with Theorem 1.3, the form C will vanish at a p-adic point
P , which we see may be taken to be a non-singular point on Q = 0.
If we choose coordinates so that P = [1, 0, . . . , 0] our forms take the
shape

C(x) = x21L1(x2, . . . , xn) + x1Q1(x2, . . . , xn) + C1(x2, . . . , xn)

and
Q(x) = x1L2(x2, . . . , xn) +Q2(x2, . . . , xn).

Then L2 cannot vanish identically, since P is a non-singular point on
Q = 0. Moreover, if L1 and L2 are not proportional then P is a
smooth point on X . We may therefore assume that L1 = cL2. Thus if
C ′ = C + LQ = C − cx1Q, we can write C ′(x) in the simpler shape

C ′(x) = x1Q1(x2, . . . , xn) + C1(x2, . . . , xn).

Since L2 does not vanish identically we can make a change of variables
to replace L2 by x2, say, so that Q(x) becomes

Q(x) = x1x2 +Q2(x2, . . . , xn)

= x1x2 + x2L3(x2, . . . , xn) +Q3(x3, . . . , xn),

say. Now replacing x1 by x1 + L3 we further simplify Q to the shape
x1x2 +Q3(x3, . . . , xn). We then write

Q1(x2, . . . , xn) = x2L4(x2, . . . , xn) +Q4(x3, . . . , xn)

and replace C ′ by C ′ − L4Q so that (renaming our forms)

C ′(x) = x1Q1(x3, . . . , xn) + C1(x2, . . . , xn)

Q(x) = x1x2 +Q2(x3, . . . , xn).

Consider the projection X → Pn−2 from the point [1, 0, . . . , 0]. The
Zariski-closure of the image of this rational map is the hypersurface

Y : x2C1(x2, . . . , xn)−Q1(x3, . . . , xn)Q2(x3, . . . , xn) = 0

in Pn−2. In fact X and Y are birational to each other over Q, the
reverse map being given by

[x2, . . . , xn] 7→
{

[−Q2/x2, x2, . . . , xn], if x2 6= 0,

[−C1/Q1, x2, . . . , xn], if Q1 6= 0,

on the Zariski-open subset where (x2, Q1) 6= (0, 0). Lemma 3.3 ensures
that X is absolutely irreducible, and we therefore deduce that Y is also
absolutely irreducible. Lemma 9.1 will follow if we are able to show
that the p-adic points on X are Zariski-dense. For this it will suffice
to show that the p-adic points on Y are Zariski-dense. This will follow
from Lemma 3.4 if we can show that Y has a non-singular p-adic point.
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To verify the existence of a non-singular p-adic point on Y , we con-
sider points with x2 = Q2 = 0. Such a point will be non-singular on Y
provided that∇Q2 6= 0 and thatQ1 and C1 are not both zero. However

rank(Q2) > rank(Q)− 2 = ρ− 2 > 21 > 5

so that the p-adic zeros [x3, . . . , xn] of Q2 are Zariski-dense on Q2 = 0.
In particular we can choose a point where ∇Q2 6= 0, and where Q1

and C1 are not both zero, unless both Q1 and C1 are multiples of Q2.
However if Q2 divides C ′ we have C ′ = L′Q2 for some linear form L′,
and hence

C = L′′Q+C ′ = L′′Q+ L′Q2 = (L′′ + L′)Q− L′x1x2 = LQ+ L1L2L3,

say. Here L1, L2, L3 and L are linear forms defined over Qp. If L were
defined over Q then we would have ordQ(C) = ordQ(L1L2L3) 6 3,
contrary to our hypotheses. Thus there is a field automorphism σ say,
such that L

σ 6= L. Since Cσ = C this yields

(L
σ − L)Q = Lσ1L

σ
2L

σ
3 − L1L2L3.

Changing variables we may write L
σ−L = x1, whence x1Q has order at

most 6. We claim in general that for any form F (x1, . . . , xn), the order
of F is at most one more than the order of x1F (x1, . . . , xn). Given
this claim we would deduce that rank(Q) 6 7, contrary to hypothesis.
Thus to complete the proof of Lemma 9.1 it is enough to establish the
claim. However this is easy, since if we can write

x1F (x1, . . . , xn) = G(L1, . . . , Lm)

with forms
Li(x1, . . . , xn) = aix1 + Li(x2, . . . , xn)

then G(L1, . . . , Lm) must vanish identically, and F will be a function
of x1 and L1, . . . , Lm. This suffices for the claim.

The next result to prove is Lemma 9.2. Theorem A of Colliot-
Thélène, Sansuc and Swinnerton-Dyer [6] tells us that an absolutely
irreducible non-degenerate intersection of quadrics in m > 9 variables
satisfies the smooth Hasse principle. Of course, if the intersection is de-
generate there will trivially be a rational point (though not necessarily
a smooth rational point). Thus we may assume that our intersection
is non-degenerate. We claim that rank(h) > 5 for every form h in the
pencil generated by f and g, either over Q, or over some Qp. This
follows from our hypotheses if h is proportional to a rational form.
Otherwise there is some field automorphism σ such that hσ and h are
not proportional. However hσ is also in the pencil generated by f and g.
Now if rank(h) 6 4 then rank(hσ) 6 4 so that the variety hσ = h = 0
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would be degenerate. This however is impossible given our previous
assumption, since hσ and h generate the same pencil as f and g. Our
claim is therefore established. In particular we now see that the inter-
section f = g = 0 will be absolutely irreducible, by [6, Lemma 1.11],
so that the Hasse principle applies.
The variety f = g = 0 has a smooth real point by hypothesis, and

we claim that there are smooth p-adic points for every prime p. This
will suffice for the proof of the lemma.
To prove this we note that for any prime p there is a p-adic point

by the result of Demyanov [9], since m > 9. Clearly we may assume
that this point is a singular point, since otherwise the claim is imme-
diate. Then, choosing coordinates so that the point in question is at
[1, 0, . . . , 0], the forms become x1L1(x2, . . . , xm) + f1(x2, . . . , xm) and
x1L2(x2, . . . , xm) + g1(x2, . . . , xm). Here the forms L1 and L2 cannot
both vanish since we are assuming that f = g = 0 is non-degenerate.
Moreover they must be proportional since [1, 0, . . . , 0] was assumed to
be singular. Thus, after replacing the forms f and g by a suitable linear
combination, and after making a further change of variables, we may
take L2, say, to vanish, and take L1 = x2. Now, since rank(g1) > 5 by
what we proved above, we see that g1 = 0 has a smooth p-adic zero.
Its smooth p-adic zeros are therefore Zariski-dense. Choosing such a
zero with x2 6= 0 we may then set x1 = −x−1

2 f1(x2, . . . , xm), obtaining
a smooth point on f = g = 0. This establishes Lemma 9.2.

We turn now to the proof of Lemma 9.3. If it were the case that for
every a ∈ Rh there is a linear combination Ca(t,v) + λQa(t,v) with
rank at most 1, then it would be impossible for the variety Ca(t,v) =
Qa(t,v) = 0 to have a non-singular zero. We therefore begin by show-
ing that this case cannot arise.

Lemma 10.1. Suppose that n− h > 5, and that

ordQ(C) > max(h+ 1, 3).

Then either X(Q) 6= ∅, or there is at least one non-zero a ∈ Qh such

that every linear combination Ca(t,v)+λQa(t,v) with λ ∈ Q has rank

2 or more.

Proof. For the proof we write Q(u,v) = R(u) + S(v) as before, with
rank(S) = n − h. We will assume for a contradiction that for every
rational a there is some λ for which Ca(t,v) + λQa(t,v) has rank at
most 1. In particular, for any j between 1 and h we may define a by
taking ai = 0 for i 6= j and aj = 1. Then, setting t = 0, we see that
Bj(v) + λjS(v) has rank at most 1, in the notation (9.4). In the same
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way, for distinct positive integers j, k 6 h, we may take ai = 0 for
i 6= j, k and aj = ak = 1, finding that Bj(v) + Bk(v) + λj,kS(v) has
rank at most 1. This produces equations

Bj(v) + λjS(v) = Lj(v)
2, Bk(v) + λkS(v) = Lk(v)

2

and

Bj(v) +Bk(v) + λj,kS(v) = Lj,k(v)
2.

Here the coefficients λ and the linear forms L are defined over Q. By
subtraction we find that either λj + λk = λj,k, or that rank(S) 6 3.
Since we have assumed that rank(S) = n − h > 5 we deduce that
λj + λk = λj,k, and then that L2

j + L2
k = L2

j,k. This can happen only
when Lj , Lk and Lj,k are proportional, allowing us to conclude that

there is a non-zero linear form L0 defined over Q, and constants µj ∈ Q,
such that

Bj(v) + λjS(v) = µjL0(v)
2

for every j. In fact, if λj 6∈ Q we can apply some nontrivial Galois
automorphism σ to show that Bj(v) + λσj S(v) = µσj (L0(v)

σ)2. Then
by subtraction we see that (λj − λσj )S(v) has rank at most 2, again
contradicting our assumptions. Thus all the λj are in Q, so that we
may suppose L0 and the µj to be defined over Q.
Taking

L(x) =

h
∑

i=1

λiui

we now replace C(x) by C ′ = C(x) + L(x)Q(x). This new cubic may
be written in the shape given by (9.3), with a different function A(u),
and with Bi(v) replaced by B′

i(v) = Bi(v) + λiS(v) = µiL0(v)
2. In

particular we will have h(C ′) 6 h, and since we chose our original cubic
C to have h(C) = hQ(C) we see in fact that h(C ′) = hQ(C) = h. For
ease of notation we will just write C in place of C ′ henceforth, and
assume that

Bi(v) = µiL0(v)
2. (10.1)

Now suppose that

Ca(t,v) + λQa(t,v) = (αt+ J(v))2 (10.2)
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for some α and J(v) defined over Q. Then, on comparing the terms
not involving t, and using (10.1), we see that

J(v)2 =
h
∑

j=1

ajBj(v) + λS(v)

=

(

h
∑

j=1

µjaj

)

L0(v)
2 + λS(v).

Using the fact that rank(S) > 5 once again we conclude that λ = 0
and that J(v) is proportional to L0(v), and hence equal to βL0(x) say.
We now expand (10.2) further, using (9.4). We then see from the

linear term in t that
s
∑

j=1

Dj(a)vj = 2αβL0(v). (10.3)

Thus for every rational vector a the linear form
∑

j Dj(a)vj is propor-

tional to L0(v). This can happen only when the quadratic forms Dj are
all proportional to each other, of the shape νjD(a) say, with constants
νj ∈ Q. This allows us to write

C(u,v) = A(u) +D(u)L′(v) + ℓ(u)L0(v)
2

for suitable linear forms L′ and ℓ defined over Q, and indeed (10.3)
shows that we may take L′(v) = L0(v).
It follows that Ca(t,v) = A(a)t2 +D(a)tL0(v) + ℓ(a)L0(v)

2, which
must have rank at most one for every choice of a ∈ Qh. If L0 vanishes
identically, or if ℓ(u) and D(u) both vanish identically, then C(x) =
A(u), which has order at most h, contrary to the hypothesis of Lemma
10.1. Thus D(a)2 = 4A(a)ℓ(a) for any a ∈ Qh, and then D(u) =
2ℓ(u)ℓ′(u) and A(u) = ℓ(u)ℓ′(u)2 for some linear form ℓ′(u) defined
over Q. However in this case

C(x) = A(u) +D(u)L0(v) + ℓ(u)L0(v)
2 = ℓ(u){ℓ′(u) + L0(v)}2,

which has order at most 2, again contradicting our hypotheses. This
therefore establishes the lemma. �

The next stage in the proof of Lemma 9.3 is the following result.

Lemma 10.2. Under the hypotheses of Lemma 10.1, either X(Q) 6= ∅,
or there is at least one non-zero a ∈ Qh such that the variety

Ca = Qa = 0

has a point (t,v) ∈ Q
1+s

with t 6= 0, at which ∇Ca and ∇Qa are not

proportional.
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Proof. By Lemma 10.1 we may choose a so that every form in the
pencil generated by Ca and Qa has rank at least 2. As before we may
assume that rank(S) = n − h > 5, whence rank(Qa) > 5. We will
show in general that if A(y) and B(y) are quadratic forms such that
rank(A) > 5, and such that every form in the pencil generated by A
and B over Q has rank at least 2, then A = B = 0 has a point with
∇A not proportional to∇B, and lying off any given hyperplane L(y) =
0. (In this general formulation the condition t 6= 0 corresponds to a
requirement of the type L(y1, . . . , yn) 6= 0.) Without loss of generality
we can take B with as small rank, r say, as possible. If r > 3 then the
variety A = B = 0 is irreducible of degree 4 and codimension 2, and is
not contained in the hyperplane L = 0. Since the variety A = B = 0
has projective dimension n−3 > n−h−3 > 2 there will be a non-empty
Zariski-open set of points satisfying the conditions of the lemma.
We therefore assume that B has rank exactly 2, and write B = x1x2.

Since L cannot be proportional to both x1 and x2 we may assume that
x1, say, is not proportional to L. We set x1 = 0 and L′(x2, . . . , xn) =
L(0, x2, . . . , xn), and look for points on A = x1 = 0 with x2L

′ 6= 0
and such that ∇A is not proportional to (1, 0, . . . , 0). However A′ =
A(0, x2, x3, . . . , xn) has rank at least rank(A) − 2 > 3 and hence is
an absolutely irreducible quadratic form. Moreover at least one partial
derivative Pi = ∂A′/∂xi for i = 2, . . . , n is not identically zero. Thus A′

cannot divide x2L
′Pi, whence A

′ = 0 has a point at which x2L
′Pi 6= 0.

This produces a point (0, x2, . . . , xn) on A = B = 0 for which L 6= 0
and such that ∇A is not proportional to ∇B. This completes the proof
of the lemma. �

We are now ready to complete the proof of Lemma 9.3. The variety
X ⊂ Pn−1 is defined by C(u,v) = Q(u,v) = 0 and is absolutely
irreducible, by Lemma 3.3. The points [u,v] on X for which [t,v] =
[1,v] is a singular point of Cu(t,v) = Qu(t,v) = 0 form a Zariski-
closed subset of X , and by Lemma 10.2 it is a proper subset of X . We
have assumed that X has a smooth real point, and by Lemma 3.4 the
real points must be Zariski-dense on X . Hence there is a Zariski-dense
set of smooth real points [u,v] of X , with u 6= 0 and such that [1,v]
is a smooth point of Cu(t,v) = Qu(t,v) = 0. It follows in particular
that there is a non-zero real u such that Cu(t,v) = Qu(t,v) = 0 has a
smooth real point [1,v]. Suppose now that am is a sequence of rational
points tending to u in the real metric. Write A(t,v) and B(t,v) for
the quadratic forms Cu(t,v) and Qu(t,v), and write Am, Bm for the
corresponding forms when u is replaced by am. Then Am and Bm tend
to A and B respectively. However A and B have a smooth real zero
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at [1,v], whence it follows that Am and Bm will also have a smooth
real zero [1,vm], say, if m is large enough. This suffices for the proof
of Lemma 9.3. In particular the rational points [a] ∈ Ph−1 obtained in
this way cannot be restricted to a proper subvariety of Ph−1, since the
points [u] were Zariski-dense.

Moving on to Lemma 9.4, we begin by observing that if αCa + βQa

has rank at most 4 then, on setting t = 0, we must have

rank

(

α
h
∑

i=1

aiBi(v) + βS(v)

)

6 4.

Since rank(S) = n− h > 13 we will have α 6= 0, and we may therefore
assume that α = 1. We now consider the variety

I =

{

[u1, . . . , uh, β] ∈ Ph : rank

(

h
∑

i=1

uiBi(v) + βS(v)

)

6 4

}

.

The projection [u1, . . . , uh, β] 7→ [u1, . . . , uh] is well-defined on I since
[0, . . . , 0, 1] 6∈ I . Its image is Zariski-dense in Ph−1 and must there-
fore be the whole of Ph−1, so that for every [a] ∈ Ph−1, there is a
corresponding β such that

rank

(

h
∑

i=1

aiBi(v) + βS(v)

)

6 4. (10.4)

It is possible indeed that this might still be true with the bound 4
replaced by some smaller number. We therefore define τ 6 4 as the
smallest integer such that (10.4) is solvable for β, for all a.
We now claim that, after replacing C by C + LQ for a suitable

linear form L = L(u) defined over Q, and after making a suitable
linear change of variables among the ui, we will have rank(Bi) = τ for
1 6 i 6 h. Moreover it will remain true that for every a there is a
corresponding β = β(a) with

rank

(

h
∑

i=1

aiBi(v) + βS(v)

)

6 τ.

To establish the claim we first note that there is a Zariski-dense set of
values of [a] such that the rank given above is actually equal to τ . Thus
we may choose a linearly independent set of vectors a1, . . . , ah ∈ Qh

with this property. Then, after a suitable change of variable among the
ui we can suppose that

rank (Bi(v) + βiS(v)) = τ, (1 6 i 6 h).
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If βi were irrational for some i there would be a Galois automorphism
σ such that βσi 6= βi. We would then have

rank (Bi(v) + βσi S(v)) = τ,

whence rank
(

(βσi − βi)S(v)
)

6 2τ , by subtraction. This however is
impossible since βσi − βi 6= 0 and rank(S) = n− h > 13. Thus all the
βi must be rational. We then define

L(u) =

h
∑

i=1

βiui

and consider C ′ = C + LQ. The corresponding quadratic forms B′
i(v)

are now Bi(v) + βiS(v), and therefore have rank τ . The claim then
follows.
To complete the argument we take any index i = 2, . . . , h, and any

µ ∈ Q. There is then a γi ∈ Q such that

rank (B1(v) + µBi(v) + γiS(v)) 6 τ.

However B1 and Bi both have rank τ so that

rank(γiS(v)) 6 3τ 6 12,

by subtraction. Since rank(S) = n − h > 13 this would give a con-
tradiction unless γi = 0, as we now assume. It therefore follows that
rank(B1 + µBi) 6 τ for every i, and for every choice of µ.
We proceed to make a change of variables among the vj so as to make

B1(v) = B∗
1(v1, . . . , vτ ). We now claim that Bi(0, . . . , 0, vτ+1, . . . , vs)

must vanish identically, for every i. If this were not the case we could
introduce a change of variable among vτ+1, . . . , vs so as to make v2τ+1

appear with coefficient 1, in Bi. The (τ+1)×(τ+1) minor of B1+µBi

corresponding to the first τ + 1 rows and first τ + 1 columns would
then be a polynomial P (µ) say, with linear term µ det(B∗

1). Since
rank(B∗

1) = τ we have det(B∗
1) 6= 0 so that P (µ) does not vanish

identically. Thus there can be at most finitely many values of µ for
which P (µ) = 0. Taking any other value of µ produces a combination
B1+µBi of rank strictly greater than τ , which is a contradiction. This
establishes our claim.
We therefore see that Bi(0, . . . , 0, vτ+1, . . . , vs) vanishes identically,

for every i, so that each of the quadratic forms B1, . . . , Bh may be
written in the shape Bi(v) = v1ℓi1(v) + · · · + vτℓiτ (v). Thus, if we
relabel v1, . . . , vτ as uh+1, . . . uh+τ we will be able to put C(x) into the
form

C(x) = C(u,v) =
∑

16i6j6H

uiujLij(u,v),
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with H = h+ τ . Lemma 9.4 then follows.

The proof of Lemma 9.5 is rather easy. Since at least one linear
form Lij(u,v) depends explicitly on v, we can choose a ∈ QH such
that La(t,v) also explicitly depends on v. In particular, the equation
La(t,v) = 0 has solutions with t 6= 0, and they are Zariski-dense
amongst the set of all solutions. Hence, taking such a suitable a ∈ QH ,
we see that rank(Qa) > rank(S) > 9, as in (9.5). It follows that the
variety Qa(t,v) = La(t,v) = 0 will have a point of the form [1,v] over
Q which is non-singular in the sense that ∇Qa is not proportional to
∇La.
We now argue as in the final stages of the proof of Lemma 9.3.

We have shown that there is a point [u,v] on X such that [1,v] is a
smooth point on Qa(t,v) = La(t,v) = 0. There is therefore a non-
empty Zariski-open subset of such points [u,v]. However the variety
C = Q = 0 is absolutely irreducible, and has a smooth real point.
The real points are therefore Zariski-dense, by Lemma 3.4. We choose
any such point with u 6= 0, and such that [1,v] is a smooth point on
Qa(t,v) = La(t,v) = 0. Then, taking rational points am converging to
u in the real topology, we may complete the argument as before.
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[5] J. Brüdern, R. Dietmann, J.Y. Liu and T.D. Wooley. A Birch–Goldbach Theo-
rem, Arch. Math. (Basel) 94 (2010), 53–58.

[6] J.-L. Colliot-Thélène, J. Sansuc and P. Swinnerton-Dyer. Intersection of two
quadrics and Châtelet surfaces. I. J. reine angew. Math. 373 (1987), 37–107.

[7] H. Davenport and D.J. Lewis, Non-homogeneous cubic equations. J. London
Math. Soc. 39 (1964), 657–671.

[8] P. Deligne, La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math. 43
(1974), 273–307.

[9] V.B. Demyanov, Pairs of quadratic forms over a complete field with discrete
norm with a finite field of residue classes. Izv. Akad. Nauk SSSR. Ser. Mat. 20
(1956), 307–324.

[10] W. Fulton, Intersection Theory. 2nd ed., Springer-Verlag, 1998.
[11] J. Harris, Algebraic Geometry. GTM 133, Springer-Verlag, 1992.
[12] R. Hartshorne, Algebraic Geometry. GTM 52, Springer-Verlag, 1977.



56 T.D. BROWNING, R. DIETMANN, AND D.R. HEATH-BROWN

[13] D.R. Heath-Brown, Cubic forms in ten variables. Proc. London. Math. Soc. 47
(1983), 225–257.

[14] D.R. Heath-Brown, A multiple exponential sum to modulus p2. Canad. Math.
Bull. 28 (1985), 394–396.

[15] D.R. Heath-Brown, A new form of the circle method and its application to
quadratic forms. J. reine angew. Math. 481 (1996), 149–206.

[16] D.R. Heath-Brown, Cubic forms in 14 variables. Invent. Math. 170 (2007),
199–230.

[17] J. Kollár, Rationally connected varieties over local fields. Annals of Math. 150
(1999), 357–367.

[18] D. Leep, Systems of quadratic forms. J. reine angew. Math. 350 (1984), 109–
116.

[19] D.J. Lewis, Cubic homogeneous polynomials over p-adic number fields. Annals
of Math. 56 (1952), 473–478.

[20] L.J. Mordell, A remark on indeterminate equations in several variables. J.
London Math. Soc. 12 (1937), 127–129.

[21] P.A.B. Pleasants, Cubic polynomials over algebraic number fields. J. Number
Theory 7 (1975), 310–344.

[22] W. Schmidt, The density of integer points on homogeneous varieties. Acta
Math. 154 (1985), 243–296.

[23] J.-P. Serre, Lie Algebras and Lie groups, Springer LNM 1500, 2nd ed.,
Springer-Verlag, 1992.

[24] M. Swarbrick Jones, Weak approximation for cubic hypersurfaces of large di-
mension, Algebra & Number Theory, to appear. (arXiv:1111.4082)

[25] T.D. Wooley, On simultaneous additive equations, II. J. reine angew. Math.
419 (1991), 141–198.

[26] T.D. Wooley, On simultaneous additive equations, IV. Mathematika 45 (1998),
319–335.

[27] J. Zahid, Simultaneous zeros of a cubic and quadratic form. J. London Math.
Soc. 84 (2011), 612–630.

School of Mathematics, University of Bristol, Bristol, BS8 1TW

E-mail address : t.d.browning@bristol.ac.uk

Department of Mathematics, Royal Holloway, University of Lon-

don, Egham, TW20 OEX

E-mail address : rainer.dietmann@rhul.ac.uk

Mathematical Institute, 24–29 St. Giles’, Oxford OX1 3LB

E-mail address : rhb@maths.ox.ac.uk


	1. Introduction
	2. Overview of the paper
	3. Geometric preliminaries
	4. Weyl differencing
	5. Minor arc contribution: the Weyl bound
	6. Poisson summation
	7. Minor arc contribution: Theorem 1.3
	8. Major arc contribution
	9. Proof of Theorem 1.4
	10. Proof of Lemmas 9.1–9.5
	References

