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  Disease Causing mutations in Inverted Formin 2 regulate its binding to G-actin, F-actin 

capping protein (CapZ alpha-1) and Profilin 2. 
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Abbreviations: FSGS (focal segmental glomerulosclerosis) ESRF (end stage renal failure)  

INF2 (inverted formin 2) DAD (diaphanous activation domain) DID (diaphanous inhibitory 

domain) FH1 and 2 domain (formin homology1 and 2) WH2 domain (Wiskott-Aldrich 

syndrome homology region 2) 
 
Summary Statement: Mutations in INF2 cause Focal Segmental Glomerulosclerosis a major 

cause of end-stage kidney disease. Here we show that disease associated mutations reduce 

INF2 auto-inhibition and cause increased binding to monomeric G-actin, profilin 2 and the F-

actin capping protein, CapZ alpha-1. 

 
Key Words: FSGS, podocytes, actin cytoskeleton, proteomics. 

 

Short Title:  Disease causing mutations in Inverted Formin 2 regulate its function. 
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Abstract 

 

Focal segmental glomerulosclerosis (FSGS) is a devastating form of nephrotic syndrome 

which ultimately leads to end stage renal failure (ESRF). Mutations in INF2, a member of the 

formin family of actin-regulating proteins, have recently been associated with a familial 

cause of nephrotic syndrome characterised by FSGS. INF2 is a unique formin that can both 

polymerize and depolymerize actin filaments. How mutations in INF2 lead to disease is 

unknown. Here we show that 3 mutations associated with FSGS, E184K, S186P and R218Q, 

reduce INF2 auto-inhibition and increase association with monomeric actin. Furthermore 

using a combination of GFP-INF2 expression in human podocytes and GFP-Trap purification 

coupled with Mass Spectrometry we demonstrate that INF2 interacts with profilin 2 and the 

F-actin capping protein, CapZ alpha-1. These interactions are increased by the presence of 

the disease causing mutations. Since both these proteins are involved in the dynamic turnover 

and restructuring of the actin cytoskeleton these changes strengthen the evidence that aberrant 

regulation of actin dynamics underlies the pathogenesis of disease.   
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Introduction 

The glomerulus is the filtration unit of the kidney and is composed of a bundle of 

capillaries which are highly permeable to water, and yet are able to selectively allow passage 

of solutes while retaining larger macromolecules. This selectivity is achieved through the 

action of the glomerular filtration barrier which consists of the glomerular endothelial cells, 

glomerular basement membrane, and podocytes. Podocytes are terminally differentiated 

epithelial cells that are critical in preventing protein passage across the filtration barrier. 

Podocytes have branching and interdigitating processes, and filtration takes place through 

slits between these processes. The maintenance of its specific cell morphology is essential for 

the proper functioning of podocytes and this is largely dependent on a highly dynamic 

underlying network of protein scaffolding. The shape of this cytoskeleton is dictated by a 

number of regulatory factors, and disruption of function can lead to a failure to form an 

appropriate cell shape, which in turn can lead to a disease state [1].  Focal and segmental 

glomerulosclerosis (FSGS) is a major cause of end-stage kidney disease. Recent advances in 

molecular genetics show that defects in the podocyte play a major role in the pathogenesis of 

FSGS [2-4] and that mutations in inverted formin 2 (INF2), a member of the formin family of 

actin-regulating proteins, cause autosomal dominant FSGS [5-7].  

INF2 is a member of the Diaphanous sub family of formins and has a similar domain 

architecture to other related subfamily members.  The N-terminal half comprises a 

predominantly regulatory function and encompasses an overlapping Rho binding domain and 

Diaphanous Inhibitory Domain (DID).  The C-terminal half includes Formin Homology 

Domains 1 and 2 (FH1 and FH2) and a Diaphanous Autoregulatory Domain (DAD).  The 

DAD domain also acts as a monomeric G-actin binding WH2 domain.   

INF2 is unique among the formin family members in that it possesses a dual catalytic 

activity with regard to actin dynamics.  As well as nucleating actin filaments and promoting 

their elongation, INF2 can also accelerate F-actin depolymerisation and filament severing [8].  

This severing and depolymerisation activity appears to be dependent on the activity of both 

the FH2 and WH2 domains acting in concert [9]. Regulation of other members of the 

diaphanous related subfamily of formins is achieved through interaction of the DID and DAD 

domains, constraining the formin in a closed conformation which inhibits its actin nucleating 

and polymerising activities.  This auto-inhibition is at least partially relieved through binding 

of active, GTP-bound Rho GTPases to the N-terminal DID domain. Unusually, in the case of 

INF2, DID-DAD interaction does not inhibit actin polymerisation but does inhibit actin 

depolymerisation and severing [9].   

In T-lymphocytes INF2 regulates MAL-mediated transport of the src-family kinase 

lymphocyte-specific protein tyrosine kinase Lck to the plasma membrane [10]. INF2 

functions in the regulation of basolateral-to-apical transcytosis and lumen formation, 

perinuclear actin assembly and in an actin dependent step in mitochondrial fission [11-13]. In 

cultured podocytes INF2 has been reported to regulate cellular actin dynamics by 

antagonizing Rho/diaphanous –related formin signalling and disease causing mutations have 

been shown to alter this signalling in the glomerulus [14, 15]. INF2 has been shown to bind 

to and be regulated by the Rho-GTPase CDC42 in a GTP-loaded-dependent manner via its 

DID domain although there is a question as to whether this is a direct interaction [11, 16, 

17].The mutant forms of INF2 show increased binding to cdc42.  

We studied three disease causing mutations in INF2 (E184K, S186P and R218Q) that 

all lie within the diaphanous inhibitory domain.  We show that these mutations reduce INF2 

auto-inhibition by weakening the interaction between the DID and DAD domains leading to 

an increased association with monomeric actin. Further we demonstrate an interaction of 

INF2 with profilin 2 and the F-actin capping protein, CapZ alpha-1 both of which are 

increased by the presence of the disease causing mutations.  
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Material and Methods 

 

Material and Methods 

 

Co Immuoprecipitation and pulldowns 
pET32a-INF2-DAD was made by PCR cloning using 2850 to 3750 of the coding region of 

INF2. The construct was also FLAG tagged at the N- terminus. The pGEX4T3-INF2-DID-

WT, -E184K, -R218Q and -S186P constructs were made by PCR using 4 to 1029 of the INF2 

coding region and the constructs were HA tagged at the C-terminus. All constructs were 

transformed into Rosetta cells (Novagen) for protein expression. Constructs were grown in 

100ml (HIS tagged portiens) or 50ml (HA tagged proteins) of LB and protein expression 

induced with 100mM IPTG, pelleted and resuspended in 5ml lysis buffer (PBS, 1% Triton 

TX-100, 1mM PMSF, protease inhibitor cocktail (Sigma), 10mM Imidazole). Cells were 

lysed by sonication, pelleted and the HIS tagged protein supernatants were incubated with 

HisPur Cobalt resin (Pierce) with 2% BSA for 30 minutes at 4
0
C. Beads were washed x5 with 

lysis buffer (plus an extra 100mM NaCl), resuspended and snap frozen in liquid N2, each 

aliquot having 10 – 20g of protein linked to the beads.  Aliquots of agarose bead linked 

INF2-DAD and control were incubated with HA tagged DID domain lysates for 1 hour at 

4
0
C, beads were then washed x5 with wash buffer (PBS + extra 100mM NaCl, 1mM PMSF), 

boiled for 10 minutes with sample buffer, separated by PAGE, transferred to PVDF and 

probed with an anti HA antibody.  

For co immunoprecipitation of endogenous protein 5mg of polyclonal INF2 antibody or 

Rabbit Ig (Bethyl Labs or Millipore) was incubated with protein A/G agarose beads 

overnight, the beads were washed and incubated with lysates from differentiated podocytes 

(10mM Tris pH 7.5, 150mM NaCl, 0.5mM EDTA, 2% NP40, 10% Glycerol, protease 

inhibitor cocktail (Sigma), 1mM PMSF) for 1 hour at 4
0
C. The beads were washed x5 

(10mM Tris pH 7.5, 150mM NaCl, 0.5mM EDTA, protease inhibitor cocktail, 1mM PMSF), 

eluted, boiled, separated and blots were probed with relevant antibodies.  

For co immunoprecipitation of over expressed protein HEK 293-T cells were transfected with 

GFP-INF2-WT, -E184K, -R218Q or -S186P and cotransfected with HACdc42QL (A gift 

from Harry Mellor) or a transfection control plasmid. After 48 hours cells were lysed in 

buffer (10mM Tris pH 7.5, 150mM NaCl, 0.5mM EDTA, 2% NP40, 10% Glycerol, protease 

inhibitor cocktail (Sigma), 1mM PMSF), pelleted and the supernatant incubated with GFP 

Trap agarose beads (Chromotek). After rotating at 4
0
C for 1 hour the beads were washed x5 

(10mM Tris pH 7.5, 150mM NaCl, 0.5mM EDTA, protease inhibitor cocktail, 1mM PMSF), 

protein was eluted in 50l sample buffer, separated, transferred and blots were probed with 

relevant antibodies. 

For Co-IP of G-actin, HEK293T cells were seeded into a 6-well plate and transfected with 

FLAG-INF2-WT, -E184K, -R218Q, -S186P or transfection control. After expression, cells 

were lysed in 100µl lysis buffer (50mM Tris, pH7.5, 120mM NaCl, 1% NP40, 40mM β-

glycerophosphate, 1mM benzamidine) and incubated on ice for 60mins to allow complete F-

actin depolarization. INF2 was immunoprecipitated with anti-FLAG M2 (Sigma) and protein 

G magnetic beads (pre-blocked with 1% BSA) for 6 hours at 4C.  IP’s were washed 3 times 

with 500ml wash buffer (50mM Tris, pH7.5, 120mM NaCl, 0.5% NP40, 10% glycerol) and 

protein eluted by boiling with SDS sample buffer.  Protein was resolved by SDS PAGE and 

probed by western blot for INF2 (via FLAG-tag) and actin. 

 

Proteomics 

GFP-INF2-WT was subcloned into pWPXL  (pWPXL was a gift from Didier Trono 

(Addgene plasmid # 12257)) and together with packaging vectors pMDG.2 and psAX2 
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(pMD2.G was a gift from Didier Trono (Addgene plasmid # 12259) and psPAX2 was a gift 

from Didier Trono (Addgene plasmid # 12260)) transfected into Lenti-X 293T Cell Line 

(Clontech). Human podocytes were transduced with GFP or GFP-INF2 lentivirus with 

8µg/ml polybrene overnight, the cells were thermo switched and differentiated for a 

minimum of 10 days [18]. 2x 175 tissue culture flasks were lysed and GFP and GFP-INF2 

protein and interacting proteins were immuprecipitated using the GFP-TRAP system 

(Chromotek). Samples were separated on Nupage 4–12% precast gels (Invitrogen) and 

subjected to LC-MS/MS analysis on an Orbitrap Velos (Thermo) mass spectrometer as 

described previously [19, 20] 

 

Immunofluorescence 

Conditionally immortalised Human podocytes stabley expressing GFP-INF2 were seeded 

onto coverslips in a six well plate or onto imaging dishes (MatTek) and differentiated for a 

minimum of 10 days. Cells were fixed in 4% PFA and permabilised wtih 0.3% Triton TX-

100 in PBS for 5 minutes. After blocking in 3% BSA cells were incubated in the relevant 

primary and secondary antibodies and mounted on slides in vectashield with DAPI (Vector 

Labs). Images were captured using a Leica AM TIRF MC (multi-colour) system attached to a 

Leica DMI 6000 inverted epifluorescence microscope equipped with 405, 488, 561nm, 

635nm laser lines. 

 

Antibodies and other reagents 

Mouse monoclonals: anti HA (Covance), GFP (Roche) FLAG (Sigma), Rabbit polyclonals: 

anti F-Actin capping protein (Millipore), Profilin2 (Sigma), Tubulin (Sigma), INF2 (Bethyl 

Labs, Millipore). Phalloidin-647 (Molecular Probes).  

 

 

Results 

 

INF2 has been reported to localize to the endoplasmic reticulum (ER) [9]. In conditionally 

immortalized human podocytes we used total internal reflection fluorescence microscopy 

(TIRF) to study the localization of INF2 near the plasma membrane and to exclude the ER 

pool. This demonstrated that there is INF2 at the cell periphery which colocalises with both 

tubulin and actin (Figure 1A). Using Flag tagged wild type and three disease causing 

mutations in INF2 (E184K, S186P and R218Q) that all lie within the diaphanous inhibitory 

domain (Figure 2A) we show that INF2 interacts with actin and this interaction is increased 

in the presence of the disease causing mutations (Figure 1B and C).  Actin has been shown to 

bind to the WH2 domain of INF2 which also acts as a diaphanous auto-regulatory domain 

(DAD) binding to the diaphanous inhibitory domain (DID) to auto-regulate INF2 activity [9]. 

Therefore to determine if this increase in actin binding was due to a loss of DID:DAD 

interaction we expressed  and purified His tagged INF2-DAD, linked the fusion protein to 

Co2+ beads and used these to pulldown HA tagged INF2-DID-WT, -E184K, -R218Q and -

S186P to measure the relative binding capacity of the wild type and mutant DID domains 

with the DAD domain. Only the wild type DID interacted with DAD.  This demonstrated that 

in the disease causing mutations the DID:DAD interaction is disrupted (Figure 2B,C) and 

therefore the FH2 domain becomes accessible thus leading to the increased association with 

monomeric actin.  

In order to further explore the effect of these mutations on INF2 biology we expressed GFP 

tagged INF2 in podocytes using lentiviral transduction. GFP-INF2 co localises with F-actin 

as expected in differentiated podocytes so we were confident that the fusion protein is 

properly localised (Figure 3A). These and control cells, expressing GFP only, were then lysed 
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and the GFP immunoprecipitated using the highly efficient GFP-trap method [21]. The 

precipitated GFP and GFP-INF2 were separated by SDS-PAGE and interacting proteins 

analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) after in-gel 

tryptic digestion. The mass spectrometry analysis identified two proteins, profilin 2 and F-

actin capping protein (CapZ alpha-1), that were significantly more abundant in the GFP-INF2 

pulldown compared to the GFP control (Figure 3B, C). To confirm the mass spectrometry 

results further pull downs were undertaken using both overexpressed and endogenous INF2 

in podocytes showing that indeed INF2 interacts with both proteins (Figure 4B, C).  

Furthermore TIRF microscopy in human podocytes showed colocalization of INF2 with F-

actin capping protein at the periphery of the cell (Figure 4A). We used F-actin capping 

protein and profilin pull down as a readout for INF2 activity as it has been previously 

reported that profilin binds to the FH1 domain of mDia [22] and we speculated that the loss 

of interaction between the DAD and mutant form of DID will lead to activated INF2 and 

therefore increased interaction with target proteins. This proved to be the case as the mutant 

forms of INF2 pulled down significantly more F-actin capping protein and profilin than the 

wild type. (Figure 5A, B, C).  

INF2 is reported to bind to the Rho-GTPase CDC42 and the mutant forms of INF2 are 

reported to show increased binding to this protein [11, 16, 17]. We co-expressed GFP-INF2 

with the active form of cdc42 (cdc42QL [23]) and demonstrated that there was an interaction 

(Figure 5D). Furthermore we showed that the presence of the active cdc42 resulted in a 

significant increase in the interaction between wild type INF2 and the F-actin capping protein 

(Figure 5E). 

 

 

 

Discussion 

 

Focal segmental glomerulosclerosis (FSGS) is a devastating form of nephrotic 

syndrome. The aetiology of FSGS is still unknown although inherited forms of the disease 

are now providing revolutionary clues to the underlying pathogenesis and target the 

glomerular podocyte [4, 24]. Podocytes are the final layer in the kidney's glomerular capillary 

wall. Together with the basement membrane and glomerular endothelial cells they form the 

barrier through which filtration occurs. Podocytes play an essential role in preventing 

proteinuria and are an important target in the pathogenesis of renal disease. Podocytes have a 

remarkably elaborate and highly specialised morphology that is dependent on the actin 

cytoskeleton and which is essential for maintaining glomerular function and integrity in 

healthy kidneys [1].  There is compelling evidence that podocytes display a limited 

physiological motility, and that changes in podocyte motility may underlie nephrotic disease 

[1, 25]. Thus it is clear that the specialized function of the podocyte in the normal kidney 

depends critically on an underlying network of dynamic and interconnected actin and 

microtubule polymers. The mechanism through which this morphology is achieved and 

maintained in the normal kidney is not currently understood.  

Mutations in the DID domain of the formin family member, INF2, have recently been 

associated with focal segmental glomerulosclerosis (FSGS) [3-7] and in Charcot-Marie-

Tooth disease with glomerulopathy [16]. Formins are a highly conserved family of large 

multi-domain proteins that play essential roles in the regulation of actin and microtubule 

cytoskeletons [26].  Interestingly certain of these mutations only result in a renal phenotype 

suggesting that these cause a disruption of podocyte morphology as a result of aberrant 

regulation of actin dynamics [16].  Little is known about the role of the INF2 DID domain, 

although one study has shown that association of INF2 DID domain with the DAD domain of 
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the related family member, mDia1 inhibited RhoA-mDia dependent actin polymerisation and 

serum response factor regulated gene transcription [14].  

We have shown that recombinant, truncated INF2 regions comprising the DID and 

DAD domains interact in vitro and that FSGS associated mutations (E184K, S186P and 

R218Q) reduce the affinity of this interaction.  The mutant forms of INF2 also show an 

increased association with monomeric actin as shown by co-immunoprecipitation. This 

would be consistent with the auto-regulation of other formins whereby interaction of the DID 

and DAD domains constrains INF2 in a closed conformation inhibiting its actin nucleating 

and polymerising activities. Loss of this auto-inhibition through loss of affinity of the DID 

and DAD interaction leads to revealing of the WH2 domain and increased actin binding. This 

is in agreement with previous data showing that disruption of the DID/DAD interaction 

causes constitutive actin polymerization by INF2 in cells [17]. 

Using a combination of GFP-INF2 expression in human podocytes and GFP-Trap 

purification coupled with Mass Spectrometry we identified profilin 2 and the F-actin capping 

protein, CapZ alpha-1 as interactors of INF2. These interactions were confirmed using both 

expressed and endogenous INF2. Importantly these interactions are increased by the presence 

of the disease causing mutations and by the co-expression of an active CDC42 construct. 

CDC42 is a known regulator of INF2 so this data suggests that both the mutations and cdc42 

lead to a decrease in the DID/DAD interaction increasing the binding of actin, profilin 2 and 

the F-actin capping protein [11].   

Profilin is a known interactor of the formin family and has been shown to regulate the 

effects of these proteins on actin dynamics [27-29]. Indeed profilin has recently been shown 

in fission yeast cells to regulate the F-actin network by favouring formin over the Arp2/3 

complex [30]. INF2 and profilin have been shown to regulate the assembly and turnover of 

short actin filaments [31]. Therefore the increased binding of profilin to INF2 in the presence 

of the disease causing mutations is likely to have a significant effect on the regulation of 

podocyte actin dynamics. Furthermore we have demonstrated that INF2 also binds to CapZ 

alpha 1 and that like profilin this binding is also increased in the presence of the disease 

causing mutations. Actin capping proteins are key regulators of actin dynamics and formins 

have been shown to antagonize the actions of these proteins [32, 33]. Interestingly, in fission 

yeast during cytokinesis profilin has been shown to mediate the competition between capping 

protein and formin [34]. Therefore this again suggests that the FSGS causing mutations will 

disrupt the tight regulation of the podocyte actin cytoskeleton. 

Apart from its role in the regulation of actin dynamics INF2, like other formins, has 

been shown to bind and have effects on microtubules [35] and is thought that formins may act 

to co-ordinate actin filaments and microtubules which is essential for many cellular processes 

[26, 36]. In cultured podocytes INF2 regulates cellular actin dynamics by antagonizing 

Rho/diaphanous –related formin signalling and disease causing mutations have been shown 

to this alter this signalling in the glomerulus [14, 15]. mDia mediates Rho-regulated 

formation and orientation of stable microtubules and actin-capping protein promotes 

microtubule stability by antagonizing the actin activity of mDia [37, 38]. Therefore this 

suggests that actin capping protein may function by co-ordinating cross-talk between actin 

and microtubules and this may be disrupted by the disease causing INF2 mutations.  In 

support of this INF2 has been shown to organizes lumen and cell outgrowth during 

tubulogenesis by regulating both F-actin and microtubule cytoskeletons and the authors of 

this paper suggested that the effects of disease causing INF2 mutations may be via alternative 

or additional mechanisms to altered actin regulation namely via effects on microtubular 

dynamics[39].  

 Capz has been shown to interact with CD2AP which plays a key role in the 

maintenance of the podocyte slit diaphragm [40] and INF2 has been shown to bind to nephrin 
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and to regulate lipid raft–mediated lamellipodial trafficking of slit diaphragm proteins [14]. 

Interestingly CD2AP was identified as a binding partner of INF2 in our proteomic screen 

although this is still to be confirmed (Figure 3). Nephrin and the slit diaphragm complex are 

known to be a crucial regulators of the podocyte cytoskeleton and therefore our data suggests 

that INF2 binding to profilin and Capz alpha 1 may play a critical role in the tight regulation 

of podcoyte actin and microtubular dynamics via interaction with the podocyte slit diaphragm 

and this is altered in the presence of disease causing mutations [1]. 
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Figure Legends 
Figure 1 

A. Cellular localisation of INF2 in differentiated conditionally immortalised Human podocytes. B. 

Representative western blot of a co IP between G-actin and FLAG tagged wild type and mutant INF2. C. Graph 

of relative interactions between G-actin and the wild type and mutant INF2. n = 6, significance * P≤0.05 

 

Figure 2 

A. Schematic representation of INF2 showing the Diaphanous Interacting Domain and the position of the 

E184K, R218Q and S186P mutants, the FH1 and FH2 domains and the Diaphanous Autoinhibitory Domain. B. 

Representative western blot of a pulldown experiment between HIS:Diaphanous Autoinhibitory Domain 

immobilised on Co
2+

 agarose beads and wild type and mutant HA linked DID domains. C. Graph of relative 

interactions between the INF2 DAD and the wild type and mutant DID. n = ≥ 4, significance * P≤0.05 

 

Figure 3 

A. TIRF images of Co localisation between GFP-INF2 and F-actin in differentiated ciPodocytes. B.  Western 

blot of an IP using GFP-TRAP in differentiated ciPodocytes and probed with an anti GFP antibody. C. Selected 

proteins identified by Mass spec that interact with GFP-INF2 in differentiated ciPodocytes. 

 

 

Figure 4 

A. TIRF images of colocalisation between GFP-INF2WT and F-Actin capping protein in ciPodocytes. B. 

Western blots of IPs using GFP-TRAP in differentiated podocytes probed with an F-Actin capping protein 

antibody and a Profilin-2 antibody. C. Western Blot of a co IP of endogenous protein using an INF2 antibody 

linked to agarose beads and probed with antibodies to INF2,  F-Actin Capping Protein and Profilin-2.  

 

 

Figure 5 

A. Representative western blots of the co IP of Profilin-2 and either GFP-INF2WT, GFP-INF2E184K, GFP-

INF2R218Q or GFP-INF2S186P. B. Representative western blots of the co IP of F-actin capping protein and 

either GFP-INF2WT, GFP-INF2E184K, GFP-INF2R218Q or GFP-INF2S186P.  C. Graphical representation of 

the relative amount F-actin capping protein and profilin-2 that co IPs with GFP-INF2WT, GFP-INF2E184K, 

GFP-INF2R218Q or GFP-INF2S186P normalised for expression levels and relative to GFP-INF2WT which is 

set at 1. n=≤3. D. Western blot of a co IP of GFP-INF2WT and HA-Cdc42QL. E. Representative western blot of 

the co IP of F-Actin capping protein co transfected with control or HACdc42QL. F. Graph of the relative 

amount of F-actin capping protein that co-IPs with GFP-INF2WT + control and GFP-INF2WT + HACdc42QL 

normalised to GFP-INF2WT+Control which is set at 1. n≥4, significance * P≤0.05, ** P≤0.01 
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