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Abstract
Any potential health effects of radiation emitted from radionuclides
deposited in the bodies of workers exposed to radioactive materials can be
directly investigated through epidemiological studies. However, estimates
of radionuclide exposure and consequent tissue-specific doses, particularly
for early workers for whom monitoring was relatively crude but exposures
tended to be highest, can be uncertain, limiting the accuracy of risk estimates.
We review the use of job-exposure matrices (JEMs) in peer-reviewed
epidemiological and exposure assessment studies of nuclear industry workers
exposed to radioactive materials as a method for addressing gaps in exposure
data, and discuss methodology and comparability between studies. We
identified nine studies of nuclear worker cohorts in France, Russia, the USA
and the UK that had incorporated JEMs in their exposure assessments. All
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these JEMs were study or cohort-specific, and although broadly comparable
methodologies were used in their construction, this is insufficient to enable the
transfer of any one JEM to another study. Moreover there was often inadequate
detail on whether, or how, JEMs were validated. JEMs have become more
detailed and more quantitative, and this trend may eventually enable better
comparison across, and the pooling of, studies. We conclude that JEMs have
been shown to be a valuable exposure assessment methodology for imputation
of missing exposure data for nuclear worker cohorts with data not missing at
random. The next step forward for direct comparison or pooled analysis of
complete cohorts would be the use of transparent and transferable methods.

Keywords: plutonium, exposure assessment, occupational exposure,
epidemiology, job-exposure matrix, JEM, nuclear power

(Some figures may appear in colour only in the online journal)

1. Introduction

The potential radiotoxicity of the long-lived alpha-particle-emitting isotopes of plutonium was rec-
ognised soon after its discovery [1]. Plutonium-239, with a half-life (#,,) of 24 100 years, is normally
produced by the neutron bombardment of uranium-238 in a nuclear reactor, and is usually the iso-
tope of principal interest [2]. The longer the uranium fuel is kept in a reactor (i.e. the higher the fuel
‘burnup’) the greater the proportions of other plutonium isotopes produced. Plutonium exposure
may occur to workers engaged in plutonium production, nuclear fuel reprocessing, decommis-
sioning and clean-up operations [3, 4] or to the general public as a result of atmospheric testing of
nuclear weapons, nuclear accidents, or discharges and waste disposal from nuclear facilities [5].

Alpha-particle radiation is the main risk posed by exposure to plutonium, although low-
energy x-rays and gamma-rays are also emitted during alpha-particle decay, as are neutrons
from spontaneous fission [6]. Plutonium-241 (1, = 14 years) emits beta-particles but decays
to americium-241 (f, = 433 years) which is also an alpha-particle emitter and can produce
significant doses of radiation [6]. Since the alpha-particles emitted by plutonium possess high
energies but only travel short distances (approximately 50 pm in tissue, i.e. the typical length
of one adult human liver cell), the greatest concern regarding health effects of exposure is the
biological damage that may occur once plutonium has been taken into the body via inhalation,
ingestion or puncture wounds [7]. In most exposure scenarios, alpha-particle radiation from
sources external to the body does not penetrate the topmost dead layer of skin and hence gen-
erally poses little health risk [8]. Once plutonium radioisotopes are taken into the body they
can be retained for decades [9, 10]. Primary retention sites are the liver and skeleton, with the
lung being important for inhalation exposures, which is the primary route for most occupa-
tional exposures [9, 10]. The long physical and biological half-lives of plutonium mean that
exposed tissues accumulate doses of alpha-particle radiation over many years even if exposure
was of short duration.

Evidence for increased cancer and non-cancer risks from plutonium exposures has
been reported for workers at the Mayak Production Association in the Russian Federation
[11-14]. Mayak was used to produce plutonium for nuclear weapons and exposures, in the
early years of operation, are known to be significantly higher than similar facilities elsewhere
[13, 15]. In contrast to the findings from Russia, studies of plutonium workers in other coun-
tries have been inconclusive, which is likely the result of much lower tissue doses [16-22].
Remaining scientific uncertainty regarding the overall health effects of occupational exposure
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to plutonium, particularly at lower levels, suggests that further epidemiological studies are
important [23, 24]. It is clear that the reliability of these types of studies is directly related to
the availability and accuracy of plutonium and other radionuclide exposure assessments for
occupational intakes [23, 25]. Also of interest to epidemiological studies of plutonium work-
ers are any doses due to occupational exposures to external sources of penetrating radiation
(for plutonium workers, these are predominantly gamma radiation and neutrons), and other
workplace exposures (e.g. asbestos), as such exposures can also affect health outcomes [4].

The absorbed dose of ionising radiation is defined as the energy deposited per unit mass,
and has the SI unit of the gray (Gy), which is one joule per kilogram [26]. Some types of radia-
tion, such as alpha-particles, are more densely ionising than others (e.g. gamma-rays) and
more effective at causing biological damage at the cellular level [27]. This difference in effect
is called the Relative Biological Effectiveness (RBE) and for the purposes of radiological
protection the RBE is taken into account through the radiation weighting factor (wg). Under
the International Commission on Radiological Protection (ICRP) system, the absorbed dose
(in gray) multiplied by wg gives the equivalent dose for an organ/tissue which is expressed in
sieverts (Sv) [26]. The wg for gamma-rays is one, so one gray is equal to one sievert, while
for densely ionising alpha-particles wg is 20, so that one gray is equal to 20 Sv [26]. For doses
from internally deposited radionuclides that are heterogeneously distributed among body tis-
sues, the dose recorded for radiation protection purposes is often the effective dose, which is
the sum of all the organ/tissue equivalent doses each weighted by the ICRP tissue weighting
factor (wr). The tissue weighting factor takes into account the radiosensitivity of the organ/
tissue, mainly with respect to the risk of cancer induction but also including hereditary risks
from gonadal doses [26]. The effective dose is also measured in sieverts. For epidemiologi-
cal analyses the absorbed dose in gray is generally preferred because one of the purposes of
epidemiological research is to determine the magnitude of any differences in health outcomes
due to doses received from different types of radiation.

It is practically and technically straightforward to measure exposures to penetrating radia-
tion and express it as a whole-body dose (at least for gamma-rays and x-rays, but not nec-
essarily for neutrons) [28]. Exposure to external sources of penetrating radiation is usually
measured directly using individual monitoring based on personal dosemeters such as film
badges and thermo-luminescent dosemeters (TLDs), worn on the worker’s outer clothing
[26]. Because the radiation involved is penetrating, an easy simplifying assumption, for pro-
tection purposes, is that doses to all organs and tissues are the same (i.e. a whole-body dose),
even though in practice some organs and tissues tend to be at least partially shielded by oth-
ers, meaning doses to the shielded organs are actually lower. In epidemiological studies of
nuclear workers with external exposures the doses used are, typically, annual whole-body
doses, which can be summed to give the cumulative dose within any period of interest (used
in, for example, [14, 21, 22]).

When the primary purpose of an epidemiological study is to investigate internal exposures,
however, it is necessary to use organ/tissue-specific doses because internally deposited radio-
nuclides often distribute heterogeneously within the body and doses tend to differ significantly
by organ/tissue, hence it is the cumulative doses received by specific organs/tissues that are
of interest.

Occupational doses from plutonium and other alpha/beta-particle-emitting radionuclides
are mainly assessed indirectly using biological samples provided by workers considered to be
potentially exposed to them. This is because the low penetration radiation they emit is difficult
to detect directly when the source is located within the body, and the limit of detection for
such in vivo monitoring can equate to a dose that substantially exceeds the annual limit. For
plutonium, urine samples are generally used as the basis for most internal dose assessments,
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as urine is relatively easy to collect in the required volumes, and plutonium continues to be
excreted in urine long after intake has ceased [29]. Faecal sampling is principally used only
for the assessment of acute exposures, because clearance through this route decreases rapidly
following cessation of intake and also because there are more issues with sample collection
[29]. Body tissues collected at autopsies have also been used to assess exposures within some
populations (e.g. [21, 30, 31]).

As well as bioassay measurements (e.g. urinalysis), assessments of plutonium organ/tis-
sue doses also rely on knowledge of the nature of the plutonium intake [29] and the way it
is metabolised in the body. The absorption, distribution, retention, and excretion of pluto-
nium depends on many factors including the initial chemical composition (material solubil-
ity affects absorption in the lung, gut and wound tissues), aerosol particle parameters (e.g.
size, density) for inhalation exposures, organ/tissue residence times, and mode of exposure
[10, 32-35]. Calculating intakes of, and organ/tissue-specific doses from, plutonium is
therefore difficult and complex [29], and can be a labour-intensive and costly exercise [4].
Metabolic (biokinetic) models which relate urine concentrations to initial intake(s) and tissue
burdens have changed over time as more information has become available [9, 10, 36, 37].
This improving knowledge of plutonium metabolism means that assessed intakes and doses,
based on the same bioassay results, will change over time. This can lead to a situation in which
epidemiological studies of plutonium workers are not directly comparable due to differences
in dosimetry methodologies.

Dosimetry information that would provide quantitative estimates of exposures from pluto-
nium and other radionuclides may also be unreliable, missing or unusable for other reasons.
Examples of this include adventitious contamination of biological samples, lack of person
specific data as a consequence of administrative decisions on the monitoring of individuals, or
changes in analytical methods, detection thresholds, and recording practices over time. These
problems exist among the world’s most important cohorts for assessing plutonium workers’
exposure risks [18, 31, 38, 39]. For example, Wing ef al [18] observed that the majority of
workers in the US Hanford Site cohort had no bioassay monitoring in most years of employ-
ment, and Khokhryakov et al [31] reported that only 32% of the Russian Mayak workers had
at least one urine bioassay sample. Riddell et al [39] noted that, due to the high reporting limit
associated with some early urine samples, the historical monitoring data available for sev-
eral hundred early UK Sellafield workers cannot provide the accurate and unbiased exposure
assessments needed for risk analyses.

Another issue is that the internal monitoring of workers that has been undertaken was
to meet regulatory requirements and for operational protection purposes, rather than for
epidemiological research purposes [40, 41]. Because of the conservative approach encour-
aged in the systems used for such purposes, recorded doses have tended to be systematically
overestimated.

All these problems pose a challenge to obtaining accurate, reliable and unbiased doses—
from internally deposited plutonium and other radionuclides—for use in studies of the
potential risks of occupational exposures. The primary purpose of this paper is to conduct
a substantial review of the job-exposure matrix (JEM) approach as an alternative method
of evaluating internal exposures (from plutonium and other radionuclides), particularly for
epidemiological studies of nuclear workers where quantitative dosimetry data based on urine
monitoring for the cohort (or parts thereof) are unreliable, cannot be obtained at all, or are
missing, for the reasons discussed above. The motivation for this review was in the first
instance to inform a JEM assessment of exposures to plutonium for early workers at the
Sellafield nuclear complex in Cumbria, north-west England, but the paucity of summary
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information on this approach will make the review of relevance to most, if not all, nuclear
worker cohorts.

2. Rationale for using the JEM approach

In general, the problem of missing doses will reduce the statistical power of epidemiologi-
cal studies due to subjects with missing doses. This is a particularly significant issue because
the ability of an epidemiological study to detect any adverse health effects is usually directly
related to the size of the study population and this has to be large when potential risks are
small [42]. Occupational exposures to radiation are typically low dose and low dose-rate and
are therefore associated with small increases in risk [43, 44]. Consequently, epidemiological
studies of plutonium workers are hampered by the lack of exposure assessment data of the
required quality (e.g. [16, 19, 22]). This is reflected in the limited number of studies of nuclear
workers that have specifically examined exposures from internally deposited plutonium and
other radionuclides, especially in terms of organ/tissue-specific doses [4, 45].

It should be noted that the missing data problem is not restricted to analyses of plutonium
workers, but in reality affects nearly all epidemiological cohort studies. In the statistical lit-
erature, methods of multiple imputation [46], full information maximum likelihood [47] and
mean imputation [48] are used to impute missing data, either for data missing completely at
random and/or missing at random [49]. The review of the problems leading to missing doses
in the preceding section indicates that missing historical dose data are not missing at random.
Moreover, if historical exposure data from a whole time period are missing the imputed doses
following these statistical imputation methods are likely to be flawed. Both of these issues
have important implications for epidemiological analyses of plutonium workers indicating
that a different framework for imputing missing data is needed. This framework should enable
the building of exposure estimation methods, based upon available information on determi-
nants that model exposure across time periods and jobs, so that missing combinations can
be imputed from overall trends. Within the occupational epidemiology literature, the most
common approach to retrospective exposure assessment is to use occupation (job title) and
industry as an exposure proxy [50-52].

In lieu of direct information, principal among those retrospective exposure estimation tech-
niques are the job-exposure matrices (JEMs), exposures self-reported by study subjects, and
exposures assessed by experts [S0-52]. In occupational epidemiology, cohort and case-control
studies have long used the JEM approach where occupations and/or industries represent one
axis, exposure agents the other (many studies have a third axis representing time periods/work
durations for assessment of time trends), and the cells of the matrix indicate the likely pres-
ence, intensity, frequency, and/or probability of exposure to a specific agent in a specific job
[52-54]. The approach is based on the observation that study subjects’ job histories within a
company can serve as a basis for assigning exposures [52—54], assuming that people with the
same job, in the same time period, get approximately the same exposure.

3. Methods

The PubMed and MEDLINE databases for the period 1 January 1980-31 May 2015 were
searched to identify relevant studies of workers who are potentially exposed to radioactive
materials. Various combinations of the following search terms were used: epidemiology,
nuclear workers, health risk, mortality, cancer, radiation exposure, internal exposure, internal
contaminations, plutonium, plutonium isotopes, radioactive materials, radionuclides, internal
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emitters, alpha emitters, intakes, bioassay measurements, occupational doses, internal doses,
and organ/tissue doses. References in identified papers were reviewed for additional sources.
Only studies published in peer-reviewed journals were considered. Papers published in the
English language, which examined the health risk of occupational exposures to radiation
from internally deposited plutonium and other radionuclides and used JEM techniques as
alternative methods of evaluating internal exposures in the absence of quantitative dosimetry
data based on urine monitoring, were selected for this present review. Specific review of the
selected studies is provided in the next section, followed by an overall discussion on the qual-
ity of these JEMs in radiation epidemiology in section 5.

4. Results

Nine studies of nuclear worker cohorts in France, Russia, the USA and the UK that had incor-

porated JEMs in their exposure assessments were selected and reviewed in depth. Table 1 sum-

marises these studies: four assessed internal exposure to plutonium and other radionuclides

[18, 55-57]; three assessed internal exposure to uranium [58—60]; one assessed internal expo-

sure to thorium and its decay products [61]; one assessed internal exposure to tritium [62].
Specific reviews of these studies follow.

4.1. Studies of workers at the Oak Ridge site [55, 59, 60]

The study by Polednak and Frome 1981 [59] examined the mortality of a cohort of 18869
white males who were employed between 1943 and 1947 at the Y-12 plant (a uranium conver-
sion and enrichment plant) in Oak Ridge, operated by the Tennessee Eastman Corporation
(TEC). The authors reported that uranium levels in the urine of over 1000 male and female
chemical workers were determined at TEC in 1945. They however considered these data of
limited value since a small percentage of workers were monitored, the criteria for selection of
persons to be monitored were unknown, and measurable urinary uranium levels were mainly
only suitable for the assessment of exposures to more soluble uranium compounds (workers
at Y-12 were also exposed to less soluble compounds).

Therefore, the authors used original company records documenting codes and descriptions
of departments and job titles, uranium air-sampling data, and other historical material and
documents from TEC to reconstruct individual uranium exposure. Subgroups of workers were
defined on the basis of departments and average levels of uranium dust where they worked:
if a worker was ever employed in an alpha or beta department, he was assigned to that group;
if not, he was then assigned to either the ‘electrical worker’ group or to the ‘other’ group, as
appropriate.

In the statistical analyses, standardised mortality ratios were calculated by subgroup based
on departments of employment. The authors considered air-sampling data useful in approxi-
mating the average exposure of a group of workers performing the same repetitive task or
operation (referring to a publication by Eisenbud and Quigley [63]). In the statistical analyses,
the authors further divided groups of workers who shared similar work activities into sub-
groups (e.g. the alpha chemistry only group, the beta chemical only group). This should have
helped to address a common major concern when developing a JEM: that job titles do not
provide substantive distinctions between tasks at a facility since job titles and area codes may
represent information used for administrative tasks, rather than for research purposes [64].

The study by Checkoway et al 1985 [55] of workers at the US Department of Energy (DoE)
sites in Oak Ridge employed JEM techniques to reconstruct individual dose from internally
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deposited plutonium and other radionuclides. This retrospective cohort study examined the
deaths from all causes among 8375 white male workers who had worked at the Oak Ridge
National Laboratory for at least 30 d at any time from 1 January 1943 to 31 December 1972.
The bioassay programme only commenced in 1951 and much of the information (i.e. data from
1951 to 1972), needed to calculate internal doses, had not been computerised. Consequently a
simple approach to investigating potential internal exposure effects was taken.

The authors obtained data on subjects’ employment (jobs, departments and associated
dates of employment) from employment records. The several hundred distinct job and depart-
ment classifications found were then grouped into 11 broad job categories considered to be
relatively similar with respect to job duties and potential for exposure to radiological and
non-radiological substances. These job categories were based on reviews of job descriptions,
materials used and, where data permitted, on health physics and occupational health monitor-
ing data.

Standardised rate ratios for all cancer sites combined were computed according to dura-
tion of employment for each of the 11 job categories, plus an ‘Unknown’ category containing
workers whose job history information was insufficient or unavailable. The epidemiological
analysis then looked for any trends between length of employment in a particular job category
and health outcomes. The authors reported that assignments of the 11 job categories were
assisted by knowledgeable plant personnel; they did not provide any other discussion related
to the validation of the JEM method.

The study by Dupree et al 1995 [60] also linked area uranium in air monitoring to work
locations for a case-control study of lung cancer mortality among uranium workers employed
in four uranium processing or fabrication operations in Missouri, Ohio and Tennessee in the
USA. Two of these operations were located at the Y-12 plant in Oak Ridge (also see [59]).
Different methodologies were used to estimate annual radiation lung doses from deposited
uranium for each study member from the four operations (altogether 787 lung cancer cases
were identified from death certificates; each case was matched with one control). Of relevance
here is the JEM methodology used for uranium exposure assessment: time-weighted job sum-
maries of uranium dust exposure had been made for jobs in specific areas at specific points in
time during facility operation. An employee’s total work experience was divided into periods,
which were linked to appropriate average uranium dust concentrations. These exposure con-
centrations were multiplied by days worked and the annual integrated activity in the lung was
calculated. This activity was then converted to a dose using the appropriate S-factor developed
by Dunning ef al [65]. Thus, the statistical analyses were based on individual annual lung
doses (expressed in Gy) calculated for each year of employment.

The authors explicitly listed possible dose misclassification as a shortcoming of the study.
However, they did not discuss the cause(s) of dose misclassification and the extent of such
misclassification.

4.2. The Liu et al 1992 study of thorium-processing workers [61]

Liu et al [61] studied the mortality of workers employed in a US thorium-processing plant
between 1915 and 1973. The study was limited to 3119 male and 677 female workers whose
social security numbers and year of birth were known or matched. Information on work con-
ditions and exposure to radioactivity at the plant was provided by an unpublished report of
an industrial hygiene survey conducted by Klevin and Fresco in 1952 [66]. However, no indi-
vidual doses were available for the study population. Therefore, job classification and duration
of employment were used to provide information relevant to thorium exposure. The jobs were
classified into three exposure groups, ‘Group 1’ having the highest thorium exposure and
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‘Group 3’ having the lowest thorium exposure. The exposure group classification was based
on daily estimated exposures of 84 male employees to thorium and thoron in 1952 calculated
from the Klevin and Fresco data [66] by Stehney ef al [67].

In the statistical analyses, the authors used the Poisson regression to describe the joint
effects of exposure factors on lung cancer mortality; job classification and duration of employ-
ment were two of such factors in the Poisson regression analysis. The authors provided no
information which would indicate whether and/or how they evaluated the validity of their
exposure group classifications, although the classifications being based on recorded dosimetry
data (albeit only for 84 workers who were all male and for 1952 only) would indicate a certain
level of validity.

4.3. The Rooney et al 1993 study of UKAEA employees [56]

The JEM developed by Rooney er al [56] was constructed for a case-control study investigat-
ing prostatic cancer risk among employees of the United Kingdom Atomic Energy Authority
(UKAEA). The study subjects were 136 cases diagnosed between 1946 and 1986 and 404
matched controls. It should be noted that, dose records for internal exposures from plutonium
and other radionuclides has only been legally required since 1 January 1986 in the UK [68]
and as a result monitoring data sometimes is not—or is only sporadically—available before
that time for some sites. The authors observed that, although some employees of UKAEA
had been investigated for possible internal contamination since the late 1940s, not all of the
subjects identified for the study had useful monitoring information.

Based on a list of 125 buildings or work areas where exposure to any of the 15 specific
radionuclides might have occurred, and with the aid of health physicists and other experienced
UKAEA staff, a JEM was constructed. Each of these buildings or work areas was assigned an
exposure category, using one of four levels of potential exposure (none, possible, probable but
relatively low level, probable and relatively high level), for each radionuclide. Each subject’s
work and exposure history was reviewed by health physicists with detailed knowledge of the
UKAEA'’s activities and radiation protection practices over time. Health physicists recorded
whether the subject had ever worked in each of the 125 workplaces and, if so, the calendar
years and type of work done. Individual exposure to, and dose from, internally deposited
radionuclides was reconstructed on the basis of workplace, associated work duration (time
period) and work activity.

Relative risks for prostatic cancer in relation to levels of exposure to radionuclides and
other possible hazards were estimated. The authors reported that (1) assignment of exposure
categories was aided by health physicists and other experienced UKAEA staff, and (2) clas-
sifications of the subjects were made without knowing who was a case or a control; they pro-
vided no additional information on their procedure of validating the JEM.

4.4. The Wing et al 2004 study of Hanford Site workers [18]

This was a cohort study to evaluate the risks of cancer and non-cancer mortality among plu-
tonium workers at the US DoE Hanford Site. Wing er al [18] concluded that it was practically
impossible to derive internal doses for the majority of workers in the Hanford cohort due to
the paucity of urinalysis monitoring data, high urinalysis detection limits, and lack of informa-
tion on chemical and physical properties of contaminant materials. Consequently, the authors
constructed a JEM to classify plutonium exposure potential on the basis of job title, work area
and time period.
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Hanford employment history files for 1944—-1989 were reviewed to establish logical and
consistent dates of hire, termination, and job changes. An occupational hygienist constructed
job title categories to use when assessing potential for plutonium exposure. Work area/pro-
cess categories were also designed for particular activities and processes. Using these data, a
JEM was created with three dimensions: job title, area/process (reactor, separations, research
and development, other) and time period (1944—-1967 and 1968—1989). Based on historical
information about Hanford processes and health physics monitoring practices, the authors
populated each cell of the matrix using three exposure categories of potential for exposure to
plutonium (minimal, non-routine or limited, routine).

The authors reported that they had used several hundred workers with a confirmed systemic
deposition of plutonium to evaluate the ability of the JEM to identify a group of workers with
definite contamination. They however, did not present or discuss the results of their evaluation
of the JEM.

4.5. Studies of plutonium workers at the Mayak Production Association in the Russian
Federation

The Mayak Production Association (Mayak PA) worker cohort is one of the world’s most
important cohorts for assessing plutonium workers’ exposure risk. Nearly all of the epidemio-
logical studies of plutonium workers at the Mayak PA have included both external dose and
internal dose from plutonium, where they could be reconstructed, for the cohort of over 22 000
workers [31]. As noted earlier, in the Mayak Worker Dosimetry System 2008 (MWDS-2008)
used in recent epidemiological analyses (e.g. [13, 14, 69]), only 32% of the cohort had at least
one urine bioassay sample [31].

Of interest here is the ‘categorical surrogate index of plutonium exposure’ [57] that has
been developed and implemented to rank exposures for those Mayak workers who did not
have any plutonium monitoring information (i.e. bioassay results) that would provide quanti-
tative exposure (dose) estimates. The surrogate Pu index was developed on the basis of occu-
pational history data, including work locations, starting dates, the distribution of measured
plutonium body burdens and expert knowledge of working conditions over time within the
different facilities of the Mayak PA [57]. This suggests that the method of defining a surrogate
Pu index for an individual worker is essentially analogous to that of the JEM approach [18, 55,
56, 59—61]. Six surrogate Pu indices were defined indicating the relative (increasing) assessed
level of plutonium contamination within worker groups over time [57].

It should be noted that this surrogate Pu index was only developed to permit analyses of
external dose risks within the full Mayak worker cohort, which includes both plutonium and
non-plutonium workers, and has not been used to investigate plutonium exposure risks per se.
Hence, some recent epidemiological studies of the Mayak workers included this surrogate Pu
index and discussed how it was used in their analyses (e.g. [70, 71]); others did not include it
(e.g. [13, 14, 72], or did not explicitly say whether or not they included it (e.g. [69]). Analysis
of the literature reveals that there are no published validation data dedicated to the develop-
ment and implementation of the surrogate Pu index. Furthermore, the published literature
lacks reporting of sensitivity analyses comparing results of workers with bioassay results to
results of workers with surrogate Pu indices. Therefore, it is hard to assess the validity of the
surrogate Pu index. Shilnikova et al 2003 [57] discussed that (1) mean body burden and lung
dose estimates for monitored workers increased with increasing levels of the surrogate meas-
ure; and (2) workers thought to have been at risk of exposure to the highest levels of plutonium
were more likely to be selected for monitoring at Mayak PA. On such a basis, the categorical
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surrogate Pu index may be considered more appropriate than the mean plutonium body burden
(dose) for monitored workers as an unbiased representative value for all workers [57].

4.6. The tritum JEM for employees at the Savannah River Site [62]

Hamra et al 2008 [62] combined the principles of JEM development with quantitative mea-
sures of recorded annual whole-body dose to estimate personal tritium doses, for Savannah
River Site (SRS), a US nuclear fuel facility, employees without a recorded tritium dose, using
regression modelling. The JEM included 18 883 SRS workers who met the entry criteria for
inclusion in the study cohort for the period 1951-1999. Information about these workers’
dates of employment and job-title changes was gathered. Thirty-four major occupational
groups were defined based on job titles. ‘Employment-years’ were created on the basis of
such information: the term ‘employment-year’ was used to describe the unit of observation
contributed by a person each year he/she was employed at SRS.

The 18883 workers in the study cohort contributed a total of 277735 employment-year
records. Each of these employment-years was matched with an appropriate ‘health physics
area’ (a health physics area represented a single work location or a number of work locations
which took part in similar processes). Each of these employment-years was also matched with
dosimetry information derived from historical dosimetry logbooks. Recorded tritium doses
were available for 224357 (81%) of the total employment-years of the study cohort. Thus,
the JEM was to impute a value for each of the remaining 53378 (19%) employment-years for
which tritium-dose information was unknown (missing).

This was done as follows: the proportion of a worker’s annual whole-body dose (AWBD)
due to intake of tritium was estimated by fitting a linear regression model in which the depend-
ent variable was the annual tritium dose and the independent variable was the annual whole-
body external dose. The model was stratified by occupational group, health physics area and
calendar year, thereby allowing for different estimates of the fraction of AWBD due to tritium
within each stratum defined by these factors. In addition, stratification by categories of AWBD
was employed to account for potential differences in the relationship between tritium and
AWBD within subgroups defined by occupation, area and calendar year.

The authors described their procedures for evaluating the JEM method and reported the
evaluation results. Most of the estimated tritium values were well matched with the observed
tritium dose. However, the model over-predicted lower values and under-predicted higher
values. The tritium dose estimated by this JEM [62] was used in a subsequent epidemiological
study [75] to examine the association between tritium exposure and leukaemia mortality in
the SRS worker cohort.

4.7 The JEM for the main uranium conversion plant in France [58]

The JEM approach was employed to assess occupational exposure to uranium-bearing and
other chemical compounds used at the AREVA NC facility at Pierrelatte (the main uranium
conversion plant in France) [58]. First, 73 job titles were identified from company records.
Each job title grouped together employees involved in the same activities within a department
or facility. For each job title, any significant change in the potential for exposure over time
was assessed. Changes in strategy, processes, techniques, raw materials and/or products used,
as well as any administrative or ergonomic reorganisation of jobs, were considered and spe-
cific exposure periods were determined. Altogether 232 ‘job-period pairs’, covering the period
between 1960 and 2006, were created.
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The potential exposure within each of the job-period pairs was then assessed, with the
help of active and retired employees, on the basis of a semi-quantitative estimation of two
exposure indicators for each job-period pair, frequency of exposure to a material and the
quantity of material that the workers handled. Two four-level scales were used to describe the
potential exposure frequency (never, rarely, occasionally and frequently) and magnitude (mat-
erial quantity - none, negligible, moderate and significant). The final ‘frequency and quantity’
scores used were the arithmetic means of the values obtained for a specific job-period pair as
determined according to the stated statistical criteria.

Finally, exposure results obtained by the JEM were validated, by experts within the facility,
in light of the changes in each job over time and in relation to all the different jobs: this pro-
cedure indicated that the JEM was satisfactory in terms of internal and external consistency.
For further validation purposes, exposure results were also compared with results found in
the medical records of a random representative sample of workers (1% of the worker popula-
tion). This validation procedure showed very good agreement (kappa (k) coefficient = 0.85
[73]. Standard indicator statistics, such as sensitivity and specificity, were calculated to allow
overall appraisal of JEM validity [74]. This validation procedure indicated good matrix per-
formance, with the observed values close to 1.

4.8. Other studies

The German SAG/SDAG Wismut uranium miners cohort. The JEM approach has also been
used to estimate radiation exposure (i.e. to radon and its decay products, external gamma
radiation, and long-lived radionuclides) [76] and dust, silica and arsenic exposures [77] for
the German SAG/SDAG Wismut uranium miners cohort. Technical papers on these two JEMs
have been published in German [78-80].

The JEM for the Rocky Flats Plant worker cohort [28]. For the purpose of investigating
lung cancer mortality in the worker cohort (~18000 individuals) employed at the US DoE
Rocky Flats Plant from 1951 to 1989, Ruttenber et al 2001 [28] constructed a JEM based
on expert judgement and quantitative data and used it to (1) correct the systematic underes-
timation in neutron doses for workers for the years 1952 to 1966; and (2) impute doses from
external penetrating radiation and chemical exposures, for workers for whom such data were
missing. The authors provided no information to confirm that this JEM had also been used to
evaluate occupational internal exposures to plutonium and other radionuclides. Of relevance
here are the techniques for using the JEM to impute individual exposure (dose) which are
unique in the literature (though the techniques used to build the JEM were similar to others
reviewed in this paper).

The JEM, combined with the neutron dose data, was used to identify all buildings with
potential neutron exposures and to compute neutron doses for workers in these buildings who
did not have separate neutron doses recorded, for the years 1952 to 1966. The JEM was also
used, along with all available plutonium urinalysis results and external dosimetry, to create
a flat-file database for the entire cohort that included a record for each year a worker was
employed and for that year radiation dose and chemical exposure data, or a flag indicating
missing data. For external radiation doses that were missing for a period of less than 5 years,
the authors implemented the ‘nearby’ imputation algorithm [40] and for longer periods (i.e. 5
or more years), imputation was based on the geometric mean exposure of all workers who had
the same combination of work year, building, job and organisation. The approach to imput-
ing missing chemical exposures was similar to the one used for external radiation doses. The
authors did not report how the imputed values were validated; this JEM was used to estimate
chemical exposures in the analysis by Brown et al [81].
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5. Discussion

The JEMs reviewed in this paper have typically been constructed in the absence of sufficient
quantitative data. The JEM techniques reviewed are used to deal with missing historical expo-
sure data that are not missing at random [49]. They are based upon available information on
determinants that model exposure across time periods, jobs and work locations (activities)
so that missing combinations can be imputed from overall trends. This approach is generally
considered better than the generalised standard methods of imputation for dealing with data
missing completely at random and missing at random [49].

These JEMs have typically constructed the job dimension of the matrix on the basis of
detailed information on employment and job history, including: job title, job duty and work
area, plus one extra axis with consistent dates of hire and termination, and dates of job title,
job duty and work area changes. Such detailed information was then typically used to assign
values for the exposure dimension of the job-exposure matrix based on expert knowledge of
where and when an exposure was likely to occur and/or on existing exposure monitoring data.

This present review reveals that the overall trend in the development and use of JEMs in
nuclear industry studies has been toward increased complexity and sophistication in the detail
of the qualitative information on subjects’ employment, occupation (job title and job duty) and
work area/process (activities and materials used at the workplace), and also the techniques of
deciding the levels of potential exposure over time. For example, earlier studies (i.e. [55, 56,
59, 61]) tended to use the JEM to derive levels of potential exposure, which were then directly
used to stratify the risk assessment analyses. The later studies either combined task- and time-
dependent weighting factors with duration of employment to derive exposure indices to be
used in the risk assessment [18, 57, 58] or combined known dosimetry data to impute expo-
sure dose values to be used in the risk assessment [60, 62].

The JEMs reviewed are, by their nature, study-specific or cohort-specific JEMs. In com-
parison, ‘generic’ JEMs have been developed to describe exposures across the range of jobs
and industries that might be relevant to the general population [82—-84]. Validation studies
have indicated that generic JEMs have relatively poor sensitivity [85—87] and fail to account
for heterogeneity in exposure levels within jobs [88]. A significant advantage of these specific
JEM:s is that exposures are assigned to a very detailed list of jobs identified within the study or
cohort in question, therefore leading to improved sensitivity [52, 85, 89]. A remaining limita-
tion is that even specific JEMs are unable to fully account for variability in exposures within
a job—whether across different plants or departments or in the same area between different
individuals with varying degrees of interaction with the agent in question [52]. Task-exposure
matrices (TEMs) have been developed to address this (e.g. [90]), but the detailed information
required to build them is hardly ever available, especially not retrospectively. A further limita-
tion of their study-specific development is that they cannot be used for any other cohort, thus
making direct comparisons of results across studies difficult.

In general, the JEM approach is based on the observation that study subjects’ job histo-
ries within a company can usually serve as the basis for assigning exposures [52-54]). The
majority of the studies [18, 55-57, 59-61] provided insufficient information or discussion as
to how the JEMs used were validated. It is understandably difficult to validate JEMs because,
by definition, they are developed for parts of the study where exposure data are missing (so
there are often no data available to validate against). These JEMs were constructed and used
on the basis of the assumption that workers undertaking similar job tasks at similar work
areas/processes over the same period of time would have received the same or similar level
of exposures from sources of ionising radiation. Accordingly, assessment of exposure levels
was based upon the similarity of exposures in the industrial process combined with expert
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knowledge and judgement (e.g. from occupational health and safety personnel, as well as
the workers under study). Given that comparisons of groups of workers involved in the same
work often show similar urinary excretion of radionuclides over an extended period [43], the
validity of a JEM approach based upon this assumption has some support. In other industries,
some validation has been attempted by, for example, setting aside part of the data prior to JEM
development and then using the JEM to estimate the withheld data [91].

Two of the studies [58, 62] provided sufficient information on their procedures for validat-
ing the JEM and the evaluation results were reported and discussed. The evaluation results
indicate that the JEM method generates acceptable estimates of exposure. The validation pro-
cedures reported in these two papers provide valuable insights for the development of future
JEMs.

Some of the JEMs were built upon purely qualitative information [18, 55, 56, 58]; others
were a mix of qualitative and quantitative data [57, 59-62]. When quantitative dosimetry
data are not available at all, qualitative JEMs become essential as they are built using only
experts’ knowledge and experience. Such an approach is, however, difficult to validate as it
does depend on the subjective judgement of experts [92] and therefore it cannot provide the
objective estimates that can be achieved by a quantitative approach. JEMs built upon a mix of
qualitative and quantitative data (the ‘hybrid method’ [62]) seem desirable since they combine
the best aspects and mitigate the problems, of each approach.

Two examples of the hybrid method were the studies by Dupree et al 1995 [60] and Hamra
et al 2008 [62] (also see [28]). These two studies contained detailed information on work
history, but this was not used to assign the exposure level in terms of exposure categories
or exposure indices, as was typically used in the other JEMs reviewed in this paper. Instead,
detailed qualitative information was combined, with area uranium in air monitoring results in
Dupree et al [60] and with recorded dosimetry data in Hamra et al [62], to impute quantita-
tive dose values. Dupree et al [60] identified possible dose misclassification as an issue; and
organ/tissue-specific doses from tritium exposure [62], which distributes relatively homoge-
neously throughout body tissues, are comparatively simple to calculate given adequate uri-
nalysis results [4]. However, the techniques [60, 62] used are promising for future research
in this area. The hybrid method employed by Hamra et al [62], using a JEM in conjunction
with known quantitative dose data and regression modelling, has been successfully applied in
epidemiological studies in various industries; including, for example, the rubber industry [93].
One remaining methodological concern with the hybrid method is that it is difficult to weight
the input from each type of information (qualitative, quantitative and expert judgement) if
they do not agree. Nonetheless, a transparent hybrid JEM should be adaptable to, or facilitate
benchmarking of, exposure data for other cohorts, thereby enabling direct comparison or even
pooling of different nuclear workers’ cohorts and allow whole cohorts, rather than just those
with complete monitoring data, to be included.

6. Conclusions

With respect to epidemiological analyses, there are limitations in occupational radiation
monitoring data, particularly for internally deposited radionuclides, such as plutonium, in
the early years of operation of the nuclear industry. A methodology to better estimate levels
of exposure for the purposes of epidemiological studies is required. One such approach is
the job-exposure matrix and studies that have used this JEM approach have been reviewed
here. The JEM approach becomes essential when measurement data are missing, limited or
unreliable. Previous validation results suggest that the JEM method can generate acceptable
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estimates of exposure. It is important that future JEMs in radiation epidemiology use a sys-
tematic approach to validating the JEM techniques employed, and they should also report
on this validation approach and the results of it in any description of the JEM analysis or
its results.
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