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Abstract
Wederive a trace formula that expresses the level density of chaoticmany-body systems as a smooth
termplus a sumover contributions associated to solutions of the nonlinear Schrödinger (orGross–
Pitaevski) equation.Our formula applies to bosonic systemswith discretised positions, such as the
Bose–Hubbardmodel, in the semiclassical limit as well as in the limit where the number of particles is
taken to infinity.We use the trace formula to investigate the spectral statistics of these systems, by
studying interference between solutions of the nonlinear Schrödinger equation.We show that in the
limits taken the statistics of fully chaoticmany-particle systems becomes universal and agrees with
predictions from theWigner–Dyson ensembles of randommatrix theory. The conditions for
Wigner–Dyson statistics involve a gap in the spectrumof the Frobenius–Perron operator, leaving the
possibility of different statistics for systemswithweaker chaotic properties.

1. Introduction

Feynmanʼs path integral (see e.g. [1]) provides a convenient way to represent the propagator of a quantum
mechanical system, and an excellent starting point for semiclassical and related approximations. Prime
examples are vanVleckʼs approximation of the propagator of a quantum system as a sumover contributions of
classical trajectories [2], andGutzwillerʼs seminal work [3] relating the energy spectrumof chaotic single-
particle systems to periodic classical trajectories. These semiclassicalmethods provide one of the foundations of
thefield of quantum chaos [4–6]. For amany-particle system identifying the semiclassical limit is less obvious. A
promising approach is to consider the path integral in second quantisation, running over different choices for
themacroscopic wave function parameterised by position and time.One can show that in the semiclassical limit
and in the limit where the number of particlesN is taken to infinity this path integral is dominated by stationary
points of the action, corresponding to solutions of the nonlinear Schrödinger equation orGross–Pitaevski
equation. These solutions take on a role analogous to the one played by classical trajectories in the single-particle
theory.However previous work usually focused either on studying the full problem in second quantisation or, as
e.g. in nuclear dynamics [7], on one dominating solution to theGross–Pitaevski equation [8, 9]. This does not
exhaust the power of the approximation. In particular keeping the sumover different solutions of theGross–
Pitaevski equation allows to account for crucial interference effects between such solutions. An approachwhere
the semiclassical propagator of bosonicmany-particle systemswas used to study these effects was pioneered in
[10] for coherent backscattering, see also [11] for applications to fermionic systems.

In the present paperwewill focus on a further fundamental problem forwhich the interference between
stationary points of second quantised path integrals is of vital importance: the statistics of the energy levels of
many-body systems. To do sowewillfirst derive an approximation of the level density in terms of stationary
points of the action, and then study the interference between these points. To our knowledge the consequences
of interference effects formany-body spectral statistics have not yet been investigated explicitly.Wewill see that
this statistics depends crucially on the dynamics generated by theGross–Pitaevski equation. If the dynamics is
fully chaotic (in the sense to be specified below) the statistics in the limits considered becomes universal, and
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agrees with predictions from random-matrix theory (RMT). These predictions entail, for instance, a repulsion
between the energy levels.

This universal behaviourmirrors the behaviour of chaotic single-particle systems studied in the semiclassical
limit. For such systems spectral statistics faithful to RMTwas conjectured in [12], and a semiclassical explanation
was developed in [13–18]. This explanation is based onGutzwillerʼs trace formula [3–5, 19]
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which expresses the level density as a smooth term d E¯ ( ) plusfluctuations associated to classical periodic orbits p
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depends on the primitive periodTp
prim, the so-calledMaslov index pm and the stabilitymatrix

Mp relating deviations in the end of the orbit p to deviations in the beginning;  is a unitmatrix. (Throughout this
paper will denote unitmatrices with a subscript indicating their size if it is not clear from context.)Ourfirst
aimwill be to generalise the trace formula to bosonicmany-particle systems in second quantisation, with
solutions of theGross–Pitaevski equation taking the role of classical trajectories.

Wewill then use this result to investigate spectral statistics. An observable characterising spectral statistics is
the two-point correlation function of the level density d E E Ej j( ) ( )d= å - (where Ej are the energy levels of
the system). This correlation function is defined by
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where the average á¼ñ is taken over an interval ofE for which d̄ can be taken constant as well as over a small
range of ò. Inserting the trace formula one obtains a double sumover solutions of theGross–Pitaevski equation,
and by taking into account interference between solutionswe indeed recover statistics in agreement with RMT.

More precisely this agreement holds for the statistics inside appropriate subspectra defined by the
symmetries of the problem; formany-body systemswe have at least one symmetry, particle number
conservation, requiring to consider subspectra associated to afixed particle number. Further refinements (to be
discussed below) arise in case of geometrical symmetries. The precise ensemble to be chosen depends on the
behaviour of the systemunder time reversal. Themost frequent case involves systems invariant under a time-
reversal operator squaring to 1. In this case (assuming that there are no further symmetries) one has to use
Wignerʼs andDysonʼs Gaussian orthogonal ensemble (GOE), i.e. predictions for spectral statistics are obtained
bymodelling theHamiltonian through a real symmetricmatrix, and then averaging over all possible such
matrices with aGaussianweight. In the absence of time-reversal invariance one averages instead over the
ensemble ofHermitianmatrices with aGaussianweight, theGaussian unitary ensemble (GUE).

A paradigmatic example for the systems to be considered is the Bose–Hubbardmodel, amodel with L
discrete sites (labelled by k L0 1= ¼ - ) accommodating bosonic particles. Denoting the creation and
annihilation operators for particles at these sites by akˆ

† and akˆ the second-quantisedHamiltonian can bewritten
as

H
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describing hopping between the sites as well as interaction between particles on the same site. One can consider
periodic boundary conditions and set a aL 0ˆ ˆ= , a aL 0ˆ ˆ† †= .More generally we are interested in discrete bosonic
many-bodyHamiltonians that are of the form

H h a a U a a a a 4
kl

kl k l
klmn

klmn k l m nˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )† † †å å= +

or have even higher-order interactions; here real coefficients imply time-reversal invariance.
A crucial requirement is that the underlying ‘classical dynamics’ is chaotic. This dynamics is obtained by

replacing the creation and annihilation operators bymutually complex conjugate time dependent variables k*y ,

ky where , ,0 1( )y y y= ¼ can be interpreted as amacroscopic wave function and ky as its value at site k. As
N a ak k k
ˆ ˆ ˆ†= å is the particle number operator, themacroscopic wave function is normalised to have

Nk k
2∣ ∣yå = whereN is the particle number. The associated analogue ofHamiltonʼs equations for ky can be

shown to read i k
H

k

˙
*

y =
y
¶
¶

and takes the role of a discrete nonlinear Schrödinger equation.

Wenote that the ‘classical’Hamiltonian entering into this equation depends on the ordering of operators.
For the Bose–Hubbardmodel the normal-orderedHamiltonian in (3) yields an interaction term ;U

k k2
4∣ ∣yå

however if theHamiltonian isfirst brought toWeyl-ordered form (with all possible orderings of operators in a
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product contributing symmetrically) before replacing the operators bymacroscopic wave functions one
obtains 2U

k k k2
4 2 1

2
(∣ ∣ ∣ ∣ )y yå - + .

For the Bose–Hubbardmodel the dynamics generated by the discrete nonlinear Schrödinger equation has
been found to bemainly chaotic (with chaotic regions of phase space dominating compared to regular ones) in
the case of several sites and comparable hopping and interaction terms [20]. In the same regime, numerical
studies suggest spectral statistics in line with theGOE [21, 22]; see also [23] for fermionic systems.

To explain the observed faithfulness to RMT,we follow a semiclassical approach inspired by single-body
spectral statistics as well as [10]. Our first aim is to derive a trace formula for second quantised Bose–Hubbard-
like systems. This will be done in section 2, after a brief reminder of the corresponding derivation for one-body
chaotic systems. Special emphasis is placed on the treatment of conserved quantities. In section 3 it is
demonstrated how the obtained trace formula can be used in order to predict the spectral statistics of the system,
especially the two-point correlation function.We explain in detail how to generalise the approach previously
used for one-body chaotic systems infirst quantisation, andwe discuss the range of validity of this approach. In
section 4 the consequences of discrete symmetries of chaoticmany-body system, in particular for Bose–
Hubbardmodel are investigated. In section 5we present numerical results supporting our claims. Somemore
technical details of the derivation are put in two appendices.

2. Trace formula

2.1. Trace formula for single-body systems
In order to prepare our derivation of a trace formula for bosonicmany-particle systems, wewant to briefly
review the calculation leading to the trace formula for single-body systems.We refer to [4–6, 24, 25] for further
details.

The level density can be accessed from the trace of the time evolution operator e Hti ˆ
- via
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where an infinitesimal positive imaginary part has been added to the energy to ensure convergence. The trace of
the time evolution operator can itself be expressed as a path integral over phase space trajectories q pt t,( ( ) ( ))

q pDtr e , e , 6q pHt R
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where the actionweighting each path is determined by the classicalHamiltonianH as
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Nowwe are interested in an approximation of this path integral in the semiclassical limit, i.e., the limit of large
quantumnumbers implying that typical classical actions aremuch larger than ; formally this limit is often
denoted by 0.  In the semiclasssical limit the path integral is dominated by stationary points of the action,
corresponding to periodic orbits that satisfyHamiltonʼs equations ofmotion, and a stationary-phase
approximation leads to a discrete sumover such periodic orbits. For chaotic dynamics, free from continuous
symmetries, the periodic orbits are isolated but one has to take into account that each of them formally gives rise
to a one-parameter family of stationary points distinguished bywhich phase-space point along the orbit is taken
as the initial one associated to t=0. The Laplace transform in (5) can then be carried out in a further stationary-
phase approximation and one obtains the trace formula
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already shown earlier. Here the determinant and the phase factor involving theMaslov index arise from the
Hessianmatrix of the action entering the stationary-phase approximation, and the factor Tp

prim results from

integration over different choices of initial points. The summand d E¯ ( ) can be derived from a careful treatment
of the lower limit of the time integral (5).

2.2. Path integral formany-particle systems
Wenowwant to generalise the trace formula tomany-particle systems in second quantisation, for the case of
bosonic particles at discrete sites. In second quantisation it is natural towork in a basis of coherent states, i.e.,
normalised joint eigenstates of all annihilators akˆ with eigenvalues ky . Further differences from the single-
particle setting arise fromoperator ordering as well as the conservation of the particle number.
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Againwe access the level density from the trace of the time evolution operator e Hti ˆ
- using (5). Formany-

particle systems the latter trace is given by the path integral [26]
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over allmacroscopic wave functions t( )y ¢ that return to their initial value after time t. Here the action is
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Equation (9) is related to but somewhat simpler than the path integral formatrix elements of coherent state time
evolution operator [27]; our use of tr e Hti ˆ

- ismotivated by [24, 25].
In case of normal ordering the path integral can be derived by splitting the time interval t into steps of

width t


t = and then using the result for the short-time propagator
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after integration over themacroscopic wave functions at all time steps this leads to a discrete path integral with
the action
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and then to (10) after taking the limit  ¥. Tofix notation, throughout the paper jwill be a time index, kwill
label degrees of freedom e.g. associated to sites, and bold vectors assemble all choices for k. j is definedmodulo
and k is takenmodulo L.With these conventions the integrationmeasure in the path integral is given

by jk

d d

2 i

jk jk
*


y y

p
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The integral thus obtained agrees with the phase-space formulation of the path integral infirst quantisation
if themacroscopic wave function is related to canonical coordinates andmomenta through q pik k k

1

2
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or ek
I ik k
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y = q- .We can nowperform a semiclassical approximation valid in the limit 0  . Here ky is taken

of the order 1


such that thefirst term in the action (10) becomes independent of ; the coefficients in the

Hamiltonian are scaled following J J  ,U U2  in such away that theHamiltonian is independent of 
aswell (Wewill later also give an interpretation in terms of the limit N  ¥.) In our limit the integral is

dominated by periodic solutions of the nonlinear Schrödinger equation i k
H

k

˙
*

y =
y
¶
¶

(and its complex conjugate)

following from the stationarity ofR.

2.3. Particle number conservation
Importantly, however, ourHamiltonian has a continuous (gauge) symmetry w.r.t.multiplying all components
of themacroscopic wave functionwith the same phase factor. A consequence of this symmetry is that as
mentioned the total particle number N̂ is a conserved quantity commutingwith theHamiltonian. It is thus
preferable to consider the density of levels forming the subspectrum associated to afixed particle number.

To implement this restrictionwe subject the I ,k kq defined above to a canonical transformation. (See [9, 28]
for alternative approaches.)This transformation is chosen to lead to I ,k kq¢ ¢ where
I I Nk k k k0

2∣ ∣ y¢ = å = å = , the remaining Ik¢ are linear combinations of the Ij, and the kq¢ are defined such
that the overall transformation becomes canonical. If we choose the transformation in such away that the range

of possible kq¢ is limited to 2p it is also convenient to let ek
I ik k


y¢ = q¢ - ¢ . As I0¢ is a conserved quantity the

corresponding canonical coordinate 0q¢ must be absent from theHamiltonian. The remaining variables with
k 1 parameterise a reduced phase space associated to the particle numberN.

We are interested in the part of the spectrum associated to a given valueN of the particle number. The
associated level density can be formally written as
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with theKronecker delta
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As onemight expect, d EN ( ) is determined by solutions periodic in the reduced phase space. To see this formally
we split the exponential e Ni ˆf from (14) into factors e Ni ˆ f to be inserted into each of the short-time propagators
(11). This gives an additional term
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to be added to the action, leading to
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Hence, as anticipated, the requirement of periodicity is non-trivial only for the variables ky¢ with k 1 . I0¢ is
conserved and hence trivially periodic, and 0q¢ is required to be periodic only aftermodifying the dynamics
through thef-dependent term in the action, but all possible choices off are integrated over.

2.4.Determinant of theHessianmatrix
Wenowhave to determine theweight associated to each periodic solution.We recall that if the stationary points
p of a given action xR [ ] (with x nÎ for now) are isolated andwe are taking the limit 0  , the integral over
e Ri  can be approximated by the following sumover contributions associated to stationary points
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here pm is the number of the negative eigenvalues of theHessianmatrix
x

Rp
2

2

¶

¶
for the stationary point p. If the

stationary points are not isolated this leads to vanishing eigenvalues of theHessian. In this case the integral over
the directions orthogonal to the stationary-pointmanifold can still be computed using (19), but it has to be
accompanied by an integral over themanifold itself.

The stationary points of (12) are not isolated. In particular continuous time shifts of a solution of the
nonlinear Schrödinger equation lead to a different solution, and the same applies to simultaneous shifts of all

j0q¢ . This is a consequence of the two conserved quantities, for the energy conjugate to time and the particle

number conjugate to the j0q¢ . However as a first step it is still helpful to compute the (rescaled)Hessian involving
derivatives w.r.t. all components of themacroscopic wave functions at all time steps. Adopting a complex
notationwe consider

R1

, , , ,
. 20

2

0 0 1 1
2

˜
( )

( )
* *


 y y y y

=
¶

¶ ¼

Using the discretised action (12) the derivatives are given by
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where L = is a unitmatrix of dimension L. TheHessianw.r.t. these variables then assumes periodic block
tridiagonal form
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where n 2= and the blocks arematrices of size L×L given by
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Herewe neglected corrections of order 2t arising from the fact that the arguments of theHamiltonian in (21) are
taken at slightly different times.We can nowuse a general formula for determinants of block tridiagonalmatrices
as in (22) that was derived in [29] using a transfermatrix approach

M Pdet 1 det det . 24n L
L

1
2

˜ ( ) ( ˜ ) ( ) ( )( ) = - -+

Herewe have

P B B

M B A B C B A B C

0 0
. 25

n

n n n n

0 1

1
1

1 1
1

1 0
1

0 0
1

0˜ ( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ 

= ¼

= - - ¼ - -

-

-
-

- -
-

-
- -

In equations (24) and (25)wehave slightlymodified the numbering of indices from [29] and taken the dimension
of the blockmatrices as L. Due to n 2= the sign factor in (24) is just equal to 1. To evaluate M̃ we group the
factors in (25) into pairs

M
B A B C B A B C

0 0
26j

j j j j j j j j2 1
1

2 1 2 1
1

2 1 2
1

2 2
1

2˜ ( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ 

= - - - -+
-

+ +
-

+
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which using (23) can be simplified to

M O
i

. 27j L

H H

H H
2

, ,

, ,
2

j j

j j

j j

j

j j

j

j j
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

 t
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+

y y

y y

y y
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¶

¶ ¶

¶

¶
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¶
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¶ ¶

One can now show thatmultiplicationwith Mj˜ maps small deviations ,j j( )*y yd d from a given solution of

the nonlinear Schrödinger equation at time jt to the resulting deviation at time j 1( )t+ . This follows
immediately by linearising around the equation

O
H

O
i

28j j j j
j

1
2 2˙ ( ) ( ) ( )

* 
y y y y

y
t t

t
t= + + = -

¶
¶

++

and its complex conjugate.Hence the product

M M M M 291 1 0˜ ˜ ˜ ˜ ( )= ¼-

(understood in the limit  ¥)maps deviations in at time 0 to those at time t.
Thematrix P is given by

P B B
H

O

H
O

1
i ,
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i ,
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n
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⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

*

*

*

*








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¶
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¶
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evaluating its determinant and taking the continuum limit then leads to

P t
H t t

det exp
i

tr d
,

. 31
t

0

2 ( ( ) ( )) ( )
⎛
⎝⎜

⎞
⎠⎟

*

* ò
y y
y y

= - ¢¶
¢ ¢

¶ ¶

The factor Pdet 1 2( )- arising from this term in det 1 2( ˜ ) - is known as the Solari–Kochetov (SK) phase; it is in
linewith previous work about the propagator in normal ordering [27, 30, 31].

2.5. Treatment of the conserved quantities
Wenowmodify our treatment to take into account particle number and energy conservation.

For notational convenience it is helpful to complement our earlier canonical transformation singling out the
particle number by a further transformation affecting only the variables with k 1 . This transformation is
defined only in the vicinity of a periodic solution and leads to I1¢ indicating the energy on the orbit, and 1q¢ the
time along the orbit. The remaining variables I ,k kq¢ ¢with k 2 indicate transverse deviations from this orbit. If
desired they can again be turned into complex variables ky¢ as above4, and the vector formed by all ky¢ with k 2
will be denoted by y^. The present transformation is analogous to the transformation to parallel and
perpendicular coordinates in the derivation of the trace formula infirst quantisation [3–5].We note that it
cannot be expanded to a transformation in the full phase space as this would imply integrability.

When determining theweight associated to periodic solutions, it is now crucial to take into account that
shifting all time coordinates j1q¢ by the same amount leads to a valid solution, and the same applies to

coordinated changes of the variables j0q¢ conjugate to the particle number.Hence there are two linearly
independent ways inwhich continuous changes fromone stationary point of the action lead to a different one. As
second derivatives of the action in the associated directionsmust necessarily be zero thematrix ̃ defined above
must have a two-fold eigenvalue zero.

To compare this to the behaviour of M L2˜ - wefirst of all observe that M̃ maps deviations of the variables
associated to k 0, 1= only to deviations associated to the same k.Written in terms of I,k kq¢ ¢ the stabilitymatrix
multiplies deviations I,k k( )dq d¢ ¢ with

M b1
0 1

, 32k k˜ ( )( ) ⎜ ⎟⎛
⎝

⎞
⎠=

where bk I

d

d
k

k
= qD ¢

¢ . Here the diagonal elements indicate that the conserved quantities Ik¢ stayfixed and changes of

kq¢ are translated into equal changes in the end. In the right upper element kqD ¢ indicates the increase of kq¢ along
the orbit, e.g. the period for k=1. The coefficient bk takes into account that a change of the energy typically
changes the period of the orbit, and similarly a change of the particle number typically changes the difference of

the initial and final 0q¢ . As a consequence of (32), M b0
0 0

k k
2˜ ( ) ⎜ ⎟⎛

⎝
⎞
⎠- = has determinant zero.

To deal with these zeroes one can consider a perturbation of theHamiltonian [25] that replaces one of the
zero eigenvalues of theHessian by a small value ò. In the corresponding M k˜ ( ) a factor  then enters in the lower
left corner, turning the determinant into bk- . A brief account of these perturbative results for the present
case is given in appendix A. The determinant of theHessianmatrix omitting the directions associated to
conserved quantities can nowbe evaluated by considering perturbations for both k=0 and k=1 and dividing
out the two factors ò, leading to

M P b bdet det det . 33L2 4
2

0 1( ) ( ) ( ) = - -

HereM is defined in analogy to (27) and (29) but only w.r.t. the variables y^ omitting k 0, 1= .Mmaps
initial deviations of ,*y y^ ^ to the corresponding final values. Thismeaning is precisely equivalent to the
stabilitymatrix appearing in the conventional trace formula.

Our result for det allows to evaluate (in a stationary phase approximation) the integral over allmomenta
and coordinates apart from ,j j0 1q q¢ ¢ , as well as the fluctuations of ,j j0 1q q¢ ¢ as j is varied.

It remains to consider the constant (in j) Fouriermodes of ,j j0 1q q¢ ¢ . Importantly, if we perform a discrete

Fourier transformof jkq¢ andwant the associated Jacobian determinant to be 1, the integration variable

parameterising the constantmode has to be chosen as j jk



qå ¢
, i.e.  times the average of the jkq¢ .More natural

parameterisations of the constant Fouriermodes, such as by the average of the jkq¢ , entail a Jacobian  for each

k 0, 1= . These jointly cancel the 1- from det 1 2( ) - .
Integration over the constantmodes now leads tomultiplicationwith the integration ranges. For j0q¢ the

range is 2p, and for the time coordinates the range is normally the period.However if the periodic solution
consists of several repetitions of a shorter ‘primitive’ periodic solutions, all distinctive stationary points of the

4
This requires suitable rescaling tomake both quantities dimensionless and restrict the range of kq¢ to 2p .
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action can be accessed by integration over the periodTp
prim of the primitive solution only. Equating T Tp p

prim= if

our solution does not consist of repetitions of a shorter onewe thus obtain a factorTp
prim in all cases.

We still have to evaluate the integral overf

1

2
d e , 34R Ni i ( )˜ òp
f f-

where the R̃ from (16) equals I0f ¢. Due to IRd

d 0
˜
= ¢

f
the stationary phase condition gives I N0 ¢ = as expected.

Nowdue to (18) a change off is equivalent to changing the range 0qD ¢ by an opposite amount. This implies that

bR Id

d

d

d 0
12

2
0

0

˜
= - = -

f q

¢

D ¢
- . The b0 thus obtained cancels with the one from (33).

Altogether the trace of the time evolution operator, restricted to a given value of the particle number, is thus
approximated by the following sumover solutions p of the nonlinear Schrödinger equation that are periodic
with period T tp = in our reduced phase space

T

b M
tr e

e

2 i det
. 35N N

Ht

p

p
R

p
,

i
prim i i

2

1

p p p
1

∣ ∣∣ ( )∣
( )ˆ

ˆ
( )( )






åd
p

»
-

m m p
-

- +

Here various factors from the integrationmeasure, equations (19) and (14), and the 0q¢ integral have cancelled
mutually. The result is in linewith [24, 25]. TheMaslov index pm counts the negative eigenvalues of the part of
theHessianmatrix associated to k 2, 3,= ¼ (when brought to symmetric form involving derivatives w.r.t.
I ,jk jkq¢ ¢ ). The index p

1( )m takes a similar role for k=1; it is equal to 1 if b 01 < and 0 otherwise. An analogous
phase associated to k=0 has already been cancelled by the stationary-phase approximation of (34). For
notational convenience we also use theMaslov index to absorb the SK phase [27, 30, 31]

t
H t t

2

1

2
tr d

,
. 36p

S
t

0

2 ( ( ) ( )) ( )*

* ò
y y
y y

m
p

= - ¢¶
¢ ¢

¶ ¶

Wenote that like the stabilitymatrix also the action can be takenwithin our reduced phase space. The only
difference between the two is the k=0 contribution to thefirst term in (10), which is given by

t t t t I t t Nd
i

d 2 ; 37
t t

0
0 0

0
0 0( ) ˙ ( ) ( ) ˙ ( ) ( )⎜ ⎟⎛

⎝
⎞
⎠*


ò òy y q p¢ - ¢ ¢ ¢ ¢ = ¢ ¢ ¢ ¢ ¢ =

however for integerN this termhas no influence on the phase factor e Ri .Moreover, as theHamiltonian is
independent of j0q¢ , the change in the dynamics of j0q¢ mentioned above does not affect any of the quantities
entering the trace formula.

2.6. Level density
Finally the Laplace transformof (35)

d E E H ttr
1

Im i d e tr e 38N N N
E t

N N
Ht

,
0

i0
,

i i( ) ( ˆ ) ( )ˆ ( ) ˆ
ˆ


 òd d

p
d= - =

¥
+ -

can be performed in a further stationary-phase approximation analogous to [3–5] (and in fact similar to thef
integral above). The phase in e Et Ri p( ) + becomes stationary if E

R

t

d

d

p= - . However as shown e.g. in [4]
R

t

d

d

p- is
precisely the energy of the solutionwith period t. Hence the result of the stationary phase approximationwill be
a sumover all solutions that are periodic in the sense above and havefixed energyE rather than fixed period. For
these solutionsEt then cancels with the second term in the action (10), hence the associated phasewill be

determined only by the first term S t t tdp

t

i 0
( ) · ˙ ( )* ò y y= - ¢ ¢ ¢ also referred to as the reduced action. Given

that bR

t

E

t

d

d

d

d 1
12

2 = - = - - the factor b2 i e1
i p

1
2∣ ∣ ( )

p m p
arising from the stationary-phase approximation combines

nicely with the one from (35). Altogether we thus obtain the anticipated trace formula

d E d E
T

M

1
Re

e

det
e . 39N N

p

p

p

A

S
prim i

2
i

p

p

p( ) ¯ ( )
∣ ( ) ∣

( )

≕




åp
» +

-

m p-

  

The summand d EN̄ ( ) gives the smooth part of the level density and arises from the lower limit 0 of the time
integral. It is proportional to the volume of the energy shell in our reduced phase space and given by the pertinent
variant of theWeyl or Thomas–Fermi formula

Id E I I E H
1

2
d d d d , . 40N L L L1 1 1 1 1

¯ ( )
( )

( ( )) ( )
 ò q

p
q q d= ¢¼ ¢ ¢¼ ¢ - ¢ ¢

- - -

This result (which ismoremeaningful if one avoids the canonical transformation in the beginning of section 2.5)
is readily obtained using that for small times no time slicing is necessary. The action (12) then boils down to
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H t,0 0( )*y y- and the result follows directly after Laplace transformation. For the semiclassical approach to
spectral statistics it will not be necessary to evaluate the—often involved—integral for d EN̄ ( ). As infirst
quantisation [32] subleading corrections to this result are to be expected.

2.7.Discussion
Noting that N2∣ ∣y = the present approximation is valid not only for 0  but also in the limit N  ¥. In
the latter case it is helpful to rescale Ny y to avoid changing the normalisation of the variables in the limit
taken. If wewant the hopping and interaction terms in a Bose–Hubbard like system to remain comparable we
then have to adjust the corresponding coefficients in away similar to the case 0  . This now entails
J J NU U,  . In case of the Bose–Hubbardmodel the resultingHamiltonian entering the trace formula
then satisfies

H N
J U

,
2 2

, 41
k

k k k k
k

k k1 1
2 2( ) ( ) ( )

⎡
⎣⎢

⎤
⎦⎥* * * *å åy y y y y y y y= - + ++ +

withU and J constant, the normalisation 12∣ ∣y = and the large parameterN and thewhole action (12) being
proportional toN.

If theHamiltonian is written inWeyl instead of normal ordering one obtains an analogous result however
without a SK phase. This is in linewith [24] as well as results for the propagator in [27, 33]. A derivation along the
lines followed herewill be given in appendix B; it uses the analogue of the discretised action stated in [33] and the
correspondingHessian is again evaluatedwith the help of [29].

An alternative derivation of the trace formula can be based on the semiclassical approximation [9, 27, 33] of
matrix elements ef Ht ii∣ ∣( ) ˆ ( )y yá ñ- in a basis of coherent states. Interestingly, in this case t( )y ¢ and t( )*y ¢ first
have to be treated as independent functions subject to the conditions 0 i( ) ( )y y= , t f( ) ( )* *y y= only. The two
functions become complex conjugate after evaluating the trace in a stationary-phase approximation, and the
resulting trace formula coincides with the one obtained above.

3. Spectral statistics

Weare now equipped to study spectral statistics. Inserting the trace formula into the definition of the two-point
correlation function one obtains, as for single-particle systems, the double sum

R
A A

d
1 Re e . 42

p p

p p S E
d

S E
d

,
2

i
2 2

p p( )
( ¯)

( )[ ( ¯ ) ( ¯ )]*




  å p
» + p p

¢

¢ + - -¢

The correlation function is thus expressed in terms of periodic solutions of the nonlinear Schrödinger equation
in away that allows to keep track of crucial interference effects. The double sum can be evaluated in the sameway
as for chaotic single-particle systems.

Wenowwant to discuss this evaluation inmore detail. In doing sowewill emphasise the ingredients
entering the calculation and check the conditions underwhich the reasoning for single-particle systems carries
through tomany-particle systems in second quantisation. For the details of the calculation for single-particle
systems based on these ingredients we refer to the original literature quoted below aswell as [4, 34].

3.1. Conditions
The phase space of predominantly chaoticmany-particle systems typically still has small stability islands.Hence
it is important to stress that our theory describes the behaviour of states supported by the chaotic part of phase
space. The spectral statistics is dominated by this contribution if the regular parts of phase space are small in
comparison, as in the case of the Bose–Hubbardmodel in the regimes considered.

In the chaotic part of the phase space our treatment requires a gap in the spectrumof the Frobenius–Perron
operator. This condition implies variousweaker requirements such as ergodicity and hyperbolicity. The
Frobenius–Perron operator describes the time evolution of classical phase space densities [4], leading froma
density x0 ( )r at time 0 to the density x x x xxdt

n
t 0( ) ( ( )) ( )òr d r= ¢ - F ¢ ¢ at time t. Here xt ( )F ¢ gives the image

of the phase space point x¢ under classical time evolution over time t. The leading eigenvalue of this operator is 1,
with the associated eigenfunction corresponding to a uniformdensity on the energy shell. The remaining
eigenvalues can bewritten as e tmg- where mg with Re 0m g are the Ruelle–Pollicott resonances. The system is
said to have a spectral gap if the remaining Re mg are bounded away from zero so that allmodes associated to
non-uniformphase space densities decay in timewith at least aminimal rate. Formany-particle systems the
dynamics required to satisfy this condition is the one induced by the discrete nonlinear Schrödinger equation in
the reduced phase space parameterised by I ,k kq¢ ¢ (k L1, 2, , 1= ¼ - ).
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As a further conditionwe assume for now that our systemhas no further symmetries beyond the particle
number conservation already taken into account, howeverwewill extend our treatment to deal with discrete
geometric symmetries at a later point.

3.2.Diagonal approximation
When evaluating (42) it is important to look for pairs of solutionswhose (reduced) actions S S,p p¢ are similar as
thismeans that their contributions can interference constructively. In contrast, terms in (42) arising frompairs
of orbits with large action differences oscillate rapidly as the energy is varied and are washed out by the energy
average.

The simplest pairs of solutionswith similar actions involve two solutions that are identical (apart from the
slight difference due to the offset in their energy arguments). If we neglect the difference of the corresponding
factors A A,p p¢ andTaylor expand the exponent using that

S

E

d

d

p gives the periodTp, the contribution from
identical solutions can bewritten as the single sum

R
A

d
Re e . 43

p

p T d
diag

2

2
i p( )

∣ ∣
( ¯)

( )¯


å p
= p

Under the condition of a spectral gap such sums over periodic orbits can be evaluated using a sum rule derived in
the quantum chaos context byHannay andOzorio de Almeida [14]. In the notation used here it can bewritten as

A
T

T

d
, 44

p
p

2

0
∣ ∣ ( )òå ¼ » ¼

¥

where the dots represent an arbitrary property of the solutions that depends only on their periodT. This rule is a
general statistical property of periodic solutions in systemswith a spectral gap; it is very helpful to extract
information from these solutions even in situations where it is difficult to determine the solutions individually.
Equation (44) implies that even very long orbits give important collective contributions: while the factors Ap

2∣ ∣
associated to these orbits decrease with increasing period their number increases, and both effects approximately
compensate. Using (44) the sum in (43) can be evaluated to give

R
1

2
. 45diag 2

( ) ( )


= -

This result, originally derived in [13, 14], is known as the diagonal approximation. It gives the first non-trivial
term in an expansion of the two-point correlation function in 1


, after the leading term1present in (42). For

time-reversal invariant systemswe also have to keep track ofmutually time reversed solutions, leading to a
doubling of this result.

3.3. Encounters
Contributions of higher order in 1/ò arise frompairs of orbits differing noticeably only in so-called encounters
[16, 17]. Inside these encounters two ormore parts of the same orbit come close up to time reversal, and a
partner orbit can then obtained by connecting the ends of these orbit parts differently and a subsequent
adjustment to obtain a valid periodic orbit satisfying the equations ofmotion. For time-reversal invariant
systems one also has to include the case where parts of an orbit are almostmutually time reversed. Two
simplified sketches of such pairs of orbits are shown infigure 1.

The existence of such pairs of orbits requires hyperbolicity which follows from the existence of a spectral gap.
In a hyperbolic system the possible directions at each point in phase space (apart from the direction of the flow
and the direction of increasing energy) are spanned by pairs of stable and unstable directions. Deviations
between (parts of) trajectories along the stable directions decrease exponentially in time, whereas deviations
along stable directions increase exponentially but decrease for large negative times. This allows to ‘change
connections’ inside an encounter, by constructing a part of an orbit p¢ thatmoves away fromone part of p and

Figure 1.Pairs of orbits differing in encounters: simplified sketch of a Sieber–Richter pair of orbits differing by their connections in a
single encounter of two orbit parts, and a pair of orbits differing in two encounters involving two and three orbit parts. (Pictures from
[17]©American Physical Society.)
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towards a different part of p; its deviation from thefirst part has to be unstable whereas the deviation from the
second part is stable.

When deriving the contribution of such pairs of orbits for single-particle systems, the deviations between
encountering parts of an orbit weremeasured in a systemof coordinates associated to the stable and unstable
directions [35–37]. This carries over in the present scenario as well. For example, if two parts come closewe
consider the points where these two parts pierce through a Poincaré surface of section in our reduced phase
space. By transformation from the difference between the Ik¢, kq¢ (k L2, , 1= ¼ - )we then obtain L 2- pairs
of coordinates s u,k k characterising the deviations between the two orbit parts in the stable and unstable
directions. If the parts are almost time-reversed instead of close in phase spacewe instead have to consider the
deviation of one part from the time-reversed of the other.

We can nowdetermine the difference between the (reduced) actions of the partner orbits. Apart from the
difference associated to the energy offset already seen in the diagonal approximation this has a further
contribution accounting for the change of action due to the changed connections in the encounters. For an
encounter of two parts the latter contribution can bewritten as [35–37]

S s u , 46
k

k k ( )åD =

where the sum runs over pairs of associated stable and unstable coordinates. Generalisations to encounters
involvingmore orbit parts are given in [17]. As in the phase of (42) the action difference is divided by  ,
systematic contributions of constructively interfering orbits will have action differences of this scale and hence
very close encounters.

As a further ingredient one needs to determine the probability that encounters with given separations
between the stretches arise in a periodic orbit/solution. For the corresponding formulawe refer to [17].We
stress that the only requirement for its validity is the existence of spectral gap. This is used to derive an ‘ergodic’
probability for different parts of an orbit to come close, as well as an estimate for the duration of an encounter,
both of which enter the formula.

With all ingredients for the single-particle treatment remaining valid, the contributions of all ‘diagrams’ of
orbits differing in encounters (such as those displayed infigure 1) remain unchanged. These contributions
involve powers of 1/òwith the power increasing formore complex diagrams. The sumover all diagrams can be
performed using the combinatorial techniques discussed in [17]. For systemswithout time-reversal invariance
the contributions cancel leaving only the diagonal approximation. For time-reversal invariant systems one
obtains a series expansion to all orders in 1/ò. In either case the results agree with the non-oscillatory termswith
coefficients cn in the randommatrix prediction

R c d1 Re e
1

. 47
n

n n

n

2

2i( ) ( ) ( )⎜ ⎟⎛
⎝

⎞
⎠


å~ + +
=

¥

Here systemswithout time-reversal invariance (as described by theGUE) have c2
1

2
= - and d2

1

2
= and all other

coefficients vanish. For time-reversal invariant systems (as described by theGOE)wehave c 12 = - ,
cn

n n

i

3 1

2 n

( ) ! ( )= - - for n 3 , d d 02 3= = and dn
n n

i

3 3

2 n

( ) ! ( )= - - for n 4 .We note that the treatment
summarised here assumes that our system (in the reduced phase space) has no further symmetries as thesewould
lead to additional pairs of orbits with similar or identical actions, such asmutually reflected orbits in a system
with reflection symmetry. The oscillatory terms and systemswith discrete geometric symmetries will be
discussed later.

As in case of normal ordering the trace formula ismodified to include the SK phase, we have to check that
this does not affect the results arising in the present approach. To do so, we note that the contributions to the
double sumonly involve differences between phases associated to closeby partner orbits. Due to 1


y µ the SK

phase itself is of an order independent of  . As the SK phase is time-reversal invariant the phases of two partner
orbits can only differ due to the slight changes inside encounters. However for the encounters relevant for
spectral statistics the encounters become very close in the semiclassical limit,meaning that the difference
between the SK phases becomes negligible.

3.4.Oscillatory contributions
The random-matrix prediction (47) for R ( ) also involves oscillatory contributions proportional to Re e1

i
2i

n( )
 .

To access these contributions amore careful semiclassical approximation is needed [18, 38]. In this
approximation the level density is accessed from spectral determinants via

d E
E H

E H

1
Im

det

det
. 480( ) ( ˆ )

( ˆ )
∣ ( )

p h h
=

¶
¶

-
+ -

h=
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An approximation for the spectral determinant on the level of the trace formula is

E H E E H

F

det exp d tr

e 1 e . 49N E n S E

1

i i

( )( ˆ ) ( ˆ )

( ) ( )¯ ( ) ( ) 

ò
å

- µ - ¢ ¢ -

µ -p

-

-

G
G G G

Here the sum is taken over sets of orbitsΓwith nΓ elements and cumulative reduced action SΓ; the amplitude FΓ
depends on the stability and theMaslov indices of the contributing orbits and N E¯ ( ) is the smooth
approximation for the number of energy levels below E. However using the spectral determinant allows to
incorporate further quantummechanical information, in particular the fact that due to Ĥ beingHermitian

E Hdet( ˆ )- has to be real for real arguments E. As shown in [38] this leads to an approximation for the spectral
determinant where the contributions from sets of orbits with cumulative periods larger than half of the
Heisenberg tineT d2H

¯p= are replaced by the complex conjugate of the contributions from setswith
cumulative periods below this threshold. This ‘Riemann-Siegel lookalike formula’ readily generalises to the
many-body systems under consideration as its key ingredient, the semiclassical approximation for the trace of
the resolvent E H 1( ˆ )- - , can be accessed from the trace of the propagator as above; essentially one only has to
omit the restriction to the imaginary part in (13). Again periodicity is required only in the reduced phase space.

Using the improved approximation of the level density as well as the same general ideas as outlined above it is
possible to resolve oscillatory contributions as well. As each level density brings in two determinants, evaluating
the two-point correlation function then requires to study interference between quadruplets of (possibly empty)
sets of orbits. Hence one also needs to take into account contributions where, say, after changing connections
inside encounters an orbit is broken into two orbits with similar cumulative action. A treatment of thesemore
involved correlations shows that for chaotic quantum systems R ( ) fully agrees with the predictions from
RMT [18].

3.5. Systemswithout a spectral gap
Interestingly, there are chaotic systems that do not have a spectral gap but still satisfy some of the ingredients of
our calculation, such as hyperbolicity which is required for the existence of orbit pairs differing in encounters.
For these systemsmany of the techniques sketched here are applicable, but the final result ofWigner–Dyson
statistics does not carry over as e.g. the sum rule (44) becomes invalid. An interesting question for future work is
whether chaoticmany-body systemswithout a spectral gap could be faithful to RMT ensembles that incorporate
more information about the problem at hand and reduce toWigner–Dyson statistics in important regimes, e.g.
the embeddedmany-body ensembles [39, 40] or ensembles sensitive to the spacial structure of the problem. An
example for a situationwhere the spacial structure is important is the continuum limit with diverging number of
sites; additional orbit correlations relevant in this case were identified in [41].

4. Symmetries

In a systemwith additional discrete symmetries one needs to consider the spectral statistics inside subspectra
determined by the symmetry group. A prime example is the discrete (disorder-free)Bose–Hubbardmodel with
periodic boundary conditions as introduced above. Its symmetry group is the dihedral group, consisting of the
discrete translation k k 1y y + and its iterates; the reflection ;k L k1y y - - and combinations of translations
and reflection that can be viewed here as reflection about a different centre.More formally the symmetry group
for thismodel is the dihedral groupDL. HereDn stands for the dihedral group of order n2 . The spectrumof the
Bose–Hubbardmodel decomposes into subspectra labelled by the eigenvalues e L2 ip k of the discrete translation
operatorwhere L0 ,..., 1k = - denotes the quasi-momentum. The spectrawith 0k = and (if integer)

L 2k = decompose further into components even and odd under reflection, whereas the remaining subspectra
come in energy-degenerate pairsκ, L k- related by reflection. Altogether we obtain L 1+ subspectra for odd
L and L 2+ subspectra for even L. A representation-theoretic justification of this decompositionwill be given
below andwe refer to [42] for ways to implement the decomposition numerically.

The level density associated to each subspectrum is obtained using a trace formulawhere the classical orbits,
or in the present context the solutions of theGross–Pitaevski equation, are required to be periodic (in the sense
above) inside a fundamental domain of the system [43]. (See also [44].) For the case at hand this domain can be
defined e.g. by converting ky¢ to ky for afixed choice of 0y¢ and then imposing certain conditions on ky .
Demanding that Re ky is smallest for k=0 guarantees that applying the translation operator to a point inside
the fundamental domain leads to a point outside. The same applies tomost other elements of the symmetry
group but in order to guarantee that reflection about the 0th site leads outside the fundamental domainwe need
an additional requirement such as Re Re L1 1y y< - .

12
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Each subspectrumα (not distinguishing between degenerate subspectra) can nowbe associated to an
irreducible representation of the symmetry group, and the corresponding trace formula [43] has a form similar
to (1),

d E d E g A
1

Re e . 50
p

p p
Si p( ) ¯ ( ) ( ) ( )


åp

c» +a a a

The only difference from (1) apart from the restriction to the fundamental domain is the additional factor
gp( )ca . Here gp is the group element relating the initial andfinal point of the orbit p if the orbit is considered in

the full phase space as opposed to the fundamental domain. The character gp( )ca is the trace of thematrix
representing gp in the representationα. As in [43] the derivation of (50) requires that a projection operator on
the part of theHilbert space associated to our subspectrum is inserted inside the trace taken over theHilbert
space; doing this in ourmany-particle calculations starting from (13) leads to exactly the samemodifications as
observed in [43] for single-particle systems.

To apply (50) to the Bose–Hubbardmodel we need the irreducible representations of the dihedral group
[45]. The representation of the translation operatormust have an L-fold power ; its two-dimensional
representations are therefore be given by

cos sin

sin cos
. 51L L

L L

2 2

2 2
( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

-pk pk

pk pk

The reflection operator is then represented by

1 0
0 1

52( ) ( )
-

and the representations of all other group elements can be found using that thematrix representation of a
product of symmetry operationsmust be the product of thematrix representations. The general theory of
symmetries in quantummechanics (see e.g. [46]) implies that the energy eigenstates associated to this
representation can be grouped into pairs (representable as vectors)with identical energy. One can show that for
the two-dimensional representation at hand this leads precisely to the energy-degenerate subspectra associated
to eigenvalues of the translation operator e L2 ip k ( 0, L

2
k ¹ ) asmentioned above.

However if we have 0k = or, assuming even L, L

2
k = thematrix (51) becomes diagonal and the two-

dimensional representations defined above become reducible. Instead of using these representations the
associated subspectra therefore have to be described by one-dimensional representations. These represent the
translation operator either by 1 or in case of even L alternatively by−1, whereas the reflection operator can be
represented by either 1 or−1 regardless of L. Again these spectra precisely correspond towhat we said above
about the cases 0, L

2
k = .

In general the consideration of discrete symmetries can change the appropriate RMT ensemble compared to
the one expected based on the time-reversal properties alone [47]. However using equation (50) one can show
that this does not happen for subspectra associated to representations by realmatrices [48, 49]. As the
aforementioned representations of the dihedral group are real the spectral statistics of all its subspectra is thus in
linewith theGOE as observed numerically in [22] aswell as in the next section.

5.Numerical results

To support our results numerically and complement the previous numerical studies we have performed a
numerical analysis of the chaotic properties of both the quantum and the classical Bose–Hubbardmodel. Our
results supportWigner–Dyson statistics as well asmostly classical chaotic dynamics in the regimewhere the
hopping and interaction terms are comparable.

For the quantummodel we are interested in the spectral statistics as discussed above.We use a statistical
observable slightlymore convenient for computations than R ( ) , namely the normalised distribution P r( ) of
ratios between subsequent level spacings; if the ordered quantum levels are denoted by En, these ratios are given
by rn

E E

E E
n n

n n

1

1
= -

-
+

-
. The ratio distribution is especially suited for our purposes as there is no requirement to

explicitly evaluate the average level density. A randommatrix prediction for P r( )was obtained in [50] by
considering 3×3 randommatrices; for theGOE it reads

P r
r r

r r

27

8 1
. 53RMT

2

2 5 2
( )

( )
( )=

+
+ +

In particular for r 0 one can see that P r r( ) µ , which is due to level repulsion. Notice that for large r the
distribution has a fat tail in contrast to the level spacing distribution: P r r 3( ) µ - for r 1 . As for the density of
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nearest-neighbour spacings the results for largematrices are expected to be very similar in value but analytically
more complicated. For comparison, wemention that the ratio distribution for an integrable system (assuming
that the energy levels are independent) is given by

P r
r

1

1
. 54Poisson 2

( )
( )

( )=
+

Wedetermined the spectrumof the quantumBose–Hubbardmodel via exact diagonalisation. For each of the
subspectra described in section 4we computed the histogramof r to get a numerical estimate of the ratio
distribution P rnum ( ). Examples of such numerical histograms are displayed infigure 2. Thenwe determined the
L1 norm (i.e. the integral over the absolute value) of the difference P r P rnum RMT( ) ( )- . Finally this difference
was averaged over all different subspectra. Figure 3 top shows the norm for the case L=5 andN=15 as well as
N 25.= Weobtain good agreement for the case that the interaction term (of orderUN 2) is comparable to or
slightly larger than the hopping term (of order JN). The agreement improves asN increases, which is reassuring
as our theoretical derivation ofWigner–Dyson statistics holds in the limit N  ¥ (or equivalently in the
semiclassical limit).

For the classical Bose–Hubbardmodel we introduce a numerically determinedmeasure of ergodicity, which
indicates whether the classical limit ismostly chaotic. To determine thismeasurewe considered the
Hamiltonian

Figure 2.Numerical estimate of the ratio distribution between neighbouring levels for the quantumBose–Hubbardmodel with L=5
andN=25. The dashed black line stands for the RMTprediction (53). The dotted–dashed red line stands for the Poisson distribution
(54). Green circles:UN J 0.125= . Blue squares:UN J 5= . Orange triangles:UN J 250= .

Figure 3.Top: comparison between the ratio distribution of neighbouring levels between the Bose–Hubbardmodel andRMT for
N=25 (black circles) andN=15 (red squares), and L=5. The difference is estimated via the L1 normof the deviation fromRMTas
a function ofUN/J. Bottom: numerical estimate of the degree of ergodicity of the classical dynamics of Bose–Hubbardmodel with
N=25 and L=5 as a function ofUN/J. 1 indicates full ergodicity. The precise definition of our estimate is given in the text.
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H
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k

L

k k k k
k

L

k k
0

1

1 1
0

1
2 2( ) ( ) ( ) ( )* * * *å åy y y y y y y y= - + +

=

-
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=
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wherewe identified L 0y y= and L 0* *y y= . The classical dynamics is given by

H H
i , i . 56˙ ˙ ( )

*
* y

y
y

y
=

¶
¶

= -
¶
¶

If an initial point ,0 0( )*y y is given in phase space, equation (56) allows to compute the unique trajectory

t t,( ( ) ( ))*y y such that 0 , 0 ,0 0( ( ) ( )) ( )* *y y y y= . Itmay be useful to add that as each point is part of a

classical trajectory the point ,0 0( )*y y is parameterised by L2 real numbers as the coefficients of 0
*y are the

complex conjugates of the coefficients of 0y .
As the energy E and the particle numberN are conserved, the trajectory can only access a subspace in phase

space, denoted by N E, , which is the constant energy surface associated toE in the Fock spacewithN particles.
Numerically a triangulation of N E, is performed by picking randompoints on this surface. These points are
generated usingHalton sequences, which are commonly used to explore high dimensional spaces. First a
randompoint is sampled on the hypersphere N2∣∣ ∣∣y = . If its energy coincides withE it is kept and stored as a
point in N E, . Otherwise we continue the sampling. In order to cover substantially N E, for typical values ofE,
UN/Jwe chose to pick 2 106´ randompoints. Then themean distance between any two of these points is
calculated, let us call it δ. This gives a typical distance scale for the constant energy surface at a given energyE.
This typical distance is used to define balls of radius 10d around each points. After having determined a cover
of N E, the trajectory starting from ,0 0( )*y y is computed for a sequence of increasing (final) times.We took
large enoughfinal values of the propagation time so that the number of visited balls does not vary significantly
after this time.

Finally ameasure for the ergodicity of a trajectory is defined by the ratio between the number of visited balls
and the total number of balls. In order to have generic values, this ergodicitymeasure is averaged over different
choices of initial conditions ,0 0( )*y y . Our results are displayed infigure 3 bottom. By definition ourmeasure is
a real number between 0 and 1. 1 indicates perfect ergodicity. The closer it is to 1 themore ergodic the trajectory
is.While not a rigorous check of the conditions for randommatrix statistics, ourmeasure indicates whether the
system ismostly ergodic or has a substantiallymixed phase spacewith large stability islands. Figure 3 bottom
shows that, for the same range ofUN/J, the classical dynamics is predominantly ergodic and the quantum
system agrees closely with RMTprediction.

Our results are compatible with those obtained through a different approach and amodified version of the
model in [51]. There the authors chose a different normalisation of y and claimed that their version of the
classical Bose–Hubbardmodel becomesmore andmore classical when increasingU/J. This is linewith the left
part offigure 3 bottom.
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AppendixA. Perturbation of the stabilitymatrix and theHessian

In this appendixwewant to explicitly showhowperturbation theory can be used to deal with the vanishing
eigenvalues of the stabilitymatrix and theHessian considered in section 2.5, associated to k=0 and k=1. To
avoid some of the complexity of [25]we specifically consider small perturbations Hd that depend only on kq¢ ,
which does not appear as a parameter of the unperturbedHamiltonian. In order to avoid ambiguities we choose
H k( )d q¢ periodic in kq¢ with the period coincidingwith the range of values covered by kq¢ .

Wefirst investigate how the perturbationmodifies the vanishing eigenvalue of theHessian. The
corresponding eigenvector is associated to a simultaneous shift of jkq¢ for our k at all time steps j. It is thus

convenient to rewrite theHessian in terms of derivatives w.r.t. Ijk¢ , jkq¢ ; this also absorbs the divisor  in (21) and
it has the advantage that theHessian becomesHermitian. The perturbation of theHessian d has as its only
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non-vanishingmatrix elements the derivatives
H jk

jk

2

2

( )
t-

d q

q

¶ ¢

¶ ¢
. In the same coordinate system the eigenvector e

associated to the vanishing eigenvalue has identical entries for the components associated to the jkq¢ associated
to our k and the remaining components are zero. First-order perturbation theory then yields a perturbed
eigenvalue

e e

e e

H1
A.1

j

jk

jk

2

2

·
·

( )
( )

 åd d q

q
t= -

¶ ¢

¶ ¢

taken as ò in section 2.5.
To study the effect on the stabilitymatrix wefirst consider thematrix Mj

k˜ ( )
mapping a deviation of I,jk jk( )q¢ ¢

to the resulting deviation after a time step of size τ.We obtain, e.g. by converting equation (27) to the present
systemof coordinates
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Here the lower left entry vanishes for the unperturbedHamiltonian but ismoved away from zero by the
perturbation H k( )d q¢ . As a consequence of this perturbation the product given in (32)

M I
1

d

d
0 1

A.3k
k

k
˜ ( )( )

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

q
=

D ¢
¢

then receives the lower left entry

H
A.4

j

jk

jk

2

2

( )
( )å

d q

q
t-

¶ ¢

¶ ¢
=

as desired. In contrast the changes of the other entries do not affect the determinant to linear order in the
perturbation.

Appendix B.Weyl ordering

Finally wewant to show explicitly that in linewith [9, 24, 25, 27, 33] the SKphase does not arise in case ofWeyl
ordering. Using theHamiltonian inWeyl ordering the short-time propagator can bewritten as [33]

w w w w w

w wH

e 2 d , exp 2 2 2

2 2
i

, B.1

j
H

j
L

j j j j j j j

j j j j j j

i

1
2

1

2
1

2
1

∣ ∣ [ ] ∣ ∣ · ·

∣ ∣ ∣ ∣ · ( ) ( )

ˆ ⎜

⎟

⎛
⎝

⎞
⎠

* * *

* *


 òy y y y

y y y y t

» - + +

- - - -

t-
- -

- -

involving an integration over a pair of complex conjugate variables w w,j j* that were not required in normal
ordering. The action in the discretised coherent-state path integral then turns into [33]

w w w

w w

R

H

i
2 2 2 2 2

, B.2

j
j j j j j j j

j j j j

2
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2
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and the path integral runs over w w,j j* aswell as ,j j
*y y . The action becomes stationary under variation of

,j j
*y y if

w
2

B.3j
j j 1 ( )

y y
=

+ -

and its complex conjugate hold. This suggests that in the limit offine discretisation the wj should be interpreted
asmacroscopic wave functions halfway between two discretisation steps. Furthermore stationarity w.r.t.
variation of w w,j j* implies

w w w

w

H
i

2

,
B.4

j j j j
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-
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and its complex conjugate, which is the appropriate discretisation of the nonlinear Schrödinger equation
i H˙

*
y =

y
¶
¶

for the time interval 2t . After eliminating wj with the help of (B.3) a short calculation shows that
the combination ofmacroscopic wave functions in the action (B.2) agrees with the simpler form in (12).

We nowhave to evaluate theHessian of R


and its determinant. In analogy to section 2.4we start with the

Hessian containing all second derivatives. If wefirst write the derivatives w.r.t. all w w,j j* and then thosew.r.t. all

,j j*y y theHessian assumes the form
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and the orthogonalmatrix E is given by
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The determinant can nowbe evaluated as
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0
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L⎜ ⎟⎛
⎝

⎞
⎠

= . Here the factor i dropped out because the dimension of thematrix is amultiple of 4. As the

finalmatrix is of block tridiagonal form it can be simplifiedwith the help of (24). Using
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(where Mj˜ is defined as in (27) butwith w w,j j* taking the role of ,j j
*y y ) and again ignoring terms of quadratic

and higher order in τ in the entries we obtain

D E
E E E

Mdet
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2
4 det . B.7

T T
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L2( ˜ ) ( )⎜ ⎟⎛
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⎠  
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As usual the stationary-phase approximation requires the inverse square root of this determinant, containing a
factor 2 L- . This factor is cancelled by the 2 L in the integrationmeasure for w w,j j*. As anticipated, we thus
obtain the same result as with normal ordering apart from the SK phase. The remaining steps, in particular
taking into account the conservation laws, carry over directly from the case of normal ordering discussed in the
main text.
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