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Abstract 

 

Bias correction is a necessary post-processing procedure in order to use Regional Climate 

Model (RCM) simulated local climate variables as the input data for hydrological models due 

to systematic errors of RCMs. Most of present bias correction methods adjust statistic 

properties between observed and simulated data based on calendar periods, e.g., month or 

season. However, this matching statistic is only a necessary condition, not a sufficient 

condition, since temporal distribution of the precipitation between observed and simulated 

data is ignored. This study suggests an improved bias correction scheme which considers not 

only statistical properties but also the temporal distribution between the time series of 

observed and modelled data. The ratio of the observed precipitation to simulated precipitation 

is used to compare the behaviour between the observed and modelled  precipitation data and 

three criteria are proposed when dividing bias correction periods: 1) over/under estimation of 

precipitation, 2) stability of precipitation ratio and 3) oscillation of precipitation ratio. The 

results show that the output of the proposed bias correction method follows the trend of the 

observed precipitation better than that of the conventional bias correction method.  This study 

indicates that temporal distribution should not be ignored when choosing a comparison period 

for bias correction. However, the study is only a preliminary attempt to address this important 

issue and we hope it will stimulate more research activities to improve the methodology. 

Future efforts on several unsolved problems have been suggested such as how to find out the 

optimal group number to avoid the overfitting and underfitting conditions.  
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1. Introduction 

From the hydrological cycle and water resources perspective, the impacts of climate change 

are of increasing interest to water resources managers (Compagnucci et al., 2001; Bates et al., 

2008). Numerous studies have been done to assess the impacts of climate change on water 

resources which are based on climate variables from Global Climate Models (GCMs) and 

water resources models (Fung et al., 2011). However, because of the relatively low spatial 

resolution (100-250km) of GCMs, Regional Climate Models (RCMs) are widely used for 

regional impact studies at catchment scale (25-50km) climate variables (Fowler et al., 2007; 

Qin et al., 2007). Although RCMs are able to simulate local climate at a finer grid, it is well 

known that outputs from RCMs cannot be used as direct input data for hydrological models 

due to systematic errors (i.e., biases) and need post processing of the model outputs to 

remove biases (Hansen et al., 2006; Sharma et al., 2007; Christensen et al., 2008).  Research 

has shown that typical systematic model errors of RCMs are shown as misestimation (over or 

under) of climate variables, incorrect seasonal variations of precipitation (Christensen et al., 

2008; Terink et al., 2009; Teutschbein and Seibert, 2010) and simulation of too many wet 

days of low intensity rainfall (drizzle effect) than the observed (Ines and Hansen, 2006). 

Several studies on bias correction methodology have been done recently from simple linear 

scaling to sophisticated quantile mapping method (Piani et al., 2010; Chen et al., 2011; Chen 

et al., 2011; Johnson and Sharma, 2011; Teutschbein and Seibert, 2012). Teutschbein and 

Seibert (2012) conducted statistical evaluation of four bias correction procedures for 

precipitation: 1) linear scaling (Lenderink et al., 2007), 2) local intensity scaling (Schmidli et 

al., 2006), 3) power transformation (Leander and Buishand, 2007; Leander et al., 2008) and 4) 

distribution mapping method (Déqué et al., 2007; Block et al., 2009; Piani et al., 2010; 

Johnson and Sharma, 2011; Sun et al., 2011). The linear scaling approach corrects mean 

values based on the differences between the observed and model data, i.e., it considers bias in 



the mean, using a correction factor based on the ratio of the long-term mean observed and 

modelled data. Local intensity scaling is an advanced method which accounts for not only the 

bias in the mean but also wet day frequencies and wet day intensities. Power transformation 

adjusts the mean as well as the variance of a precipitation time series. Distribution mapping is 

to adjust the distribution of model output to that of the observed data using transfer function. 

The results showed that there was an improvement of the raw RCM precipitation data with all 

the bias correction methods and that the distribution mapping was found to be the best 

correction procedure. However, the main weakness of these conventional methods is that they 

neglect temporal distribution of rainfall characteristics. All the existing bias correction 

methods are performed on a calendar basis: monthly or seasonal statistic properties are 

equalised between the modelled and observed climate data. These data grouping may break 

natural characteristics between the observation data and RCM simulated data and may mix 

different precipitation features into one segment because rainfall characteristics does not 

exactly follow monthly or seasonal boundaries. The idea of an improved bias correction 

method is proposed in this study to resolve this problem in order to match similar rainfall 

events between the observed and modelled time series data by considering precipitation 

temporal distributions. 

Here, we would like to note that the proposed methodology uses only one climate model and 

one scenario because the purpose of this study is mainly to illustrate the flaw of the 

conventional calendar based bias correction method and to suggest the logic for the improved 

precipitation characteristics based bias correction method. 

 

2. Study Catchment and data 

Study area  



The Exe catchment is located in the southwest England. The catchment area is 1530 km2 and 

its average annual rainfall is 1088 mm. Four major tributaries of River Exe are River Culm, 

River Barle, River Clyst and River Creedy, and the river flows into the sea via the Exe 

Estuary on the south coast of England. The main urban areas in the Exe catchment are Exeter, 

Crediton, Tiverton, Cullompton. Figure 1 shows the overview of the Exe catchment area. In 

this study the Thorverton catchment (606km2) which is one of the Exe subcatchment is used. 

Daily time series of the observed precipitation data over the Thorverton catchment is derived 

from 5 rain gauges (extracted from the UK Met Office’s MIDAS database) using the 

Thiessen polygon method for the baseline period (1961-1990).  

 

Regional climate model (RCM) data 

The climate data used in this research has been generated by HadRM3. HadRM3 is a Met 

Office Hadley Centre's regional climate model (resolution 25×25km) which is used to 

produce regional projections of the future climate from the global climate model HadCM3 

(Murphy et al., 2009). The RCM data consist of one unperturbed member and 10 perturbed 

members driven by historical emissions and future emission scenario A1B which assumes a 

balance between fossil fuels and other energy sources. 31 parameters were selected for this 

perturbation from the unperturbed member representing cloud, convection, radiation, 

atmospheric dynamics, boundary layer, land surface and sea-ice. The HadRM3 Perturbed 

Physics Experiment Dataset (HadRM3-PPE-UK) provides time series data from 1950 to 2100 

and the spatial and temporal resolutions are 25km grid in space and day in time respectively. 

Detailed information about the HadRM3-PPE data can be found at 

http://badc.nerc.ac.uk/browse//badc/hadrm3/data/hadrm3-ppe-uk. The RCM 25km grid boxes 

are rotated 0.22o as shown in Figure 1. Here, among 11-member only the unperturbed RCM 

http://badc.nerc.ac.uk/browse/badc/hadrm3/data/hadrm3-ppe-uk


daily precipitation series for the baseline period 1961~1990 is used in this study and the grid 

is selected which covers the Thorverton catchment. 

 

3. Methodology 

3.1 Statistical bias correction methods 

The Gamma distribution is commonly used for rainfall distribution since it can provide a 

variety of distribution shapes (Wilks, 1990). In this study the two parameter Gamma 

distribution is applied and its function is as follows: 

𝑓(𝑥) =
1

𝛽𝛼𝛤(𝛼)
𝑥𝛼−1𝑒−𝑥/𝛽;  𝑥 ≥ 0;  𝛼, 𝛽 > 0      (1)   

 where, 𝛤 is gamma function, α is shape parameter, β is scale parameter. Among various bias 

correction methods the quantile mapping method based on the Gamma distribution is selected 

for bias correction of the daily RCM simulated precipitation data. The objective is to map the 

observed and simulated quantiles using their corresponding Gamma distributions. The 

calendar year is divided into monthly or seasonal segments and bias correction is performed 

within each segment individually. In this study, bias correction is conducted for each season 

independently after matching wet day frequency between the observed and RCM simulated 

precipitation data by modifying the RCM simulated data using a cut-off threshold. Daily 

Gamma cumulative distribution functions (CDFs) are built from a seasonal period for both 

observed and RCM simulated precipitation from 1961 to 1990. Figure 2 presents the 

schematic of the distribution mapping method. First, the value of the RCM simulated daily 

precipitation is found in the Gamma CDF and the corresponding cumulative probability from 

the observed Gamma CDF. Then the value of precipitation with the same cumulative 

probability is searched in the observed Gamma CDF. This value is the corrected value of the 

RCM simulated precipitation. The equation can be expressed as follows: 



𝑋𝑐𝑜𝑟 =  𝐹−1 [𝐹(𝑋𝑚𝑜𝑑 ;  𝛼𝑚𝑜𝑑 𝛽𝑚𝑜𝑑) ; 𝛼𝑜𝑏𝑠 𝛽𝑜𝑏𝑠]      (2) 

where, F is Gamma CDF, F-1 is its inverse function, 𝑋𝑐𝑜𝑟 is the bias corrected data in the 

baseline period, α and β are shape and scale parameters of the Gamma distribution 

respectively. The subscript mod and obs indicate the parameters from the RCM simulated 

precipitation and observed precipitation.  

Usually the RCM simulated precipitation values have a numerous number of days with low 

precipitation compared with the observed precipitation. Therefore, a cut-off threshold is 

commonly used to remove low precipitation values in the model output in order to equalise 

the frequency of wet days between the observed and simulated precipitation before applying 

the quantile mapping method. After bias correction, the RCM simulated Gamma CDF is 

shifted to the observed Gamma CDF. 

The problem with the bias correction studies so far lies in their boundary selections.  

Although statistical properties of the corrected data can match those of the observation data 

after bias correction when performed on the calendar boundary basis, it does not take into 

account the temporal distribution of the time series data. For hydrological applications, not 

only statistics but temporal condition should be matched as well. The flaw of the calendar 

based bias correction is demonstrated in Figure 3. If time series of the observation and RCM 

simulated data are symmetrical as illustrated in Figure 3, we can see that their rainfall 

temporal characteristics are considerably different. However when we plot CDFs both the 

observed and RCM CDF are identical, indicating that no bias correction is needed based on 

CDF albeit it is required.  

Figure 4 illustrates the drawback of the calendar based bias correction. Ideally, similar 

rainfall events should be corrected with similar CDFs but in most cases rainfall 

characteristics between the observation data and RCM simulated data do not follow 

individual seasons exactly. In Figure 4, in the first half of the summer the model 



overestimates compared with the the observed precipitation while during the second half, the 

model underestimates the precipitation which means that the bias correction period should be 

divided in the middle of the summer, and not at the seasonal boundaries, in order not to 

ignore the variation of rainfall characteristics between the observation data and the RCM 

simulated data within the summer. Hence, the bias correction period should not be divided by 

calendar boundaries but by similar rainfall data characteristics. When we perform quantile 

mapping bias correction, the CFDs can match after correction, even though the uncorrected 

model data is very poor in time compared with the observed data. For this reason it is not 

sufficient to judge whether or not bias correction has been done properly based on CDF 

correction alone. 

 

3.2 Proposed method: Bias correction based on comparative rainfall characteristics 

Low pass signal filtering using FFT 

The idea of a new bias correction scheme is to group the bias correction period based on the 

comparative behaviour of the observation and RCM simulated precipitation data. In this 

study the ratio of the observed precipitation to the model precipitation is selected as the 

grouping index and its temporal distribution is used to group the data for quantile mapping. 

Because both the observation and RCM precipitation data have fluctuations (i.e., noisy), 

which makes it difficult to classify data into groups, it is necessary to eliminate these high 

frequencies. A low pass filter based on the Fourier Transform is applied to filter out the noise, 

i.e. high frequency signals from the precipitation data and make the time series smoother to 

help identifying rainfall features between the observation and RCM data.  

The Fourier Transform is used to map signals from the time domain to the frequency domain. 

The Fourier Transform F(w) and inverse Fourier Transform f(t) are defined as follows.  

 𝐹(𝑤) = ∫ 𝑓(𝑡)𝑒−𝑖𝑤𝑡𝑑𝑡
∞

−∞
        (3) 



 𝑓(𝑡) =
1

2𝜋
∫ 𝐹(𝑤)𝑒𝑖𝑤𝑡𝑑𝑤

∞

−∞
        (4) 

After the Fourier transform of the data,  a variety of filters are explored to smooth the data 

time series to reduce fluctuations. In this study,  the Hamming-window filter is applied as 

follows. 

𝑤(𝑛) = 0.54 − 0.46cos (
2𝜋𝑛

𝑁−1
), 0 ≤ n ≤ N-1     (5) 

where, N is the length of the filter window. 

 

Grouping based on signal ration between observation and model data 

The principle of dividing bias correction periods uses the similarities between the observed 

and simulated daily mean precipitation for 30 years (1961-1990). The ratio of the observed to 

simulated precipitation is used to represent the comparative rainfall characteristics. Here, 

only the ratio of the means is considered as the grouping criterion since our major concern is 

for water resource management, i.e., the volume of water. However, flood studies are 

interested in extreme water distribution and in this case, the second (variance) and third 

(skewness) moment should be considered as well when grouping bias correction periods.  

- Three criteria are used to divide the 360-day calendar year into sub groups in order to match 

the CDF of the observed and simulated data and to find out their natural and stable 

boundaries. These are as follows: Firstly, the precipitation ratio of the observed to the model 

above one or below one, i.e. overestimation or underestimation of precipitation should be 

treated as the same group respectively. Secondly, stability and sensitivity of the precipitation 

ratio is considered. The basis of dividing groups is the signal of the data, hence, consistency 

of the signal with time should be taken into account to check the stability and sensitivity of 

the group. This is done by making an ensemble of 29-year mean precipitation ratios by 

removing every year’s precipitation data from 1961 to 1990. The wide range part of this 



ensemble has been categorised into one group as the precipitation ratio of this group is 

sensitive and unstable. In addition, an ensemble of 20-year mean precipitation ratios 

estimated by removing every 10 year precipitation data from 1961 to 1990 are used as well to 

judge the similarity of the group behaviour. Finally, the period that has similar oscillation has 

been treated as one group. When the 360-day year calendar is categorised based on these 

three criteria simultaneously, the created bias correction period boundaries are found not 

coincided with the calendar seasonal boundaries. 

 

4. Results 

4.1 Comparison between RCM data and Observations 

To assess the performance of the 11-member RCM data for the baseline period, monthly 

mean precipitations for the Thorverton catchment have been compared between the RCM 

data and observation data. Figure 5 shows that the trend is similar but actual values do not 

match, and there are clearly biases between the observation and climate model during the 

baseline period. 11 RCMs tend to produce more rainfall than the observed between February 

and June, but less between August and December. Therefore, the biases exist in time (Figure 

5 (left)) and in rainfall intensity (Figure 5 (right)).  

 

4.2 Digital filtering results and grouping based on comparative rainfall characteristics  

Figure 6 presents the power spectrum of the observed precipitation data after the Fourier 

Transform. The amplitude decreases until the frequency is 0.05 and afterward it fluctuates. 

Hence, 0.05 has been set as the cut-off frequency for both the observation and RCM data. 

Figure 7(a) shows the signal of the observation and model data after filtering out high 

frequencies. The 30-year mean precipitation ratio is shown in Figure 7(b) and ensembles of 

29-year and 20-year mean precipitation ratios are illustrated in Figure 7(c) and Figure 7(d) 



respectively. Time series of the precipitation ratio is divided into 5 groups based on three 

criteria as noted before: over/underestimation, sensitivity and oscillations. Group 1 and 

Group 2 are the groups which the precipitation ratios are over 1, i.e. underestimating the 

observed trends, while Group 3 overestimates the observed trends. Group 4 has been 

classified together as the spread of its precipitation ratio ensemble is wide and unstable. 

Finally, Group 5 has been categorised as one because the precipitation ratio is over one and 

oscillations are similar within the group. 

 

4.3 Comparison of bias corrected signal  

Comparison of the bias corrected signal for the seasonal based correction and the 

comparative rainfall characteristic based correction are illustrated in Figure 8. The result of 

comparison can be considered as a reasonable approach because the numbers of groups are 

similar, four and five for the seasonal based correction and the comparative rainfall 

characteristic based correction respectively. For both cases, RCM CDFs are exactly matched 

with the observation CDFs for every season and every group. As a result an improvement of 

the raw RCM data is achieved. However, when time series are plotted we can clearly see the 

problem of the calendar based bias correction (Figure 8(a)). In the summer, during the first 

third period (June) the model overestimates the observation trends while during the last two-

thirds of the period (July, August) the model underestimates the observation trends. 

Nevertheless, if bias is corrected on seasonal basis using CDFs which are constructed from 

the summer observation and RCM data from 1961 to 1990, time series of the corrected RCM 

data does not follow the trend of the observation data as shown in Figure 8(a). This is because 

data with different comparative rainfall characteristics are treated as one group to build CDFs, 

hence, the trend of the bias corrected rainfall does not follow the observation data even 

though the CDFs are matched perfectly after the bias correction. In other words, temporal 



distribution has been ignored in the grouping. However, when bias correction periods are 

divided naturally on the basis of comparative rainfall features this problem can be resolved. 

Figure 8(b) shows that time series of the bias corrected rainfall in the summer is similar to 

that of the observation data.  

 

5. Discussion and Conclusions 

This study proposed a new approach for RCM bias correction which considers the rainfall 

temporal distribution characteristics and each bias correction group has similar features 

between the ratio of the observed and simulated data. Conventional bias corrections use 

calendar boundaries, i.e. monthly or seasonal based correction, and as a result they ignore 

rainfall characteristics between the observation data and model simulated data. Our results 

show that the comparative rainfall characteristic bias correction method has the improved 

results compared with the conventional bias correction methods. This is because the proposed 

method avoids the mixing of different comparative rainfall characteristics into one segment 

and the defined bias correction periods are more realistic and appropriate. Quantile mapping, 

one of the conventional bias correction methods, only uses CDF as a performance indicator 

and this is not sufficient. It is only a necessary condition, not a sufficient condition, because 

the CDF temporal features of the rainfall are ignored. Perfectly matched CDFs cannot 

guarantee a temporal match between the model and observation data. 

However the study is only a preliminary attempt to address this important issue and we hope 

it will stimulate more research activities to improve the methodology with different climatic 

conditions so that more experience and knowledge could be obtained. Here are some possible 

problems to be explored further. Firstly, more research is needed to find out how many 

groups are optimal for bias correction. From the intuition, the more groups we have, the 

smaller temporal error will be in the bias correction. However, we may come to meet the 



overfitting issue and there is a question on the well-known trade-off between bias and 

variance.. This is because smaller temporal error may not mean it is a good bias correction if 

bias correction fits to noise in the data instead of the underlying signal. Hence, we cannot 

judge by the temporal error alone. Performance of the overfitted model has the small error for 

the calibrated data but may have large errors when the model is validated with the unseen 

data. Cross validation could be a method to resolve this issue and will be explored in the 

future. The Akaike information criterio (AIC) could be another possible method for choosing 

the optimal number of bias correction groups.  On the other hand, underfitting (i.e., too fewer 

groups) should also be avoided and be studied simultaneously with the overfitting problem. 

Secondly, further studies are needed to refine and amend the proposed grouping criteria. 

Thirdly, it is harder to subdivide individual groups into sub-groups (e.g., 5 groups are used in 

this study yet some corrected data does not follow the trend of observation data very well). 

Hence, it should be explored whether the grouping criteria for the major groups could be 

applied to subgroups or not. Fourthly, in this study, only the ratio of the mean precipitations 

is considered because the data is to be applied for water resources management such as 

reservoir operations. If other statistical moments (e.g., variance, skewness, …) should be 

considered, the problem would become more complex and MCDM (Multiple-criteria 

decision-making) may be needed. Finally, with more studies in different climates around the 

world, a problem to be resolved is to find patterns on bias correction boundaries and number 

of groups. 
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Figure 1. Location of the Exe catchment (left) and HadRM3 25km grid boxes (right). The 

Thorverton catchment is located in the highlighted grid box. 
 

 

 

 
Figure 2. Schematic of distribution mapping: Distribution function of the RCM simulated 

data is shifted to the distribution function of the observed data. 
 

 



 
Figure 3. Illustration of time series of the observation data and RCM simulated data which 

are symmetrical in time (left) and cumulative distribution function of these symmetrical time 

series data (right). 

 
 

 
Figure 4. Illustration of the drawback of the calendar based (seasonal) bias correction. 

Dividing the correction period on seasonal basis breaks rainfall characteristics. In the summer 

both overestimation and underestimation of the observed trend coexist.  
 

 

 
Figure 5. Comparison between the observed and RCM simulated data. Left: Monthly mean 

precipitation for 30 years from 1961 to 1990. The red dashed line is the observation data line 

and the solid lines are ensembles of 11-member output. Right: Gamma distribution of the 

observations (red) and Gamma distributions of RCM simulated data (gray shaded area). 
 



 
Figure 6. Power spectrum of the observed precipitation data before and after cut-off. 
 

 

 
Figure 7. (a) Signal of the observation (red) and RCM simulated (blue) data after filtering; (b), 

(c), (d) illustrate the 30-year mean precipitation ratio, ensembles of 29-year and 20-year mean 

precipitation ratios respectively. 
 



 
Figure 8. Comparison of proposed bias correction method and conventional method. 
 

 


