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Abstract—In this paper, the authors propose the use of spectral 
beamforming for the reconstruction of a breast energy profile for 

cancer detection. Experiments were performed on three different 
breast phantoms and different spectral beamformers were 
implemented and tested. 

Index Terms—Breast Microwave Imaging, Spectral 

Beamforming. 

I.  INTRODUCTION 

Microwave Imaging has been extensively studied in the 

context of breast imaging for almost two decades. Radar Ultra 

Wideband (UWB) imaging techniques have been largely 

examined for monostatic (e.g. [1]) and multistatic antenna 

configurations (e.g. [2]). Different authors have proposed 

different imaging algorithms to remove the large artefact caused 

by the skin on the breast surface, and several beamformers have 

been proposed to detect dielectric scatterers (e.g. tumours) 

within the breast. 

Most existing Microwave Imaging prototypes designed for 

breast imaging have reported the use of Vector Network 

Analysers (VNAs) to illuminate the breast phantoms and also 

record the resulting backscattered signals. As a natural 

consequence, all these signals are produced and recorded in the 

Frequency Domain (FD). However, most reported imaging 

algorithms, such as skin artefact removals and beamformers, are 

often reported in the Time Domain (TD). This implies that 

signals are first converted to TD through an Inverse Fast Fourier 

Transform before having subjected through a skin artefact 

removal algorithm and a beamformer – which often involves 

time-consuming multiplication and summation of large 

matrices. 

In this paper, the authors will present FD algorithms to 

remove the skin artefact and beamform the backscattered signals 

of three different breast phantoms with a tumour model.  

 

II. MATERIALS 

A. Microwave Imaging System Description 

The Microwave Imaging system used in this study 

comprises a Rohde-Shwarz ZVT 8 port VNA – operating in the 

4-8GHz frequency range – and a conformal array of 60 wide-

slot antennas [2]. The antennas operate while immersed in a 

matching liquid. 𝐸𝑛𝑚 is the measured backscattered signal 

received at receiving antenna m from transmitting antenna n. A 

low-loss matching ceramic shell is then fitted into the antenna 

array, into which the breast phantoms will be placed. To note 

that the antenna array was rotated by 10 degrees to provide 

differential measurements, which are used for the skin 

calibration method. 

B. Phantoms 

Three breast phantoms were developed, and tested three 

times. Breast phantom I reflects a homogeneous breast phantom 

with an evenly distributed layer of skin with a thickness varying 

between 1 and 3 mm, a tumour phantom was placed at 

(−20, −20, −25) location. The interior of the phantom is then 

filled with homogeneous matching liquid which aims to exhibits 

similar dielectric properties to the internal breast tissue. 

Breast phantom II comprises a layer of skin with thickness 

varying between 1 and 3 mm, a piece of Tissue Mimicking 

Material (TMM) – to account for some breast heterogeneity – 

placed at (20,20, −12), a tumour phantom placed at 
(−20, −20, −20) and the interior is filled with matching liquid. 

Breast phantom III (Fig. 1) also comprises a layer of skin 

with thickness varying between 1 and 3 mm, a piece of tissue 

mimicking material placed at (0, −30, −10), a tumour phantom 

 

Fig. 1. Breast phantom III with skin, tumour and fibroglandular mimicking 

materlials before filled with matching liquid. 



placed at (0,20, −15) and the interior is then filled with 

matching liquid. 

For all breast phantoms, the chest-wall was accounted for by 

maintaining a liquid to air interface at the base of the breast 

phantom. The dielectric properties at 6 GHz for the skin TMM 

were 𝜀𝑟 = 30, 𝜎 = 4 𝑠/𝑚 for Phantom I, and 𝜀𝑟 = 33, 𝜎 =
3.9 𝑠/𝑚 for Phantoms II and III. The matching liquid had 𝜀𝑟 =
9.3, 𝜎 = 0.22 𝑠/𝑚. The tumour TMM had the following 

dielectric properties: 𝜀𝑟 = 50, 𝜎 = 7 𝑠/𝑚. The heterogeneous 

breast TMM had the following dielectric properties: 𝜀𝑟 = 30, 

𝜎 = 3.9 𝑠/𝑚 for Phantoms II and III. 

 

III. IMAGE RECONSTRUCTION 

Two algorithms are often needed for the reconstruction of 

the energy profile of the breast: skin artefact removal algorithm 

and beamforming algorithm. 

A. Skin Artefact Removal Algorithms 

An artefact removal algorithm is applied to the recorded 

signals to subtract the high backscattering response caused by 

skin. The large skin artefact is caused by the large dielectric 

difference between the skin and the normal breast tissue which 

causes a large reflection in the recorded backscattered data, and 

also by a creep wave which propagates between nearby antennas 

without entering the phantom. A simple but effective method to 

reduce this effect involves taking two sets of data displaced by 

a small angle of rotation, 𝜃𝑟𝑜𝑡 = 10°. The skin signal may be 

assumed to be unaffected by the rotation whereas internal 

reflections are displaced. By subtracting the two sets of 

measurements, 𝐸𝑛𝑚1 and 𝐸𝑛𝑚2, so that: 

 𝐸𝑛𝑚 =  𝐸𝑛𝑚1 −  𝐸𝑛𝑚2 (1) 

The resulting signal should have the skin response removed, but 

it will comprise the set of internal backscatterers and that set 

rotated by 𝜃𝑟𝑜𝑡.  

B. Beamformer 

Finally, a beamforming algorithm was applied to spatially 

focus the backscattered signals and create an energy profile of 

the breast phantom. High-energy regions identify the presence 

and location of significant dielectric scatterers which may 

represent breast tumours. 

Computationally, the TD method requires the manipulation 

of large arrays to implement the time delays, whereas the FD 

method may be implemented using matrix multiplication, which 

is often a more efficient method especially when the time 

window 𝑇𝑤 is relatively large (thus restricting the number of 

frequencies for which the phase needs to be computed). 

Using the time delay theorem of the Fourier Transform, the 

total field reconstructed at point  𝝆, in the FD, is: 

or in terms of a summation over P discrete frequencies: 

 

Fig. 2. The spectrum of the zero mean signal over all the antenna paths in 

blue. Breast phantoms I, II and III (from top to bottom). The response of a 20th 

order Butterworth filter with -3dB frequency are shown in purple (with cut-off 
frequency of 4.5 GHz for phantom I, and cut-off frequency of 5 GHz for 

phantoms II and III). 

 

  

  

  

  

Fig. 3. Energy profile of breast phantom I. A Brickwall filter with a 4.5GHz 

cut-off frequency and a 20th order Butterworth filter with -3dB were used, left 

and right, respectively. From top to bottom: 𝑑 = 0, 𝑑 = 1  𝑑 = 2 and 𝑑 = 3. 



 𝐸𝝆(𝑚) = ∑ ∑ 𝐸𝑛𝑚(𝑓𝑃)𝑒−𝑗2𝜋𝑓𝑃𝜏(𝝆,𝝆𝑛)

𝑃

𝑝=1

𝑁

𝑛=1

 (3) 

where 𝜏(𝝆, 𝝆𝑛) represents the delay from the point of interest 

to the receiver. 

An intensity image may be created by calculating a 

normalised intensity at each point: 

 𝐼𝝆(𝑚) = ∑ |𝐸𝝆(𝑚)|
2

𝑀

𝑚=1

 (4) 

The authors will examine the effects of the following 

filtering/compensation techniques:  

 Distance correction: Equation 2 used in image 

reconstruction ignores wave attenuation. Spherical 

spreading of the signal due to lossy properties of 

biological tissue will be considered. However, early 

results suggest that a power law which compensates for 

spherical spreading is not necessarily the best, since 

there other causes of attenuation include scattering and 

the fact that nearby antennas are likely to have greater 

contamination from creep waves than signals which 

have travelled further. A variable d will determine the 

influence of the distance correction in resulting energy 

profile of the breast phantoms: no scaling 𝑑 = 0; linear 

scaling 𝑑 = 1; quadratic scaling 𝑑 = 2; and cubic 

scaling 𝑑 = 3. The distance filter was implemented on 

the set of signals received, S, based on the transmitter-

receiver distance such that: 

 𝑆𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆_𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅(𝑛, 𝑚) = 𝑆(𝑛, 𝑚) × 𝑟𝑛𝑚
𝑑  (5) 

 where 𝑟𝑚𝑛 = |𝜌𝑚 − 𝜌𝑛| and 𝑟𝑛𝑚 is the matrix that stores 

the distances between antennas n and m, d is the distance 

variable which varies between 0 and 3. 

 𝐸𝝆(𝑚, 𝑓) = ∑ 𝐸𝑛𝑚(𝑓)𝑒−𝑗2𝜋𝑓𝜏(𝝆,𝝆𝑛)

𝑁

𝑛=1

 (2) 

   

  

  

  

  

Fig. 5. Energy profile of breast phantom III. A Brickwall filter with a 5GHz 

cut-off frequency and a 20th order Butterworth filter with -3dB were used, left 

and right, respectively. From top to bottom: 𝑑 = 0, 𝑑 = 1  𝑑 = 2 and 𝑑 = 3. 

 

 Line of Sight Filter: only antennas with a direct line of 

sight to point 𝝆 in the reconstruction of the image will be 

considered. An antenna at 𝜌𝑚 with a cone of angle of 𝜃𝑎, 

  

  

  

  

Fig. 4. Energy profile of breast phantom II. A Brickwall filter with a 5GHz 

cut-off frequency and a 20th order Butterworth filter with -3dB were used, left 

and right, respectively. From top to bottom: 𝑑 = 0, 𝑑 = 1  𝑑 = 2 and 𝑑 = 3. 



and pointing in direction 𝒓𝒎
^ , where 𝒓𝒎

^  is the unit vector 

in the direction of the radius at point 𝜌, is included in the 

calculation if: 

 
𝝆 − 𝝆𝒎

|𝝆 − 𝝆𝒎|
∙  𝒓𝒎

^ ≤ cos 𝜃𝑎 
  (6) 

 Spectral Filtering: a low pass Brickwall filter with cut-

off frequencies of 4.5 and 5 GHz will be considered, as 

well as a 20th order Butterworth filter with -3dB (and 

comparable cut-off frequencies of 4.5 and 5 GHz). These 

frequencies were chosen after analysing the zero mean 

signal over all the antenna paths (Figure 2). 

 

 

IV. RESULTS 

The resulting energy profile of the breast phantoms when 

using the low pass Brickwall filter (with cut-off frequencies of 

4.5 GHz for Phantom I, and cut-off frequencies of 5 GHz for 

Phantom II and III) and a 20th order Butterworth filter with -3dB 

(with equivalent cut-off frequencies of 4.5 GHz for Phantom I 

and 5 GHz for Phantoms II and III), with four distance 

corrections, are shown for the three phantoms I, II and III, in 

Figures 3, 4 and 5, respectively. 

The tumour region in breast phantom I is correctly detected 

at its original location using both a Brickwall and a 20th order 

Butterworth filters, particularly with a distance correction factor 

d=1 and d=2. 

The tumour region in breast phantom II is correctly detected 

at its original location using both a Brickwall and a 20th order 

Butterworth filters, particularly with a distance correction factor 

d=2. The fibroglandular region is also correctly detected with 

the same filters. 

The tumour region in breast phantom III is harder to be 

correctly detected at its location with both a Brickwall and a 20th 

order Butterworth filters. The fibroglandular region produces 

higher backscatter energy than the tumour region., but the 

tumour region is still noticeable with all the tested distance 

correction factors. 

         

V. CONCLUSIONS 

Tumours were detected in each of the tested scenarios and 

low pass Brickwall filters were easily implemented and led to 

faster processing times. Filter cut-off frequencies based on the 

spectra of the measurements need to be further investigated and 

tested in more imaging scenarios. 
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