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Abstract 

We investigate the improvement of the operation of a four-reservoir system in the Seine 

River basin, France, by use of deterministic and ensemble weather forecasts and real-time 

control. In the current management, each reservoir is operated independently from the others 

and following prescribed rule-curves, designed to reduce floods and sustain low-flows under 

the historical hydrological conditions. However, this management system is inefficient when 

inflows are significantly different from their seasonal average and may become even more 

inadequate to cope with the predicted increase in extreme events induced by climate change. 

In this work, we develop and test a centralized real-time control system to improve reservoirs 

operation by exploiting numerical weather forecasts that are becoming increasingly available. 

The proposed management system implements a well-established optimization technique, 

Model Predictive Control (MPC) and its recently modified version that can incorporate 

uncertainties, Tree-Based Model Predictive Control (TB-MPC), to account for deterministic 

and ensemble forecasts respectively. The management system is assessed by simulation over 

historical events and compared to the “no-forecasts” strategy based on rule-curves. 

Simulation results show that the proposed real-time control system largely outperforms the 

“no-forecasts” management strategy, and that explicitly considering forecasts uncertainty 

through ensembles can compensate for the loss in performance due to forecasts inaccuracy. 

Introduction 

The goal of this paper is to present the development of a real-time control system to support 

reservoir management using deterministic and ensemble weather forecasts in the Seine River 

basin in France. The reservoir system includes four reservoirs upstream of Paris, and is 

operated with the objective of reducing floods and supporting low-flows in a large area of 
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high economic value. The current management of the reservoirs is reactive and decentralized 

and it is based on rule-curves that were designed from time series of historical inflows. 

Therefore its efficiency is limited when inflows are significantly different from their seasonal 

average. Moreover, Dorchies et al. (2014) have shown that it might be largely inadequate to 

cope with the projected increase in frequency and intensity of extreme events. As suggested 

by Dorchies et al. (2014), the current management efficiency could be improved by a 

centralized and anticipatory management strategy. In centralized management, operational 

decisions at each location are optimized simultaneously considering the overall response of 

the multi-reservoir system, potentially leading to a strong increase in the system 

performances (see for instance Anghileri et al., 2013; Giuliani and Castelletti, 2013; Marques 

and Tilmant, 2013). In anticipatory water management, numerical weather forecasts are 

combined with simulation-optimization models to take operational actions before an event 

occurs (e.g. van Andel et al., 2012; Wang et al., 2014).  

Following these ideas, the present study investigates the use of a centralized real-time 

management system that implements Model Predictive Control (MPC, Mayne et al., 2000) 

and Tree-Based Model Predictive Control (TB-MPC, Raso et al., 2014) using deterministic 

and ensemble weather forecasts respectively. MPC is a well-established optimal control 

technique that has already shown its efficiency for set-point control of open-water systems, 

especially irrigation and drainage channels (e.g. Van Overloop, 2006) and has gained 

increasing attention in the reservoir operation literature in the last years (e.g. Anand et al., 

2011; Breckpot et al. 2013a; Breckpot et al., 2013b; Galelli et al., 2014; Schwanenberg et al., 

2014; Tian et al., 2015). In MPC, optimal control decisions are computed at each decision 

time-step, e.g. daily or weekly, by optimization of the simulated system performances over a 

prediction horizon of days or weeks. Since the simulation model can be initialized by 
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observed hydrological conditions and forced by weather forecasts available at the time of 

decision, MPC provides a formal approach to fully exploit real-time information, both 

observations and forecasts, for water systems operation. Breckpot et al. (2013a) and Galelli et 

al. (2014) present recent applications of MPC to reservoir operation. In these works, 

however, weather forecasts are not used and MPC can anticipate the system response only 

over a short prediction horizon (i.e. some hours) by exploiting the delay in the watershed 

input-output dynamics. In another study, Breckpot et al. (2013b) show that MPC outperforms 

the current reactive management strategy for flood control of the Demer River in Belgium 

when using historical rainfall data as predictions, however the robustness of MPC against 

uncertainty on the weather predictions is not examined. The main limitation of the 

deterministic approach is that its performances quickly deteriorate if forecasts are not 

accurate. Previous studies demonstrate that the loss in performances due to inaccurate 

forecasts can be partially compensated if forecast uncertainty is explicitly considered in the 

optimization process. For instance, Pianosi and Ravazzani (2010) apply an MPC-like 

approach based on Stochastic Dynamic Programming to a single reservoir system, and show 

the benefits of considering predictive uncertainty of rainfall-runoff models, both empirical 

and physical-based, for flood control. Kim et al. (2007) use Sampling Stochastic Dynamic 

Programming with ensemble streamflow predictions for the operation of a multi-reservoir 

system and show the improvements in system performance by explicitly including inflow 

uncertainty via ensemble forecasts. Roulin (2007) shows the improvement of a flood early 

warning system by using ensemble forecasts instead of deterministic ones in a simple static 

cost-loss decision model for two test catchments. Boucher et al. (2011) compare the use of 

deterministic and ensemble hydrological forecasts in a two-stage decision tree for the 

operation of a hydropower system, and show that the two types of forecasts products bring 
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similar good performances. Recently, Raso et al. (2014) presented a novel technique to 

handle ensemble forecasts in MPC optimization, named Tree-Based MPC (TB-MPC). While 

MPC searches for the trajectory of decisions that proves optimal under the deterministic 

trajectory of input forecasts, TB-MPC searches for the decision tree that optimizes the system 

response along the different paths defined by the forecast ensemble members. 

In this study, we developed a MPC and TB-MPC management system for the four reservoirs 

in the Seine River basin and tested it using real weather forecasts data provided by the 

European Centre for Medium-Range Weather Forecasts (ECMWF), and a semi-distributed 

hydrological model. Since weather forecasts can be exploited to cope with short-term events 

only, the long-term objectives of the reservoir management are accounted for by using 

penalty functions over the reservoir storages reached at the end of the prediction horizon. As 

such penalty functions are defined based on deviations from the reservoirs’ rule-curves, the 

proposed (TB-)MPC management system can be viewed as a means to incorporate weather 

forecasts into the current management structure, which may increase its acceptability for 

decision-makers (Gong et al., 2010). We simulate the proposed (TB-)MPC system over 

historical events and compare it to the uncoordinated “no-forecast” management strategy 

based on rule-curves, assessing the loss in performance due to forecasts inaccuracy and the 

benefits of considering forecasts uncertainty.  

The Seine River basin 

The study area 

The system considered in this study is the Seine River basin upstream of Paris, France (Fig. 

1). The study area covers about 43,824 km2 and is characterized by high water demand and 

high vulnerability to floods, especially in the Paris urban area. In order to reduce floods and 
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support water supply in low-flow periods, four reservoirs were constructed between the 

1950s and the 1990s. The four reservoirs, named Aube, Seine, Pannecière and Marne, have a 

total capacity of 810 hm3 and are managed by Seine Grands Lacs (SGL), a French public 

establishment. While the Pannecière reservoir was created by damming the Yonne River, a 

tributary of the Seine, the other three are bank-side reservoirs. Table 1 reports the capacity of 

each reservoir and of its inlet and outlet channels.  

Currently, each reservoir is operated independently from the others following a Rule-Curve 

(RC) that sets the target reservoir volume for each day of the year. The RCs are designed in 

order to store water during the high-flow season (from November to June), while maintaining 

adequate flood control volumes, and to sustain low-flows during the dry season (from July to 

October). The reservoirs operation must also respect some constraints on the reservoir 

inflows and outflows. Specifically, water withdrawals are limited by minimum environmental 

flow requirements (called reserved flows) on downstream rivers, while the river flow 

downstream from the outlet cannot exceed a maximum value (called reference flow) designed 

to prevent downstream floods (Table 1). 

The performances of the reservoir operation can be evaluated by considering the frequency 

with which flow thresholds at 9 strategic gauging stations - or “monitoring stations” from 

now onwards - are respected (Dorchies et al. 2014). These are four low-flow thresholds 

(vigilance, alert, reinforced alert and crisis) in correspondence to different levels of 

restrictions to water use (Table 2), and three high-flow thresholds (vigilance, alert and crisis) 

that are used among other information by the French flood forecasting service for defining 

three flood warnings (bankfull discharge, frequently flooded areas, and exceptional flood 

event; see Table 2).  
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Data used 

Meteorological and hydrological data 

Meteorological data (daily precipitation and temperature) were obtained from the SAFRAN 

database of Météo‐France (Vidal et al., 2010). The original spatial resolution was 

8 km x 8 km, therefore data had to be aggregated to the sub-basin scale of the semi-

distributed hydrological model (see next section). Daily potential evapotranspiration time-

series were calculated by the Penman‐Monteith formula (Penman, 1948).  

Daily flows at various river sections were extracted from the data-base of “naturalized” flows 

(i.e., reconstructed flows obtained from observations by removing the influence of reservoir 

operation) provided by SGL (Hydratec, 2011). 

Reservoirs data 

Reservoirs data were provided by SGL, including: maximum and minimum storages; 

capacity of the inlet/outlet channels; rule-curves; minimum environmental flows (reserved 

flows) for downstream river reaches and maximum flows downstream from the outlets 

(reference flows); high and low flow thresholds at downstream strategic gauging stations.  

Weather forecasts 

Precipitation forecasts come from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) ensemble prediction system (Buizza et al., 1999). Ensemble forecasts (hereafter, 

EFs) are composed of 50 perturbed members and one ‘control’ member that is initialized with 

the same initial condition as the deterministic forecast (DF). Ensemble forecasts were 

available from March 11th, 2005 to October 1st, 2008, with a maximum lead time of 9 days 

and at daily temporal resolution. ECMWF EFs can also be provided at 6h time step, but for 

our study the daily resolution was sufficient, given the daily time step of the hydrological 
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model. The original spatial resolution is of 55 x 55 km (0.5° x 0.5° lat/lon), but one value of 

areal rainfall was estimated for the entire watershed as the average over the 15 grid points 

falling within the watershed (43,824 km2) weighted by the percentage of coverage. Given that 

the watershed is characterized by slow dynamics with high spatial correlation at the daily 

time step (oceanic weather type), we expect spatial averaging of rainfall forecasts to have 

negligible impact on the results. Table 3 reports the EF mean, spread (i.e. standard deviation), 

and accuracy (i.e Root Mean Square Error of the EFs mean) at lead-time from 1 to 9 days. 

Notice that the EFs spread slightly increases with the lead-time, while the accuracy remains 

fairly constant. 

Models and methods 

In this work we compare two management strategies: 

A) The uncoordinated management system that is currently being employed, which relies on 

the use of rule-curves and does not consider weather forecast (“no-forecast operation” from 

now onwards); 

B) A centralized and anticipatory operation that relies on the use of real-time optimization 

and exploit the available weather forecast (“operation-with-forecast”). In the following, we 

will further distinguish and compare three options, according to the forecast type: 

i. “Perfect forecast”: observed rainfall and temperature data are used in place of 

forecasts. The goal is to evaluate the upper bound of the reservoir operation 

performance in the ideal case that weather forecasts were not affected by any type of 

uncertainty. 

ii. “Deterministic forecast” provided by the ECMWF for daily rainfall (lead time of 9 

days) and the seasonal mean over historical records for the evapotranspiration.  
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iii. “Ensemble Forecasts” provided by the ECMWF for daily rainfall (lead time of 9 days) 

and the seasonal mean for the evapotranspiration.  

To compare the different management methods by model simulation, an integrated model of 

the physical and decision system was developed. The hydrological-hydraulic model of the 

physical system reproduces the rainfall-runoff process, the reservoirs dynamics, and flow-

routing. The decision model mimics the daily operation of the system, and thus provides the 

inflow/outflow decisions to be applied at the inlet(s) and outlet of each reservoir. Fig. 2 

illustrates the information fluxes in the two cases. In the “no-forecast operation” (left), 

decisions only depend on the reservoir storage (and day of the year), through the application 

of RCs, and on river flows upstream/downstream of the reservoirs, through the 

implementation of reserved/reference flow constraints. In the “operation-with-forecast”, 

instead, decisions at each day are computed by a simulation-optimization process that 

evaluates and optimizes the system response to decisions under the forecasts scenario. The 

components of the integrated simulation model are described below.  

Hydrological and hydraulic model 

The hydrological and hydraulic model of the Seine River basin is the semi-distributed 

conceptual TGR model (Munier, 2009), already used for this basin by Dorchies et al. (2014) 

and Munier et al. (2014). The TGR model couples the hydrological lumped rainfall-runoff 

GR4J model (Perrin et al., 2003) at daily time step with a simplified hydraulic model that 

takes into account flow propagation and attenuation, withdrawals, lateral inflows from runoff 

and point inflows from the reservoirs. In the TGR model, calculations are made at the scale of 

each sub-basin located between two gauging stations. The Seine River basin is divided into 

25 sub-basins having as outlets the 25 gauging stations upstream of Paris (Fig. 1). The four 

reservoirs were included into the TGR model by defining new sub-basins at the connection 
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points between river and inlet/outlet channels. The inputs of the reservoir models are the 

daily inlet and outlet flows, which constitute the decision variables calculated on the basis of 

the RCs in the “no-forecast operation” and otherwise obtained by optimization. The TGR 

model was calibrated using the time-series of “naturalized” flows over the period 1961-2009. 

More details about the model calibration and validation are given in Dorchies et al. (2014).  

Operation model 

The operation model reproduces the behavior of the reservoirs managers to provide the daily 

decisions of inflows and outflows from each reservoir. In the “no-forecast operation” case, 

the model implements the application of the RCs and the constraints on maximum inflows 

and outflows reported in Table 1. In the “operation-with-forecast” case, it implements a real-

time optimization strategy, called Model Predictive Control (MPC) strategy. MPC uses a 

dynamic model (in our case the hydraulic model) to predict the system behavior in response 

to the control actions over a finite horizon, called prediction horizon. The model takes as the 

initial state the current measured or estimated state of the system and as inputs the forecasts 

of the disturbances that act on the system. MPC selects the control trajectory that provides the 

best predicted behavior over the prediction horizon (Maciejowski, 2002). Thanks to the use 

of the dynamical model of the system and of the forecasts, the management becomes 

proactive, acting in advance to deal with the future expected problems caused by the 

disturbances. At each time-step, MPC provides the optimal control sequence over the entire 

prediction horizon. However, only the first control value of this sequence is actually applied 

to the system, and at the next time-step, the same optimization procedure is repeated using 

updated forecasts over a prediction horizon shifted one-step-ahead (receding horizon 

principle). Selection of the control sequence is based on minimization/maximization of an 

objective function that formalizes the management goals (for example to minimize flood 
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costs) while respecting some constraints (for example the capacity of the diversion channels). 

When using deterministic forecasts, the objective function takes up the following form: 
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where: 1,    , t t h u u , is the sequence of decisions to be taken over the prediction horizon, i.e. 

the inflow/outflow release volumes for each reservoir and each time interval, that must 

respect the physical hard-constraint of the channels capacity maxu  (reported in Table 1); h is 

the length of the prediction horizon; the vector   x is the system state, which includes the 4 

reservoir storages plus 51 state variables of the hydraulic model of the river network;  g  is a 

step-cost function that expresses the cost associated to the transition from time  to time +1. 

In our case study, it encompasses two different objectives: floods control and water supply in 

low-flows periods. Its definition is further detailed below, here we just point out that, as g  is 

computed from the simulated river flows, it is a function of the system state (   x ), the control 

decisions ( )u  and the exogenous system input ( 1) d , i.e. in our case the meteorological 

forcing of the hydrological model, as given by the deterministic weather forecast available at 

time t. Finally,  t h t hg  x  is a penalty-cost that expresses the cost paid for reaching a more or 

less desirable state at the end of the prediction horizon. Eq. (1c) represents the state-space 

model that, in our study, takes the form of the complex hydrological-hydraulic model 

described in the previous section. The recursive application of Eq. (1c) is initialized by the 
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value xt of the state at current time t, which is another input data of the problem together with 

the meteorological forcing forecasts.  

Since deterministic MPC does not take into account forecast uncertainty, its performance can 

be limited by an excess of confidence in the anticipated system response. To overcome the 

problem and reduce the sensitivity of the control strategy to wrong forecasts, Ensemble 

forecasts (EF) can be used in place of deterministic ones. Raso et al. (2014) proposed an 

extension of MPC that can deal with EFs, called Tree-Based (TB) MPC. In TB-MPC, the 

ensemble is transformed into a tree where ensemble members that are sufficiently similar are 

bundled together into one trajectory (branch) up to the point when some of them start to 

significantly diverge from the others, and the trajectory is split into different branches. The 

tree structure is then used in the TB-MPC algorithm, which optimizes a “control tree” that 

defines a distinct control sequence for each branch. Control sequences are constrained to be 

the same up to the moment when two ensemble members branch out, which translates the 

non-anticipativity condition (see Eq. 5 in Raso et al., 2014) stating that control actions should 

not depend on the outcome of stochastic variables that have not been extracted yet (Birge and 

Louveaux, 1997). The tree structure generation can be done by using the methodology 

proposed by Raso et al. (2013). To reduce the computing time, the tree is generated after 

reducing the EFs through the scenario reduction algorithm by Growe-Kuska et al. (2003). 

This method produces a reduced ensemble of prescribed cardinality by deleting some 

ensemble members according to a minimization process based on a mass transportation 

metric. The choice of the reduced ensemble cardinality is a compromise between reduction in 

computing time and loss of accuracy and it is case dependent. In our case, following the 

suggestions given in Stive (2011), we fixed the cardinality of the reduced ensemble to 6. To 

represent the tree structure and implement the non-anticipative condition in the TB-MPC 
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formulation, we used a scenario tree nodal partition matrix M (Dupacova et al., 2003). Each 

element of this matrix, say element  ,i j , is the label number of the branch in the tree to 

which the ensemble member j belongs at time-step i. The maximum value in M corresponds 

to the number of branches in the tree, and thus of distinct control actions along the tree. 

Having introduced M, the objective function for the TB-MPC problem is defined as: 
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where:  
tMU is a matrix that includes all the control actions taken over the prediction horizon 

along the different branches of the tree, and whose structure is defined by the nodal partition 

matrix tM , where the subscript indicates that M is built from the ensemble at time t;  p z  is 

the probability of the z-th ensemble member; 1,   t zd is the disturbance forecast according to 

the z-th ensemble member; ,zx  is the state vector at time  under the disturbances trajectory 

produced by the z-th ensemble member, given the initial state;  ,tM z
u  is the control action at 

time  along the branch associated to the z-th ensemble member, whose position in matrix 

tMU  is given by  ,tM z . Before a branching point, the nodal partition matrix returns the 

same position and thus the same control value for all ensemble members on the same branch, 

respecting the non-anticipativity condition. After the branching point, it returns different 

addresses for members in different branches and thus allows for different control values. 
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The length of the prediction horizon h was fixed equal to 9 days in both the MPC and TB-

MPC case, because this is the maximum lead-time of available forecasts, and sensitivity 

analysis tests showed that the performance steadily improves with the length of the prediction 

horizon. These results are further described in Ficchì (2013) and they are in line with 

previous studies (e.g. Pianosi and Ravazzani, 2010). 

Since our optimization problems (Eq. 1 or 2) cannot be solved analytically, they are solved 

by the direct search Nelder-Mead algorithm (Nelder and Mead, 1965), a derivative-free 

method for nonlinear optimization. The optimizer uses simulation results of the hydrological-

hydraulic model for the re-iterated evaluation of the objective function. To improve the 

convergence and reduce the computing time, we found it convenient to reduce the number of 

decision variables by enlarging the duration of application of each decision. Since the 

decision for the first daily time interval in the prediction horizon is the only one that is 

actually applied, we forced a daily duration for this first decision. For the subsequent time 

intervals, instead, we allow for a time-varying duration, with a finer temporal resolution at 

the beginning of the prediction horizon in case of high-flows conditions, and a coarse 

resolution in low-flows conditions, when inflows have lower variance. Specifically, in high-

flows conditions decision values are changed at time steps 1, 2, 3 and 5 in the prediction 

horizon, while in normal or low-flows conditions they are changed at time steps 1 and 2 only. 

The resulting search space of the optimization problem is thus larger in case of high-flows. 

For deterministic MPC, the total number of decision variables is 32 in high-flows conditions 

(8 variables at 4 time steps) and 16 otherwise (8 variables at 2 time steps). In TB-MPC, the 

number of decisions depends on the tree-structure, and specifically on the number of distinct 

branches at the last decision time-step (i.e. max(M(=5,z) in high-flows conditions, and 

max(M(=2,z) otherwise). Such a number varies between 4 and 18 in case of high-flows, for 
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a total of 8x4=32 and 8x18=144 decision variables, and between 2 and 6, i.e. 16 and 48 

variables, otherwise. When a branching point does not fall on the time-step when the decision 

can be changed, it is shifted to the following decision-step. This choice is analogous to the 

one in Raso et al. (2013) and is motivated by the fact that observations available at higher 

frequency than the decision frequency cannot be used until a new control is chosen.  

Step-costs  

The step-cost function gt (Eqs. (1a) and (2a)) expresses all the “costs” that the operation of 

the reservoirs may produce on day t. In our case study, this includes four components, which 

reflect the operation targets and constraints: the fact that river flows at the downstream 

monitoring stations do or do not exceed one of the high or low flow thresholds; the fact that 

reservoir levels do or do not exceed the minimum or maximum allowed levels; and finally the 

fact that the minimum environmental flows and the maximum reference flows are or are not 

guaranteed. The step-cost function takes up the following form: 

, , , , ,

1 1 1 1

( )
s i orN N NN

tot j hf j lf r V i In o Out

t t t t t t

j r i o

g g g g g g
   

          (3)  

where Ns is the number of downstream stations and the gj,hf and gj,lf functions measure the 

violation of high and low flow thresholds; Nr is the number of reservoirs (four) and gr,V 

measures the violation of minimum and maximum reservoir limits; Ni is the number of inlet 

channels and gi,In measures the violation of minimum environmental flow constraints; No is 

the number of outlet channels and go,Out measures the violation of maximum reference flow 

constraints. The components of the step-cost function are further described below. 

Step-costs for high and low flows  
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For high-flows, a cost is encountered when the river flow at a downstream station exceeds the 

flood warning thresholds. At each station j there are three flooding thresholds to be respected 

with increasing priority (Table 2). These thresholds are based on the French national flood 

forecast center (SCHAPI, www.vigicrues.gouv.fr) classification: the first threshold 

(vigilance) corresponds to the bankfull discharge where no flood occurs yet but special 

vigilance may be required; the second threshold (alert) corresponds to frequently flooded area 

with potentially significant impacts on community life and the safety of goods and people; 

and the third threshold (crisis) corresponds to an exceptionally large flooded area, and a 

direct and widespread threat to safety of people and goods. The step-cost function is set to 

zero until the flow exceeds the vigilance threshold and almost approaches the second 

flooding threshold ,

j

hf aq , precisely when it reaches the value: 

     1 ,v , ,v0.9j j j j

hf hf hf a hfq q q q   .  (4) 

From the above value onward, the step-cost function increases piece-wise linearly with the 

river flow, i.e.: 
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where  j

tq is the river flow at time t and station j;     1

j

hfq  is the flow value defined by Eq. (4); 

,

j

hf aq and ,

j

hf cq  are the alert and crisis high-flow thresholds; and , , ,hf j hf j hf j     are the 

slopes of the piecewise linear function. 
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For low-flows, a cost is encountered when the river flow goes below the regulatory 

thresholds (Table 2). Again, we use a piecewise linear cost function with a changing slope in 

correspondence to the different thresholds, i.e.: 
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(6) 

where  j

tq is the river flow at time t and station j; 
,

j

lf alq , 
,

j

lf raq , and 
,

j

lf crq  are the alert, 

reinforced alert and crisis thresholds (corresponding to a restriction of water uses of 30%, 

50% and 100%, respectively); and  , , ,lf j lf j lf j     are the slopes of the piecewise linear 

cost.  

The choice of the slope values ( ,  ,   ) is subjective and should translate the preference 

system of the reservoirs operators. In this study, the value for these parameters was identified 

in such a way to find a reasonable balance between step-costs and the penalty-cost on the 

final storages, as further detailed below in the section on “Weighting step-costs and penalty 

functions”. 

Step-costs for reservoirs limits and downstream environmental and reference flows 

For each reservoir r we defined the soft-constraint cost  ,

   r V

t tg V , associated to exceeding the 

volumes thresholds, as: 
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where: r

tV  , r

minV  and r

maxV  are respectively the current, minimum and maximum volumes of 

the reservoir r; fs  is a security factor (e.g. we defined it as one thousandth of the range 

[ ,r r

min maxV V ]); ,  sc Vw is the weight, that we defined as a very high number (e.g. 1015) to get a 

soft-constraint cost  ,

 

r V

t tg V  higher than all the other cost-components even for volumes at 

the limits ( t minV V  or t maxV V ), as we want these limits to be respected in priority. 

The reserved flow (Table 1) is a legal constraint that defines the minimum flow to be left in 

the river downstream from an inlet channel. For each downstream river station (say the i-th), 

we defined the soft-constraint cost  ,  

 

i In i

t tg Q  as: 
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where    i

tQ is the current river flow at time t and station i,    i

resQ the reserved flow at the station i 

and fs  a security factor; the weight , 
ressc Qw  is adjusted to get a soft-constraint cost  ,  

   i In i

t tg Q  

higher than the other cost-components (except for  ,

 

r V

t tg V ). 

The reference flow (Table 1) is a constraint for the reservoir operation limiting the reservoirs 

discharge in order to avoid floods immediately downstream from the reservoirs outlet 

channels. For each downstream station (say the o-th), we defined the step-cost  ,  o Out o

t tg Q as: 
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where  o

tQ is the current river flow at time t and station o;  o

refQ the reference flow at the station 

o; and 
refQw  is a weight lower than the other cost-components weights. 

Penalty-cost on the final state 

The penalty-cost  

 hg  over the final state is introduced with the aim of including the long-term 

management targets into the formulation of the objective function of Eqs. (1a) and (2a) which 

would otherwise consider only the costs encountered during the prediction horizon. In our 

case study application, the penalty-cost is a function of the reservoir volumes at the end of the 

prediction horizon and it increases with the deviations from the most desirable volumes for 

that time instant. Such “desirable volumes” are linked to those defined by the reservoirs rule-

curves, so that the penalty function is a means for ensuring consideration of the water supply 

objective even using a short-term prediction horizon. Specifically,  

 hg  takes up the following 

form:  

4

 

2 

,

1

(V ) (V V ) (V )i i i i

i h h RC h i h

i

hg w 


       (10)      

where  i

hV  is the storage of the i-th reservoir at time h; 
 

 

i

RC hV  is the target volume according to 

the rule-curve of the i-th reservoir for time h; iw  and i are weight coefficients that can take 

up one out of 7 values, depending on the value of the reservoir storage  i

hV . Specifically, for 

each reservoir we define 2 thresholds above the rule-curve and 3 below it, which determine 

the switch to an increased weight value. These volume thresholds are defined as follows: 
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(i) The three thresholds below the target 
 

 

i

RC hV  are computed by integrating the 

differences in flow between the low-flows thresholds (alert, reinforced alert, and 

crisis) at the most downstream station in Paris all over the drawdown season. The 

approach is similar to the one proposed by Bader (1992), implicitly assuming that 

the RC target is constructed to ensure that the first low-flow threshold (vigilance) 

at Paris can be respected throughout the drawdown season.  

(ii) The two thresholds above the target 
 

 

i

RC hV  are defined by a manual tuning process, to 

ensure a fixed storage capacity to avoid exceeding the higher flood thresholds 

(alert and crisis).  

The seven weight values iw  for each storage range above/below the RC target are defined 

jointly with the weight values of the step-costs for high and low flows, according to a 

procedure described in the next paragraph.  

Weighting step-costs and penalty functions 

When an exceptional event is forecasted over the prediction horizon, the effect of the step-

costs for high and low flows (Eqs. (5) and (6)) is to make the system diverge from the RCs, 

while the effect of the penalty function (Eq. (10)) is to force it to converge back to the RCs. 

The relative weights given to these components thus define the balance between the 

conflicting objectives of exploiting the system capacity to tackle floods and droughts in the 

short-term, or saving this capacity for later. The slope coefficients , , ,,  ,  hf j hf j hf j    and 

, , ,,  ,  lf j lf j lf j    of Eqs. (5) and (6) and the weight values wi in Eq. (10) regulate the relative 

importance of short and long term objectives. In this study, such coefficients were computed 

analytically by solving a balance equation where the total penalty-cost for having all storages 

at a given volume threshold is set equal to the sum of the step-costs for having flows in all 
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stations at the corresponding flow threshold (for h days in case of low-flows, and the average 

duration of that flow threshold event for high-flows). By doing so, the future system capacity 

to tackle an extreme event that may occur beyond the prediction horizon is not compromised 

by the need of tackling an event of the same severity within the prediction horizon. 

Results 

We report here the results of the comparison between the “no-forecast” management strategy, 

essentially based on rule-curves as in the actual system operation, and the management 

strategies that use different forecast types, by means of the MPC and TB-MPC optimization 

algorithms. Simulation results are presented in two steps: first we compare the “no-forecast” 

strategy with the use of perfect forecasts in MPC; then, we compare the use of deterministic 

and ensemble forecasts in MPC and TB-MPC. Because of limited data availability, we use a 

different simulation period in the two cases (see further discussion below).  

“No-forecast” operation vs MPC with perfect forecasts  

First we compare the “no forecast” operation based on rule-curves and MPC with perfect 

forecasts. Fig. 3(a) reports the temporal average of the step-costs for high and low flows (Eqs. 

(5) and (6)) aggregated for all the stations over a simulation horizon of 15 years (1973-1988). 

These values are normalized with respect to the average-costs that would have been 

encountered over the same horizon in the hypothetical scenario where reservoirs were not in 

operation. A value of 0 thus means that the reservoirs operation does not induce any change 

with respect to “unregulated conditions” while a value of 1 means that it can completely 

eliminate all costs. Fig. 3(a) shows that while Rule-Curves (RCs) can guarantee a reduction in 

average costs of about 90% for floods and nearly 80% for low-flows, the implementation of 

the MPC strategy with Perfect Forecasts (MPC-PF) would further reduce costs to the 98% for 
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floods and slightly more than 80% for low-flows. Notice that although the most significant 

improvement in the system performance obviously comes from the construction of the 

reservoirs, regardless of their operation, the further improvement ensured by MPC would 

come at relatively low cost as compared to infrastructural interventions. 

Figs. 3(b,c,d,e,f) report some complimentary statistics (frequency, duration, etc.) of the flow 

threshold violations under the two different management strategies. These statistics show that 

MPC with Perfect Forecasts could almost completely eliminate flood risk. As for low-flow 

conditions, MPC-PF would have a more limited impact (and no effects on statistics in Figs. 

3(d,e,f)), possibly because low-flow events should be anticipated over a longer time span (say 

weeks or months) than the prediction horizon used here (9 days).  

Fig. 4(a) provides a representative example of the simulated flow trajectory in a downstream 

river station (Paris) during the most severe flood event in the available historical horizon 

(January 1982). During this event, under the “no-reservoirs” scenario the river flows would 

have been above the third high-flow threshold (crisis) at one downstream station and above 

the second threshold (alert) at almost all others. With reservoirs operated according to the 

rule-curves, the crisis thresholds are not exceeded but the alert thresholds are, for 39 days 

between December 1981 and February 1982. MPC-PF instead can maintain downstream river 

flows below the alert thresholds almost all the time, exceeding them only for 7 days. Fig. 4(b) 

reports the temporal evolution of the four reservoirs volumes over the same flood event, 

showing that, from about January, 4th when the upcoming flood event appears in the 

prediction horizon, all the four reservoirs are being increasingly filled in and thus contribute 

to reducing high-flows downstream costs by storing water to an extent proportionally to their 

actual capacity (see reservoirs capacity in Table 1). Fig. 4 provides a representative example 

of the proactive and centralized behavior of the MPC management. However, these results 
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are an upper bound of the improvement that could be provided by MPC in the hypothetical 

case that weather forecasts were perfect. The performances that could be actually obtained by 

feeding MPC with real forecasts are discussed in the next subsection.  

MPC with real deterministic forecasts vs TB-MPC with ensemble forecasts 

Here we present and compare the simulation results of the MPC strategy fed by real, 

deterministic forecasts and the TB-MPC strategy fed by Ensemble Forecasts. To simulate 

these strategies over a historical horizon, hindcast time-series from the ECMWF model are 

used. These are available from 11/3/2005 to 01/10/2008. Since there are no critical flood 

events over this time horizon, we lowered the high-flows thresholds to artificially increase the 

pressure over the system and generate some “critical” events where the different management 

strategies can be compared. Because we use lower thresholds, the simulation of the no-

forecast operation, which implicitly takes into account the actual thresholds in the definition 

of the RCs, is not sensible. This is not a main limitation given that the focus here is on 

comparing the use of deterministic forecasts (by MPC) and ensemble forecasts (by TB-

MPC). As a reference we will rather use the performances obtained by using perfect forecast, 

so that the comparison will address the following questions: (i) what is the loss in system 

performances due to forecast uncertainty? (ii) Does the system operation improve if we 

explicitly take into account forecast uncertainty, as represented by EF? As a performance 

indicator, we use the temporal average of the high-flows step-costs (Eq. (5), aggregated at all 

the stations) normalized with respect to the average step-costs that would have been 

encountered with perfect forecasts. The lower this value, the closer the reservoirs operation is 

to the “ideal” scenario where forecasts are perfect. The indicator can thus be regarded as a 

measure of the loss in performance due to forecast uncertainty. Fig. 5(a) reports the value of 

such loss indicator (in %) over the (artificial) flood event in 2007 under the MPC and TB-
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MPC operation (i.e. with real deterministic and ensemble forecasts), showing that the use of 

EF greatly reduces the performance loss due to forecast uncertainty. In fact, during this event, 

river flows produced by TB-MPC are consistently lower than with MPC, and closer to the 

“ideal” ones produced with perfect forecasts (Fig. 6). To complement the analysis, Figs. 5(b-

f) provide some other statistics on threshold violations (analogously to Fig. 3). They confirm 

that taking into account forecasts uncertainty via EF improves the system operation by all 

aspects. These benefits are achieved at the cost of an increased computational burden: the 

computational time of TB-MPC is about 7 times greater than that of MPC. However, in both 

cases the average computing time is compatible with the needs of real-world decision-

makers: on a standard desktop machine (Intel® core™ i5-2410M, 2.9 GHz), for each day of 

simulation, MPC delivers a solution to the deterministic problem of Eq. (1) in about 82 

seconds, TB-MPC delivers a solution of the uncertain problem of Eq. (2) in about 567 

seconds, i.e. less than 10 minutes. 

Discussion and conclusions 

We have presented the implementation and evaluation of a centralized real-time optimization 

system that uses deterministic and ensemble weather forecasts to improve the management of 

a multi-reservoirs system in the Seine River basin in France. To anticipate the system 

response to input forecasts, the optimization system is coupled with a semi-distributed 

hydrological model of the watershed, a simplified hydraulic model of the river network and 

the four reservoir models. Optimization seeks to minimize the costs associated to high and 

low flows, and a penalty-cost based on the reservoir storages at the end of the prediction 

horizon, which takes into account the long-term management objectives defined by the 

reservoirs rule-curves.  
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We first consider the idealized case when the real-time optimization system is fed by perfect 

forecasts (PF) and show that it clearly outperforms the management strategy that does not use 

forecasts and simply follows the rule-curves, in particular in high-flows conditions. Over the 

15-year simulation horizon, the real-time system can always maintain downstream river flows 

below the crisis thresholds (exceptionally flooded areas) and can reduce the number of days 

in which the alert threshold (frequently flooded areas) is exceeded by about 80%. These 

results suggest that, if efficiently managed, the current infrastructure could almost completely 

eliminate flood risk in the ideal situation where weather forecasts were perfect.  

In order to assess the performance loss due to forecasts uncertainty, we simulated the real-

time optimization system with actual weather forecasts produced by the ECMWF model. 

Results show that while the use of actual deterministic forecasts obviously reduces the system 

performances for flood control, the explicit consideration of forecast uncertainty by the use of 

a forecasts ensemble can almost fill in such a performance loss, and it provides results almost 

as good as in the perfect forecasts case. This conclusion is in line with previous results 

reported for instance in Roulin (2007), Pianosi and Ravazzani (2010) and Raso et al. (2014) . 

The work here presented is affected by some limitations that could be addressed by future 

research. First, since hindcast weather forecasts were available only over a short time horizon 

when no significant flood events occurred, the comparison between the use of deterministic 

and ensemble forecasts was performed by considering flow thresholds that are actually lower 

than real ones. Although the comparison remains perfectly fair and valid as a proof-of-

concept, it would be interesting to further compare the two management approaches under a 

real critical high flow event. Further research will also aim at differentiating the simulation 

model used in closed-loop simulation from the internal model used in MPC optimization, in 

order to investigate the impact of the hydrological-hydraulic model uncertainty on the MPC 
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performances. The operation model implementing MPC and TB-MPC should also be 

improved, testing different direct search methods, possibly more efficient than Nelder-Mead. 

In fact, in our experiments optimization runs were sometimes terminated before reaching 

convergence. Therefore, results here presented may underestimate the improvement that the 

use of weather forecasts produces with respect to the “no forecast” management based on 

Rule Curves. Finally, the centralized, real-time optimization system will be tested under 

projected climate change scenarios. In fact, despite the limitations above discussed, our 

analysis seems to indicate that a more efficient reservoir operation system, using weather 

forecasts and explicitly considering forecast uncertainty, is likely to significantly reduce flood 

risk under the historical hydrological conditions. The next step will be to assess whether this 

would hold true also in a possible future scenario where the frequency and intensity of 

extreme events were increased. Although assessing the probability of such a future scenario is 

beyond our current knowledge because of the deep uncertainty that affects climate change 

impacts studies (Wilby and Dessai, 2010), the implementation of the real-time optimization 

system here presented represents a “no-regret” strategy that, by improving the system 

efficiency, could yield benefits regardless of climate change (assuming that weather 

forecasting skill will not decrease), and mitigate its impacts whenever occurring. 
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Fig. 1 Map of the Seine River basin at Paris with the main river network (1810 km), the four 

reservoirs and their inlets and outlets, the 25 sub-basins, and the gauging and monitoring 

stations. 

Fig. 2 Information fluxes of the two management strategies compared in this work. Left: the 

uncoordinated, feedback operation that is currently being employed and is based on Rule-

Curves (RCs) (“no-forecast operation”). Right: the centralized feed-forward MPC operation 

using weather forecasts. 

Fig. 3 Performance of the “no-forecast” operation based on Rule-Curves (RCs) and of the 

MPC operation fed by Perfect Forecasts (MPC PF) over the 15-year simulation horizon (from 

01/08/1973 to 01/11/1988), averaged over monitoring stations. (a) Improvement in the 

average step-costs with respect to the “no-reservoirs” scenario. (b) Total number of days with 

violation of the alert thresholds. (c) Mean duration of violation events. (d) Maximum duration 

of violation events. (e) Maximum flow exceedance with respect to the alert thresholds. (f) 

Number of monitoring stations with at least one violation event over the simulation horizon. 

Fig. 4 (a) Simulated flow of the Seine River at Paris station during the 1982 flood event 

under the “no-forecast” management based on Rule-Curves (RC, grey line), and under MPC 

with perfect forecasts (MPC-PF, black). The two horizontal dashed and thick lines are the 

high-flows thresholds ( ,

j

hf aq  and ,

j

hf cq ), while the thin dashed line is the level (     1

j

hfq ) where 

the high-flows step-costs start to increase. (b) Simulated volumes of the four reservoirs 

during the same event under MPC operation fed by Perfect Forecasts. 

Fig. 5 Performance of the MPC operation with Perfect Forecasts (PF), Deterministic 

Forecasts (DF) and Ensemble Forecasts (EF) over a flood event in 2007, averaged over 

monitoring stations. (a) Loss in performance due to forecast uncertainty (with respect to 

perfect forecasts). (b) Total number of days with violation of the (alert) thresholds. (c) Mean 
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duration of violation events. (d) Maximum duration of violation events. (e) Maximum flow 

exceedance with respect to the alert thresholds. (f) Number of monitoring stations with at 

least one violation event over the simulation horizon. 

Fig. 6 Simulated flows of the Seine River at Paris station under MPC with perfect forecasts 

(PF, thin black line), MPC with deterministic forecasts (DF, gray line with triangles) and TB-

MPC with ensemble forecasts (EF, dashed line with circles). The two horizontal dashed lines 

are the high-flows thresholds ( ,

j

hf aq  and ,

j

hf cq ; values are lower than in Table 2, see text for 

explanation), the dotted line is the level (
    1

j

hfq ) where step-costs for high-flow become non-

zero. 
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Table 1. Reservoirs, channels capacity, and constraints on river flow downstream from 

reservoirs inlets and outlets. 

Reservoir Maximum 

exceptional 

capacity 

[Mm3] 

Maximum  

outlet 

flow [m3/s] 

Maximum  

inlet  

flow [m3/s] 

Reserved  

flow  

[m3/s] 

Reference 

flow 

[m3/s] 

Aube 183.5     35 135 From 2 to 4 

depending 

on the 

month 

130 

Marne 364.5 50 Main inlet 

channel: 

375  

 

From 2 to 3 

depending 

on the 

month 

From 40 to 120 

depending on the 

month 

Secondary 

inlet 

channel: 33 

From 5 to 8 

depending 

on the 

month 

Pannecière 

(Valley-dammed) 

82.5 16  - 0.6 

 

From 11.4 to 14 

depending on the 

month 

Seine 219.5 35 200 From 3 to 6 

depending 

on the 

month 

From 55 to 120 

depending on the 

month 
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Table 2. Monitoring stations downstream from the reservoirs (A=Aube, M=Marne, 

P=Pannecière, S=Seine) and thresholds for low-flows (vigilance 
,viglfq , alert 

,lf alq , reinforced 

alert 
,lf raq  and crisis 

,lf crq ) and high-flows (vigilance
,hf vq  , alert

,hf aq  and crisis 
,hf cq ). 

Monitoring stations Low-flow thresholds (m3/s) High-flow thresholds 

(m3/s) 

Gauging station River Upstream 

reservoirs 

V
ig

ila
n

ce
 (sen

sitiv
ity

 

to
 p

o
llu

tio
n

) 

A
ler

t 

(w
a

ter
 u

se 

red
u

ctio
n

: 3
0

%
) 

R
ein

fo
rc

ed
 a

lert 

(w
a

ter
 u

se 

re
d

u
ctio

n
: 5

0
%

) 

C
risis (w

a
ter

 u
se 

re
d

u
ctio

n
: 1

0
0

%
) 

 V
ig

ila
n

ce (b
a

n
k

fu
ll 

d
isch

a
rg

e) 

A
ler

t (fre
q

u
en

tly
 

flo
o

d
ed

 a
re

a
s) 

C
risis (ex

ce
p

tio
n

a
lly

 

flo
o

d
ed

 a
re

a
s) 

Arcis-sur-Aube Aube A 6.3 5.0 4.0 3.5 110 260 400 

Méry-sur-Seine Seine S 7.3 5.0 4.0 3.5 140 170 400 

Nogent-sur-

Seine 

Seine A+S 25.0 20.0 17.0 16.0 180 280 420 

Gurgy Yonne P 14.0 12.5 11.0 9.2 220 340 400 

Courlon-sur-

Yonne 

Yonne P 23.0 16.0 13.0 11.0 550 700 900 

Alfortville Seine A+S+P 64.0 48.0 41.0 36.0 850 1 200 1 400 

Châlons-sur-

Marne 

Marne M 12.0 11.0 9.0 8.0 330 520 700 

Noisiel Marne M 32.0 23.0 20.0 17.0 350 500 650 

Paris Seine A+S+P+M 81.0 60.0 51.0 45.0 950 1 600 2 000 
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Table 3. Ensemble Forecasts mean, spread (i.e. standard deviation) and Root Mean Square 

Error (RMSE), at lead-time from 1- to 9-days ahead. 

Lead-time [d] 1 2 3 4 5 6 7 8 9 

Mean [mm] 1.68  2.42  2.36  2.34  2.40 2.46 2.49 2.48 2.43 

Spread [mm] 0.97 1.62 2.14  2.52  2.82 3.13 3.34 3.50 3.56 

RMSE [mm] 3.32  2.73  3.64  4.07  4.00 3.91 3.87  3.79  3.66 

 


