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Curses, tradeoffs, and scalable management: advancing1

evolutionary multi-objective direct policy search to improve water2

reservoir operations3

Matteo Giuliani1; Andrea Castelletti23; Francesca Pianosi4; Emanuele Mason5; Patrick M. Reed6
4

ABSTRACT5

Optimal management policies for water reservoir operation are generally designed via6

stochastic dynamic programming (SDP). Yet, the adoption of SDP in complex real-world7

problems is challenged by the three curses of dimensionality, of modeling, and of multiple8

objectives. These three curses considerably limit SDP’s practical application. Alterna-9

tively, in this study, we focus on the use of evolutionary multi-objective direct policy search10

(EMODPS), a simulation-based optimization approach that combines direct policy search,11

nonlinear approximating networks and multi-objective evolutionary algorithms to design12

Pareto approximate closed-loop operating policies for multi-purpose water reservoirs. Our13

analysis explores the technical and practical implications of using EMODPS through a care-14

ful diagnostic assessment of the effectiveness and reliability of the overall EMODPS solution15

design as well as of the resulting Pareto approximate operating policies. The EMODPS16

approach is evaluated using the multi-purpose Hoa Binh water reservoir in Vietnam, where17

water operators are seeking to balance the conflicting objectives of maximizing hydropower18
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production and minimizing flood risks. A key choice in the EMODPS approach is the selec-19

tion of alternative formulations for flexibly representing reservoir operating policies. In this20

study, we distinguish the relative performance of two widely used nonlinear approximating21

networks, namely Artificial Neural Networks and Radial Basis Functions. Our results show22

that RBF solutions are more effective than ANN ones in designing Pareto approximate poli-23

cies for the Hoa Binh reservoir. Given the approximate nature of EMODPS, our diagnostic24

benchmarking uses SDP to evaluate the overall quality of the attained Pareto approximate25

results. Although the Hoa Binh test case’s relative simplicity should maximize the potential26

value of SDP, our results demonstrate that EMODPS successfully dominates the solutions27

derived via SDP.28

Keywords: water management, direct policy search, multi-objective evolutionary algorithm29

INTRODUCTION30

Climate change and growing populations are straining freshwater availability worldwide31

(McDonald et al. 2011) to the point that many large storage projects are failing to produce32

the level of benefits that provided the economic justification for their development (Ansar33

et al. 2014). In a rapidly changing context, operating existing infrastructures more effi-34

ciently, rather than planning new ones, is a critical challenge to balance competing demands35

and performance uncertainties (Gleick and Palaniappan 2010). Yet, most major reservoirs36

have had their operations defined in prior decades (U.S. Army Corps of Engineers 1977;37

Loucks and Sigvaldason 1982), assuming “normal” hydroclimatic conditions and consider-38

ing a restricted number of operating objectives. The effectiveness of these rules is however39

limited, as they are not able to adapt release decisions when either the hydrologic system40

deviates from the assumed baseline conditions or additional objectives emerge over time.41

On the contrary, closing the loop between operational decisions and evolving system condi-42

tions provides the adaptive capacity needed to face growing water demands and increasingly43

uncertain hydrologic regimes (Soncini-Sessa et al. 2007).44

In the literature, the design problem of closed-loop operating policies for managing water45
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storages has been extensively studied since the seminal work by Rippl (1883). From the first46

applications by Hall and Buras (1961), Maass et al. (1962), and Esogbue (1989), Dynamic47

Programming (DP) and its stochastic extension (SDP) are probably the most widely used48

methods for designing optimal operating policies for water reservoirs (for a review, see Yeh49

(1985); Labadie (2004); Castelletti et al. (2008), and references therein). SDP formulates the50

operating policy design problem as a sequential decision-making process, where a decision51

taken now produces not only an immediate reward, but also affects the next system state52

and, through that, all the subsequent rewards. The search for optimal policies relies on the53

use of value functions defined over a discrete (or discretized) state-decision space, which are54

obtained by looking ahead to future events and computing a backed-up value. In principle,55

SDP can be applied under relatively mild modeling assumptions (e.g., finite domains of state,56

decision and disturbance variables, time-separability of objective functions and constraints).57

In practice, the adoption of SDP in complex real-world water resources problems is challenged58

by three curses that considerably limit its use, namely the curse of dimensionality, the curse59

of modeling, and the curse of multiple objectives.60

The curse of dimensionality, first introduced by Bellman (1957), means that the compu-61

tational cost of SDP grows exponentially with the state vector dimensionality. SDP would62

be therefore inapplicable when the dimensionality of the system exceeds 2 or 3 storages63

(Loucks et al. 2005). In addition, particularly in such large systems, the disturbances (e.g.,64

inflows) are likely to be both spatially and temporally correlated. While including space65

variability in the identification of the disturbance’s probability distribution function (pdf)66

can be sometimes rather complicated, it does not add to SDP’s computational complex-67

ity. Alternatively, properly accounting for temporal correlation requires using a dynamic68

stochastic model, which contributes additional state variables and exacerbates the curse of69

dimensionality.70

The curse of modeling was defined by Tsitsiklis and Van Roy (1996) to describe the71

SDP requirement that, in order to solve the sequential decision-making process at each72
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stage in a step-based optimization, any information included into the SDP framework must73

be explicitly modeled to fully predict the one-step ahead model transition used for the74

estimation of the value function. This information can be described either as a state variable75

of a dynamic model or as a stochastic disturbance, independent in time, with an associated76

pdf. As a consequence, exogenous information (i.e., variables that are observed but are77

not affected by the decisions, such as observations of inflows, precipitation, snow water78

equivalent, etc.), which could potentially improve the reservoir operation (Tejada-Guibert79

et al. 1995; Faber and Stedinger 2001), cannot be explicitly considered in conditioning the80

decisions, unless a dynamic model is identified for each additional variable, thus adding to the81

curse of dimensionality (i.e., additional state variables). Moreover, SDP cannot be combined82

with high-fidelity process-based simulation models (e.g., hydrodynamic and ecologic), which83

require a warm-up period and cannot be employed in a step-based optimization mode.84

The curse of multiple objectives (Powell 2007) is related to the generation of the full set85

of Pareto optimal (or approximate) solutions to support a posteriori decision making (Cohon86

and Marks 1975) by exploring the key alternatives that compose system tradeoffs, providing87

decision makers with a broader context where their preferences can evolve and be exploited88

opportunistically (Brill. et al. 1990; Woodruff et al. 2013). Most of the DP-family methods89

relies on single-objective optimization algorithms, which require a scalarization function (e.g.,90

convex combination or non-linear Chebyshev scalarization) to reduce the dimensionality of91

the objective space to a single-objective problem (Chankong and Haimes 1983; ReVelle and92

McGarity 1997). The single-objective optimization is then repeated for every Pareto optimal93

point generated by using different scalarization values (Soncini-Sessa et al. 2007). However,94

this process is computationally very demanding in many-objective optimization problems,95

namely when the number of objectives grows to three or more (Fleming et al. 2005), and the96

accuracy in the approximation of the Pareto front might be degraded given the non-linear97

relationships between the scalarization values and the corresponding objectives values.98

Approximate Dynamic Programming (Powell 2007) and Reinforcement Learning (Buso-99
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niu et al. 2010) seek to overcome some or all the SDP curses through three different ap-100

proaches: (i) value function-based methods, which compute an approximation of the value101

function (Bertsekas and Tsitsiklis 1996); (ii) on-line methods, which rely on the sequential102

resolution of multiple open-loop problems defined over a finite receding horizon (Bertsekas103

2005); (iii) policy search-based methods, which use a simulation-based optimization to itera-104

tively improve the operating policies based on the simulation outcome (Marbach and Tsitsik-105

lis 2001). However, the first two approaches still rely on the estimation (or approximation)106

of the value function with single-objective optimization algorithms. Simulation-based op-107

timization, instead, represents a promising alternative to reduce the limiting effects of the108

three curses of SDP by first parameterizing the operating policy using a given family of109

functions and, then, by optimizing the policy parameters (i.e., the decision variables of the110

problem) with respect to the operating objectives of the problem. This approach is generally111

named direct policy search (DPS, see Rosenstein and Barto (2001)) and is also known in112

the water resources literature as parameterization-simulation-optimization by Koutsoyiannis113

and Economou (2003), where has been adopted in several applications (Guariso et al. 1986;114

Oliveira and Loucks 1997; Cui and Kuczera 2005; Dariane and Momtahen 2009; Guo et al.115

2013).116

The simulation-based nature of DPS offers some advantages over the DP-family methods.117

First, the variable domain does not need to be discretized, thus reducing the curse of dimen-118

sionality. The complexity of the operating policy (i.e., the number of policy inputs/outputs)119

however depends on the dimensionality of the system. The higher the number of reservoirs,120

the more complex is the policy to design, which requires a large number of parameters.121

Second, DPS can be combined with any simulation model and does not add any constraint122

on modeled information, allowing the use of exogenous information in conditioning the de-123

cisions. Third, when DPS problems involve multiple objectives, they can be coupled with124

truly multi-objective optimization methods, such as multi-objective evolutionary algorithms125

(MOEAs), which allow estimating an approximation of the Pareto front in a single run of126
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the algorithm.127

Following Nalbantis and Koutsoyiannis (1997), DPS can be seen as an optimization-based128

generalization of well known simulation-based, single-purpose heuristic operating rules (U.S.129

Army Corps of Engineers 1977). The New York City rule (Clark 1950), the spill-minimizing130

“space rule” (Clark 1956), or the Standard Operating Policy (Draper and Lund 2004) can131

all be seen as parameterized single-purpose policies. Many of these rules are based largely132

on empirical or experimental successes and they were designed, mostly via simulation, for133

single-purpose reservoirs (Lund and Guzman 1999). In more complex systems, such as134

networks of multi-purpose water reservoirs, the application of DPS is more challenging due135

to the difficulties of choosing an appropriate family of functions to represent the operating136

policy. Since DPS can, at most, find the best possible solution within the prescribed family137

of functions, a bad approximating function choice can strongly degrade the final result. For138

example, piecewise linear approximations have been demonstrated to work well for specific139

problems, such as hedging rules or water supply (Oliveira and Loucks 1997). In other140

problems (e.g., hydropower production), the limited flexibility of these functions can however141

restrict the search to a subspace of policies that, likely, does not contain the optimal one. In142

many cases, the choice of the policy architecture can not be easily inferred either from the143

experience of the water managers, who may not be operating the system at full attainable144

efficiency, or a priori on the basis of empirical considerations, when the system is under145

construction and data about the historical regulation are not yet available. A more flexible146

function, depending on a larger number of parameters, has hence to be selected to ensure147

the possibility of approximating the unknown optimal solution of the problem to any desired148

degree of accuracy. In this work, we have adopted two widely used nonlinear approximating149

networks (Zoppoli et al. 2002), namely Artificial Neural Networks (ANNs) and Radial Basis150

Functions (RBFs), which have been demonstrated to be universal approximators under mild151

assumptions on the activation functions used in the hidden layer (for a review see Tikk et al.152

(2003) and references therein).153
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The selected policy parameterization strongly influences the selection of the optimiza-154

tion approach, which is often case study dependent and may require ad-hoc tuning of the155

optimization algorithms. Simple parameterizations, defined by a limited number of param-156

eters, can be efficiently optimized via ad-hoc gradient-based methods (Peters and Schaal157

2008; Sehnke et al. 2010). On the contrary, gradient-free global optimization methods are158

preferred when the complexity of the policy parameterization, and consequently the number159

of parameters to optimize, increases. In particular, evolutionary algorithms (EAs) have been160

successfully applied in several policy search problems characterized by high-dimensional de-161

cision spaces as well as noisy and multi-modal objective functions (Whitley et al. 1994;162

Moriarty et al. 1999; Whiteson and Stone 2006; Busoniu et al. 2011). Indeed, EAs search163

strategies, which are based on ranking of candidate solutions, better handle the performance164

uncertainties than methods relying on the estimation of absolute performance or perfor-165

mance gradient (Heidrich-Meisner and Igel 2008). This property is particular relevant given166

the stochasticity of water resources systems. In this work, we address the challenges posed167

by multi-objective optimization under uncertainty by using the self-adaptive Borg MOEA168

(Hadka and Reed 2013). The Borg MOEA has been shown to be highly robust across a169

diverse suite of challenging multi-objective problems, where it met or exceeded the perfor-170

mance of other state-of-the-art MOEAs (Reed et al. 2013). In particular, the Borg MOEA171

overcomes the limitations of tuning the algorithm parameters to the specific problems by172

employing multiple search operators, which are adaptively selected during the optimization173

based on their demonstrated probability of generating quality solutions. In addition, it au-174

tomatically detects search stagnation and self-adapts its search strategies to escape local175

optima (Hadka and Reed 2012; Hadka and Reed 2013).176

In this paper, we first contribute a complete formalization of the evolutionary multi-177

objective direct policy search (EMODPS) approach to design closed-loop Pareto approximate178

operating policies for multi-purpose water reservoirs by combining DPS, nonlinear approxi-179

mating networks, and the Borg MOEA. Secondly, we propose a novel EMODPS diagnostic180
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framework to comparatively analyze the effectiveness and reliability of different policy ap-181

proximation schemes (i.e., ANNs and RBFs), in order to provide practical recommendations182

on their use in water reservoir operating problems independently from any case-study specific183

calibration of the policy design process (e.g., preconditioning the decision space, tuning the184

optimization algorithm). Finally, we systematically review the main limitations of DP family185

methods in contrast to using the EMODPS approach for understanding the multi-objective186

tradeoffs when evaluating alternative operating policies.187

The Hoa Binh water reservoir system (Vietnam) is used to demonstrate our framework.188

The Hoa Binh is a multi-purpose reservoir that regulates the flows in the Da River, the main189

tributary of the Red River, and is mainly operated for hydropower production and flood190

control in Hanoi. This case study represents a relatively simple problem which, in principle,191

should maximize the potential of SDP. As a consequence, if EMODPS met or exceeded the192

SDP performance, we can expect that the general value of the proposed EMODPS approach193

would increase when transitioning to more complex problems. The rest of the paper is194

organized as follows: the next section defines the methodology, followed by the description195

of the Hoa Binh case study. Results are then reported, while final remarks, along with issues196

for further research, are presented in the last section.197

METHODS AND TOOLS198

In this section, we first introduce the traditional formulation of the operating policy design199

problem adopted in the DP family methods and contrast it with the EMODPS formulation.200

The EMODPS framework has three main components: (i) direct policy search, (ii) nonlinear201

approximating networks, and (iii) multi-objective evolutionary algorithms. This section202

concludes with a description of the diagnostic framework used to distinguish the relative203

performance of ANN and RBF implementations of the proposed EMODPS approach.204

Stochastic Dynamic Programming205

Water reservoir operation problems generally require sequential decisions ut (e.g., release206

or pumping decisions) at discrete time instants on the basis of the current system conditions207
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described by the state vector xt (e.g., reservoir storage). The decision vector ut is determined,208

at each time step, by an operating policy ut = p(t,xt). The state of the system is then altered209

according to a transition function xt+1 = ft(xt,ut, εt+1), affected by a vector of stochastic210

external drivers εt+1 (e.g., reservoir inflows). In the adopted notation, the time subscript of a211

variable indicates the instant when its value is deterministically known. Since SDP requires212

that the system dynamics are known, the external drivers can only be made endogenous into213

the SDP formulation either as state variables, described by appropriate dynamic models214

(i.e., εt+1 = ft(εt, ·)), or as stochastic disturbances, represented by their associated pdf (i.e.,215

εt+1 ∼ φt).216

The combination of states and decisions over the time horizon t = 1, . . . , H defines a217

trajectory τ , which allows evaluating the performance of the operating policy p as follows:218

Jp = Ψ[R(τ)|p] (1)

where R(τ) defines the objective function of the problem (assumed to be a cost) and Ψ[·] is219

a filtering criterion (e.g., the expected value) to deal with uncertainties generated by εt+1.220

The optimal policy p∗ is hence obtained by solving the following problem:221

p∗ = arg min
p
Jp (2)

subject to the dynamic constraints given by the state transition function xt+1 = ft(xt,ut, εt+1).222

The DP family methods solve Problem (2) by estimating the expected long-term cost of223

a policy for each state xt at time t by means of the value function224

Qt(xt,ut) = Eεt+1 [gt(xt,ut, εt+1) + γmin
ut+1

Qt+1(xt+1,ut+1)] (3)

where Qt(·) is defined over a discrete grid of states and decisions, gt(·) represents the imme-225

diate (time separable) cost function associated to the transition from state xt to state xt+1226

under the decision ut, and γ ∈ (0, 1] a discount factor. With this formulation, the expected227
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value is the statistic used to filter the uncertainty (i.e., Ψ[·] = E[·]). The optimal policy is228

then derived as the one minimizing the value function, namely p∗ = arg minpQt(xt,ut).229

The computation of the value function defined in eq. (3) requires the following modeling230

assumptions (Castelletti et al. 2012): (i) the system is modeled as a discrete automaton231

with finite domains of state, decision, and disturbance variables, with the latter described as232

stochastic variables with an associated pdf; (ii) the objective function must be time-separable233

along with the problem’s constraints; (iii) the disturbance process must be uncorrelated in234

time. Although these assumptions might appear to be restrictive, they can be applied to the235

majority of the water resources systems by properly enlarging the state vector dimensionality236

(Soncini-Sessa et al. 2007). For example, a duration curve can be modeled as time-separable237

by using an auxiliary state variable accounting for the length of time. Unfortunately, the238

resulting computation of Qt(xt,ut) becomes very challenging in high-dimensional state and239

decision spaces. Let nx, nu, nε be the number of state, decision, and disturbance variables240

with Nx, Nu, Nε the number of elements in the associated discretized domains, the compu-241

tational complexity of SDP is proportional to (Nx)
nx · (Nu)

nu · (Nε)
nε .242

When the problem involves multiple objectives, the single-objective optimization must243

be repeated for every Pareto optimal point by using different scalarization values, such as244

changing the weights used in the convex combination of the objectives (Gass and Saaty245

1955). The overall cost of SDP to obtain an approximation of the Pareto optimal set is246

therefore much higher, as a linear increase in the number of objectives considered yields247

a factorial growth of the number of sub-problems to solve (i.e., a four objective problem248

requires to solve also 4 single-objective sub-problems, 6 two-objective sub-problems, and249

4 three-objective sub-problems (Reed and Kollat 2013; Giuliani et al. 2014)). It follows250

that SDP cannot be applied to water systems where the number of reservoirs as well as the251

number of objectives increases. Finally, it is worth noting that the adoption of a convex252

combination of the objectives allows exploring only convex tradeoff curves, with gaps in253

correspondence to concave regions. Although concave regions can be explored by adopting254
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alternative scalarization functions, such as the ε-constraint method (Haimes et al. 1971),255

this approach cannot be applied in the SDP framework because it violates the requirement256

of time-separability.257

Direct Policy Search258

Direct policy search (DPS, see Sutton et al. (2000); Rosenstein and Barto (2001)) replaces259

the traditional SDP policy design approach, based on the computation of the value function,260

with a simulation-based optimization that directly operates in the policy space. DPS is based261

on the parameterization of the operating policy pθ and the exploration of the parameter space262

Θ to find a parameterized policy that optimizes the expected long-term cost, i.e.263

p∗θ = arg min
pθ

Jpθ s.t. θ ∈ Θ; xt+1 = ft(xt,ut, εt+1) (4)

where the objective function Jpθ is defined in eq. (1). Finding p∗θ is equivalent to find the264

corresponding optimal policy parameters θ∗.265

As reviewed by Deisenroth et al. (2011), different DPS approaches have been proposed266

and they differ in the methods adopted for the generation of the system trajectories τ used in267

the estimation of the objective function and for the update and evaluation of the operating268

policies. Among them, in order to avoid the three curses of SDP and to advance the design of269

operating policies for multi-purpose water reservoirs, we focus on the use of an evolutionary270

multi-objective direct policy search (EMODPS) approach (see Figure 1) with the following271

features:272

• Stochastic trajectory generation: the dynamic model of the system is used as simula-273

tor for sampling the trajectories τ used for the estimation of the objective function.274

In principle, given the stochasticity of water systems, the model should be simulated275

under an infinite number of disturbance realizations, each of infinite length, in order276

to estimate the value of the objective function defined in eq. (1). In practice, the277

expected value over the probability distribution of the disturbances can be approx-278
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imated with the average value over a sufficiently long time series of disturbances’279

realizations, either historical or synthetically generated (Pianosi et al. 2011). An280

alternative is represented by the analytic computation of the system trajectories (i.e.,281

the dynamics of the state vector probability distributions with the associated deci-282

sions). However, this latter is computationally more expensive than sampling the283

trajectories from the system simulation, even though it can be advantageous for the284

subsequent policy update, as it allows the analytic computation of the gradients.285

• Episode-based exploration and evaluation: the quality of an operating policy pθ (and286

of its parameter vector θ) is evaluated as the expected return computed on the whole287

episode (i.e., a system simulation from t = 0, . . . , H) to allow considering non-time288

separable objectives and constraints (e.g., flow duration curves) without augmenting289

the state vector’s dimensionality. On the contrary, the step-based exploration and290

evaluation assesses the quality of single state-decision pairs by changing the param-291

eters θ at each time step. As in other on-line approaches, such as traditional model292

predictive control (Bertsekas 2005), this approach requires setting a penalty function293

on the final state (condition) of the system to account for future costs (Mayne et al.294

2000). Yet, the definition of this penalty function requires the evaluation of the value295

function and, hence, suffers the same limitation of DP family methods.296

• Multi-objective: although most of DPS approaches looks at a single measure of pol-297

icy performance, optimized via single-objective gradient-based optimization methods298

(Peters and Schaal 2008; Sehnke et al. 2010), we replace the single-objective formu-299

lation (eqs. 1-4) with a multi-objective one, where Jpθ and pθ represent the objective300

and policy vectors, respectively, that can be solved via multi-objective evolutionary301

algorithms (MOEAs).302

The core components of the EMODPS framework have been selected to alleviate the303

restrictions posed by the three main curses of SDP: (i) EMODPS overcomes the curse of304

dimensionality, as it avoids the computation of the value function Q(xt,ut) (see eq. (3))305
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for each combination of the discretized state and decision variables, along with the biases306

introduced by the discretization of the state, decision, and disturbance domains (Baxter et al.307

2001). In addition, episode-based methods are not restricted to time-separable cost functions,308

which can depend on the entire simulated trajectory τ . (ii) EMODPS overcomes the curse of309

modeling, as it can be combined with any simulation model as well as it can directly employ310

exogenous information (e.g., observed or predicted inflows and precipitation) to condition311

the decisions, without presuming either an explicit dynamic model or the estimation of any312

pdf. (iii) EMODPS overcomes the curse of multiple objectives, as the combination of DPS313

and MOEAs allows users to explore the Pareto approximate tradeoffs for up to ten objectives314

in a single run of the algorithm (Kasprzyk et al. 2009; Reed and Kollat 2013; Giuliani et al.315

2014).316

Beyond these practical advantages, the general application of EMODPS does not provide317

theoretical guarantees on the optimality of the resulting operating policies, which are strongly318

dependent on the choice of the class of functions to which they belong and on the ability of319

the optimization algorithm to deal with non-linear models and objectives functions, complex320

and highly constrained decision spaces, and multiple competing objectives. Some guarantees321

of convergence and the associated approximation bounds with respect to a known optimal322

solution have been defined for some classes of single-objective problems, characterized by323

time-separable and regular cost functions that can be solved with gradient-based methods324

(Zoppoli et al. 2002; Gaggero et al. 2014). Nonetheless, EMODPS can also be employed325

in multi-objective applications where a reference optimal solution cannot be computed due326

to the problem’s complexity, facilitating potentially good approximations of the unknown327

optimum for a broader class of problems.328

Nonlinear approximating networks329

The definition of a parameterized operating policy provides a mapping between the de-330

cisions ut and the policy inputs It, namely ut = pθ(It). In the literature, a number of331

parameterizations of water reservoir operating rules have been proposed, defining the re-332
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lease decision as a function of the reservoir storage (Lund and Guzman 1999; Celeste and333

Billib 2009). However, most of these rules have been derived from empirical considerations334

and for single-objective problems, such as the design of hedging rules for flood management335

(Tu et al. 2003) or of water supply operations (Momtahen and Dariane 2007). Indeed, if336

prior knowledge about a (near-)optimal policy is available, an ad-hoc policy parameteriza-337

tion can be designed: parameterizations that are linear in the state variables can be used338

when it is known that a (near-)optimal policy is a linear state feedback. However, when the339

complexity of the system increases, more flexible structures depending on a high number of340

parameters are required to avoid restricting the search for the optimal policy to a subspace341

of the decision space that does not include the optimal solution. In addition, the presence342

of multiple objectives may require to condition the decisions not only on the reservoir stor-343

age, but also on additional information (e.g., inflows, temperature, precipitation, snow water344

equivalent (Hejazi and Cai 2009)). Two alternative approaches are available to this end: (i)345

identify a dynamic model describing each additional information and use the states of these346

models to condition the operating policies in a DP framework (Tejada-Guibert et al. 1995;347

Desreumaux et al. 2014); (ii) adopt approximate dynamic programming methods allowing348

the direct, model-free use of information in conditioning the operating policies (Faber and349

Stedinger 2001; Castelletti et al. 2010).350

In order to ensure flexibility to the operating policy structure and to potentially condition351

the decisions on several variables, we define the parameterized operating policy pθ by means352

of two nonlinear approximating networks, namely Artificial Neural Networks and Gaussian353

Radial Basis Functions. These nonlinear approximating networks have been proven to be354

universal approximators (for a review see Tikk et al. (2003) and references therein): under355

very mild assumptions on the activation functions used in the hidden layer, it has been shown356

that any continuous function defined on a closed and bounded set can be approximated by357

a three-layered ANNs (Cybenko 1989; Funahashi 1989; Hornik et al. 1989) as well as by358

a three-layered RBFs (Park and Sandberg 1991; Mhaskar and Micchelli 1992; Chen and359
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Chen 1995). Since these features guarantee high flexibility to the shape of the parameterized360

function, ultimately allowing to get closer to the unknown optimum, ANNs and RBFs have361

become widely adopted as universal approximators in many applications (Maier and Dandy362

2000; Buhmann 2003; de Rigo et al. 2005; Castelletti et al. 2007; Busoniu et al. 2011).363

Artificial Neural Networks364

Using ANNs to parameterize the policy, the k-th component in the decision vector ut365

(with k = 1, . . . , nu) is defined as:366

ukt = ak +
N∑
i=1

bi,kψi(It · ci,k + di,k) (5)

where N is the number of neurons with activation function ψ(·) (i.e., hyperbolic tangent367

sigmoid function), It ∈ RM the policy inputs vector, and ak, bi,k, di,k ∈ R, ci,k ∈ RM the368

ANNs parameters. To guarantee flexibility to the ANN structure, the domain of the ANN369

parameters is defined as −10, 000 < ak, bi,k, ci,k, di,k < 10, 000 (Castelletti et al. 2013).370

The parameter vector θ is therefore defined as θ = [ak, bi,k, ci,k, di,k], with i = 1, . . . , N and371

k = 1, . . . , nu, and belongs to Rnθ , where nθ = nu(N(M + 2) + 1).372

Radial Basis Functions373

In the case of using RBFs to parameterize the policy, the k-th decision variable in the374

vector ut (with k = 1, . . . , nu) is defined as:375

ukt =
N∑
i=1

wi,kϕi(It) (6)

where N is the number of RBFs ϕ(·) and wi,k the weight of the i-th RBF. The weights376

are formulated such that they sum to one (i.e.,
∑N

i=1 wi,k = 1) and are non-negative (i.e.,377

wi,k ≥ 0 ∀i, k). The single RBF is defined as follows:378

ϕi(It) = exp

[
−

M∑
j=1

((It)j − cj,i)2

b2
j,i

]
(7)

15



where M is the number of policy inputs It and ci,bi are the M -dimensional center and379

radius vectors of the i-th RBF, respectively. The centers of the RBF must lie within the380

bounded input space and the radii must strictly be positive (i.e., using normalized variables,381

ci ∈ [−1, 1] and bi ∈ (0, 1], (Busoniu et al. 2011)). The parameter vector θ is therefore382

defined as θ = [ci,j, bi,j, wi,k], with i = 1, . . . , N , j = 1, . . . ,M , k = 1, . . . , nu, and belongs to383

Rnθ , where nθ = N(2M + nu).384

Multi-objective evolutionary algorithms385

Multi-objective evolutionary algorithms (MOEAs) are iterative search algorithms that386

evolve a Pareto-approximate set of solutions by mimicking the randomized mating, selec-387

tion, and mutation operations that occur in nature (Deb 2001; Coello Coello et al. 2007).388

These mechanisms allow MOEAs to deal with challenging multi-objective problems char-389

acterized by multi-modality, nonlinearity, stochasticity and discreteness, thus representing390

a promising alternative to gradient-based optimization methods in solving multi-objective391

water reservoirs problems (see Nicklow et al. (2010) and Maier et al. (2014) and references392

therein).393

In this paper, we use the self-adaptive Borg MOEA (Hadka and Reed 2013), which394

employs multiple search operators that are adaptively selected during the optimization, based395

on their demonstrated probability of generating quality solutions. The Borg MOEA has been396

shown to be highly robust across a diverse suite of challenging multi-objective problems,397

where it met or exceeded the performance of other state-of-the-art MOEAs (Hadka and398

Reed 2012; Reed et al. 2013). In addition to adaptive operator selection, the Borg MOEA399

assimilates several other recent advances in the field of MOEAs, including an ε-dominance400

archiving with internal algorithmic operators to detect search stagnation, and randomized401

restarts to escape local optima. The flexibility of the Borg MOEA to adapt to challenging,402

diverse problems makes it particularly useful for addressing EMODPS problems, where the403

shape of the operating rule and its parameter values are problem-specific and completely404

unknown a priori.405
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Diagnostic framework406

In this work, we apply a diagnostic framework developed from the one in Hadka and407

Reed (2012) to comparatively analyze the potential of the ANN and RBF policy parameter-408

izations in solving EMODPS problems with no specific tuning of the policy design process.409

Since the presence of multiple objectives does not yield a unique optimal solution, but a410

set of Pareto optimal solutions, assessing the effectiveness of the policy design results (i.e.,411

how close the solutions found are to the optimal ones) requires to evaluate multiple metrics,412

such as the distance of the final solutions from the Pareto optimal front or its best known413

approximation (i.e., reference set), the coverage of the non-dominated space, and the extent414

of the non-dominated front (Maier et al. 2014). In this work, we adopt three formal met-415

rics, namely generational distance, additive ε-indicator, and hypervolume indicator, which416

respectively account for convergence, consistency, and diversity (Knowles and Corne 2002;417

Zitzler et al. 2003). In addition, due to the stochastic nature of the evolutionary algorithms418

(which can be affected by random effects in initial populations and runtime search oper-419

ators), each optimization was run for multiple random generator seeds. The reliability of420

the ANN and RBF policy search is evaluated as the probability of finding a solution that421

is better or equal to a certain performance threshold in a single run, which measures the422

variability in the solutions’ effectiveness for repeated optimization trials.423

424

The generational distance IGD measures the average Euclidean distance between the425

points in an approximation set S and the nearest corresponding points in the reference set426

S̄, and it is defined as427

IGD(S, S̄) =

√∑
s∈S d

2
s

nS
(8a)

with428

ds = min
s̄∈S̄

√√√√ k∑
i=1

[J i(s)− J i(̄s)]2 (8b)
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where nS is the number of points in S, and ds the minimum Euclidean distance between each429

point in S and S̄. IGD is a pure measure of convergence and the easiest to satisfy, requiring430

only a single solution close to the reference set to attain ideal performance.431

The additive ε-indicator Iε measures the worst case distance required to translate an432

approximation set solution to dominate its nearest neighbour in the reference set, defined as433

Iε(S, S̄) = max
s̄∈S̄

min
s∈S

max
1≤i≤k

(J i(s)− J i(̄s)) (9)

This metric is very sensitive to gaps in tradeoff and can be viewed as a measure of434

an approximation set’s consistency with the reference set, meaning that all portions of the435

tradeoff are present (Hadka and Reed 2012). Additionally, it captures diversity because of its436

focus on the worst case distance. If a Pareto approximate set S has gaps, then solutions from437

other regions must be translated much further distances to dominate its nearest neighbour438

in the reference set S̄, dramatically increasing the Iε value.439

Finally, the hypervolume measures the volume of objective space dominated by an ap-440

proximation set, capturing both convergence and diversity. It is the most challenging of the441

three metrics to satisfy. The hypervolume indicator IH is calculated as the difference in442

hypervolume between the reference set S̄, and an approximation set S, defined as443

IH(S, S̄) =

∫
αS(s)ds∫
αS̄ (̄s)ds̄

(10a)

with444

α(s) =


1 if ∃s′ ∈ S such that s′ � s

0 otherwise

(10b)

Overall, a good set of Pareto approximate policies is characterized by low values of the445

first two metrics and a high value of the third one.446

CASE STUDY DESCRIPTION447

The Hoa Binh is a multi-purpose regulated reservoir in the Red River basin, Vietnam448
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(Figure 2). The Red River drains a catchment of 169,000 km2 shared by China (48%),449

Vietnam (51%), and Laos (1%). Among the three main tributaries (i.e., Da, Thao, and Lo450

rivers), the Da River is the most important water source, contributing for 42% of the total451

discharge at Hanoi. Since 1989, the discharge from the Da River has been regulated by the452

operation of the Hoa Binh reservoir, which is one of the largest water reservoirs in Vietnam,453

characterized by a surface area of about 198 km2 and an active storage capacity of about454

6 billion m3. The dam is connected to a power plant equipped with eight turbines, for a455

total design capacity of 1920 MW, which guarantees a large share of the national electricity456

production. Given the large storage capacity, the operation of Hoa Binh has also a key role457

for flood mitigation in Hanoi in the downstream part of the Red River catchment (Castelletti458

et al. 2012). In recent years, other reservoirs have been constructed on both the Da and Lo459

rivers (see the yellow triangles in Figure 2). However, given the limited data available since460

these reservoirs have started operating, they are not considered in this work.461

Model and objectives formulation462

The system is modeled by a combination of conceptual and data-driven models assuming463

a modeling and decision-making time-step of 24 hours. The Hoa Binh dynamics is described464

by the mass balance equation of the water volume sHBt stored in the reservoir, i.e.465

sHBt+1 = sHBt + qDt+1 − rt+1 (11)

where qDt+1 is the net inflow to the reservoir in the interval [t, t + 1) (i.e., inflow minus466

evaporation losses) and rt+1 is the volume released in the same interval. The release is defined467

as rt+1 = f(sHBt , ut, q
D
t+1), where f(·) describes the nonlinear, stochastic relation between the468

decision ut, and the actual release rt+1 (Piccardi and Soncini-Sessa 1991). The flow routing469

from the reservoir to the city of Hanoi is instead described by a data-driven feedforward470

neural network, providing the level in Hanoi given the Hoa Binh release (rt+1) and the Thao471

(qTt+1) and Lo (qLt+1) discharges. The description of the Hoa Binh net inflows (qDt+1) and the472
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flows in the Thao (qTt+1) and Lo (qLt+1) rivers depends on the approach adopted: with SDP,473

they are modeled as stochastic disturbances; with EMODPS, they are not explicitly modeled474

as this approach allows to directly embed exogenous information into the operating policies.475

Further details about the model of the Hoa Binh system can be found in Castelletti et al.476

(2012) and Castelletti et al. (2013).477

The two conflicting interests affected by the Hoa Binh operation are modeled using the478

following objective formulations, evaluated over the simulation horizon H:479

- Hydropower production (Jhyd): the daily average hydropower production (kWh/day)480

at the Hoa Binh hydropower plant, to be maximized, defined as481

Jhyd =
1

H

H−1∑
t=0

HPt+1

with HPt+1 =
(
ηgγwh̄tq

Turb
t+1

)
· 10−6

(12)

where η is the turbine efficiency, g = 9.81 (m/s2) the gravitational acceleration,482

γw = 1000 (kg/m3) the water density, h̄t (m) the net hydraulic head (i.e., reservoir483

level minus tailwater level), qTurbt+1 (m3/s) the turbined flow;484

- Flooding (Jflo): the daily average excess level hHanoit+1 (cm2/day) in Hanoi with respect485

to the flooding threshold h̄ = 950 cm, to be minimized, defined as486

Jflo =
1

H

H−1∑
t=0

max(hHanoit+1 − h̄, 0)2 (13)

where hHanoit+1 is the level in Hanoi estimated by the flow routing model, which depends487

on the Hoa Binh release (rt+1) along with the Thao (qTt+1) and Lo (qLt+1) discharges.488

It is worth noting that the proposed model and objective formulations are defined as489

Markov Decision Processes (Soncini-Sessa et al. 2007) to allow comparing the results of490

EMODPS with traditional DP-based solutions. A more realistic representation would re-491

20



quire the development of hydrological models describing the rivers catchments and the use492

of a flooding objective function that is not time-separable (e.g., the duration of the flood493

event, which may induce dykes breaks when exceeding critical thresholds). Yet, these al-494

ternatives would enlarge the state vector dimensionality beyond the SDP limits. Moreover,495

the curse of multiple objectives narrows the number of water-related interests that can be496

considered, preventing a better understanding of the full set of tradeoffs (e.g., flood peaks497

vs flood duration) and ignoring less critical sectors (e.g., irrigation and environment). The498

adopted formulations therefore represent a relatively simplified system representation which,499

in principle, should maximize the potential of SDP. Given the heuristic nature of EMODPS,500

which has no guarantee of optimality, we use SDP as a benchmark to evaluate the quality501

of the approximation attained by the EMODPS operating policies. If EMODPS met or ex-502

ceeded the SDP performance, the general value of the proposed EMODPS approach would503

increase by including additional model/objective complexities.504

Computational Experiment505

The Hoa Binh operating policies are parameterized by means of three-layered nonlinear506

approximating networks, where different numbers of neurons and basis functions are tested.507

According to Bertsekas (1976), the minimum set of policy inputs required to produce the508

best possible performance is the state of the system xt, possibly coupled with a time index509

(e.g., the day of the year) to take into account the time-dependency and cyclostationarity of510

the system and, consequently, of the operating policy. However, according to previous works511

(Pianosi et al. 2011; Giuliani et al. 2014), the operating policy of the Hoa Binh reservoir512

benefits from the consideration of additional variables, which cannot be employed in DP513

methods without enlarging the state-vector dimensionality. In particular, the best operation514

of the Hoa Binh reservoir is obtained by conditioning the operating policies upon the following515

input variables It = [sin(2πt)/365, cos(2πt)/365, sHBt , qDt , q
lat
t ], where qlatt = qTt + qLt is the516

lateral inflow accounting for the Thao and Lo discharges. The role of the previous day inflow517

observations qDt and qlatt is key in enlarging the information on the current system condition,518
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particularly with respect to the flooding objective in Hanoi, which depends on both the Hoa519

Binh releases as well as on the lateral flows of Thao and Lo rivers.520

The EMODPS optimization of the parameterized operating policies employs the Borg521

MOEA. Since it has been demonstrated to be relatively insensitive to the choice of param-522

eters, we use the default algorithm parameterization suggested by Hadka and Reed (2013).523

Epsilon-dominance values equal to 5000 for Jhyd and 5 for Jflo are used to set the resolution524

of the two operating objectives. Each optimization was run for 500,000 function evalua-525

tions. To improve solution diversity and avoid dependence on randomness, the solution set526

from each formulation is the result of 20 random optimization trials. In the analysis of the527

runtime search dynamics, the number of function evaluations (NFE) was extended to 2 mil-528

lions. Each optimization was run over the horizon 1962-1969, which has been selected as it529

comprises normal, wet, and dry years. The final set of Pareto approximate policies for each530

policy structure is defined as the set of non-dominated solutions from the results of all the 20531

optimization trials. The three metrics (i.e., generational distance, additive ε-indicator, and532

hypervolume indicator) are computed with respect to the overall best known approximation533

of the Pareto front, obtained as the set of non-dominated solutions from the results of all the534

280 optimization runs (i.e., 2 approximating networks times 7 structures times 20 seeds). In535

total, the comparative analysis comprises 220 million simulations and requires approximately536

1,220 computing hours on an Intel Xeon E5-2660 2.20 GHz with 32 processing cores and 96537

GB Ram. However, it should be noted that our computational experiment is more rigorous538

than would be necessary in practice and it was performed to support a rigorous diagnostic539

assessment of the ANN and RBF policy parameterizations. The EMODPS policy design540

reliably attained very high fidelity approximations of the Pareto front in each optimization541

run with approximately 150,000 NFE, corresponding to only 50 computing minutes.542

The SDP solutions were designed by computing the value function (eq. 3) over the 2-543

dimensional state vector xt = [t, st] and the Hoa Binh release decision ut. The two objectives544

are aggregated trough a convex combination as the ε-constraint method would violate the545
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SDP requirement of time-separability. The policy performance are then evaluated via simu-546

lation of the same model used in the EMODPS experiments. The stochastic external drivers547

are represented as follows:548

qDt+1 ∼ Lt

qTt+1 = αT qDt+1 + εTt+1

qLt+1 = αLqDt+1 + εLt+1

(14)

where Lt is a log-normal probability distribution and the coefficients (αT , αL) describe the549

spatial correlation of the inflow processes, with normally distributed residuals εTt+1 ∼ N T and550

εLt+1 ∼ N L. The models of the inflows, namely the three probability distributions Lt,N T ,N L
551

as well as the coefficients (αT , αL), were calibrated over the horizon 1962-1969 to provide552

the same information employed in the EMODPS approach.553

The SDP problem formulation hence comprises two state variables, one decision variable,554

and three stochastic disturbances. Preliminary experiments allow calibrating the discretiza-555

tion of state, decision, and disturbance vectors as well as the number of weights combinations556

for aggregating the two competing objectives to identify a compromise between modeling557

accuracy and computational requirements. Each solution designed via SDP required around558

45 computing minutes. In order to obtain an equivalent exploration of the Pareto front as559

in the EMODPS approach, in principle the SDP should be run for 40 different combinations560

of the objectives, corresponding to 30 computing hours. Yet, the non-linear relationships561

between the values of the weights and the corresponding objectives value does not guaran-562

tee to obtain 40 different solutions as most of them are likely to be equivalent or Pareto563

dominated. Despite a very accurate tuning of the objectives’ weights, we obtained only four564

Pareto approximate solutions. Finally, the cost of developing the inflows models should be565

also considered in the estimation of the overall effort required by the SDP, whereas in the566

EMODPS case such cost is null given the possibility of directly employing the exogenous567

information.568
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RESULTS569

In this section, we first use our EMODPS diagnostic framework to identify the most570

effective and reliable policy approximation scheme for the Hoa Binh water reservoir problem.571

Secondly, we validate the EMODPS Pareto approximate policies by contrasting them with572

SDP-based solutions. Finally, we analyze one potentially interesting compromise solution to573

provide effective recommendation supporting the operation of the Hoa Binh reservoir.574

Identification of the operating policy structure575

The first step of the EMODPS diagnostic framework aims to identify the best parameter-576

ized operating policy’s structure in terms of number of neurons (for ANN policies) or basis577

functions (for RBF policies), for a given number M = 5 of policy input variables. Figure 3578

shows the results for seven different policy structures with the number of neurons and basis579

functions increasing from n = 4 to n = 16. The performance of the resulting Pareto approx-580

imate operating policies, computed over the optimization horizon 1962-1969, are illustrated581

in Figure 3a, with the arrows identifying the direction of preference for each objective. The582

ideal solution would be a point in the top-left corner of the figure. The figure shows the583

reference set identified for each policy structure, obtained as the set of non-dominated so-584

lutions across the 20 optimization trials performed. The overall reference set, obtained as585

the set of non-dominated solutions from the results of all the 280 optimization runs (i.e., 2586

approximating networks times 7 structures times 20 seeds), is represented by a black dotted587

line. Comparison of the best Pareto approximate sets attained across all random seed trials588

changing the structures of both ANNs and RBFs, namely the Pareto approximate solutions589

represented by different shapes, does not show a clear trend of policy performance improve-590

ment with increasing numbers of neurons or basis functions. The results in Figure 3a attest a591

general superiority of the RBF policies over the ANN ones, particularly in the exploration of592

the tradeoff region with the maximum curvature of the Pareto front (i.e., for Jflo values be-593

tween 100 and 200, RBFs allows attaining higher hydropower production). The ANN policies594

do outperform the RBF ones in terms of maximum hydropower production, although this595
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small difference is concentrated in a restricted range of Jflo, and, likely, not decision-relevant.596

597

In order to better analyze the effectiveness and the reliability in attaining good approx-598

imations of the Pareto optimal set using different ANN/RBF structures, we computed the599

three metrics of our diagnostic framework on the solutions obtained in each optimization600

run. The metrics are evaluated with respect to the best known approximation of the Pareto601

front, namely the overall reference set (i.e., the black dotted line in Figures 3a). Figures602

3b-d report the best (solid bars) and average (transparent bars) performance in terms of603

generational distance IGD, additive ε-indicator Iε, and hypervolume indicator IH , respec-604

tively. Effective policy parameterizations are characterized by low values of IGD and Iε, and605

high values of IH . The deviations between the best and the average metric values reflect606

the reliability of the policy design, with large deviations identifying low reliable structures.607

In contrast with the results in Figure 3a, the values of the metrics show substantial dif-608

ferences between ANNs and RBFs as well as their dependency on the number of neurons609

and basis functions. The average metrics of RBF policies are consistently better than the610

ones of ANN policies. Moreover, the average performance of ANN policies degrade when611

the number of neurons increases (except for n = 4, where the number of ANN inputs is612

larger than the number of neurons) probably because ANNs are overfitting the data, while613

the RBF policies seem to be less sensitive to the number of basis. It is worth noting that the614

gap between RBFs and ANNs decreases when looking at the best optimization run. This615

result suggests that the ANN policy parameterization is very sensitive to the initialization616

and the sequence of random operators employed during the Borg MOEA search, probably617

due to the larger domain of the ANN parameters with respect to the RBF ones. In the case618

of RBFs, indeed, the parameter space is the Cartesian product of the subsets [−1, 1] for619

each center cj,i and (0, 1] for each radius bj,i and weight wi,k. In the case of ANNs, instead,620

parameters have no direct relationship with the policy inputs. In this work, the domain621

−10, 000 < ak, bi,k, ci,k, di,k < 10, 000 is used as in Castelletti et al. (2013) to guarantee flex-622
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ibility to the ANN structure and prevents that any Pareto approximate solution is excluded623

a priori.624

625

To further compare the performance of RBFs and ANNs, in the second step of the626

analysis we perform a more detailed assessment of the reliability of attaining high quality627

Pareto approximations for alternative operating policy structures. To this purpose, we define628

the reliability of the ANN and RBF policy search as the probability of finding a solution629

that is better or equal to a certain performance threshold (i.e., 75% or 95%) in a single630

optimization run, which measures the variability in the solutions’ effectiveness for repeated631

optimization trials. Figure 4 illustrates the probability of attainment with a 75% (panel a)632

and 95% (panel b) threshold, along with a representative example of these thresholds in the633

objective space (panel c). Figure 4a shows that the ANN policies are not able to consistently634

meet the 75% threshold, even in terms of IGD which is generally considered the easiest metric635

to meet requiring only a single solution close to the reference set. As shown in Figure 4c, not636

attaining 75% in IGD means to have a very poor understanding of the 2-objective tradeoff,637

with almost no information on the left half of the Pareto front. The thresholds on Iε are638

instead fairly strict, as this metric strongly penalizes the distance from the knee region of639

the reference set. The results in Figure 4a demonstrates the superiority of the RBF policy640

parameterizations, which attain 75% of the best metric value with a reliability of 100%641

independently from the number of basis functions. Assuming that the 75% approximation642

can be an acceptable approximation level of the Pareto optimal set, these results imply that643

the Hoa Binh policy design problem can likely be solved by a single optimization run with644

an RBF policy. However, Figure 4b shows that if the 95% level was required, it would be645

necessary to run multiple random seeds and to accumulate the best solutions across them.646

The results in Figure 4 also allow the identification of the most reliable structure of the647

operating policies in terms of number of neurons and basis functions. Results in Figure648

4a show that the most reliable ANN policy relies on 6 neurons, which attains the highest649
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reliability in Iε and IH , while all the RBF policies are equally reliable. By considering a650

stricter threshold (i.e., 95%), results in Figure 4b show that the most reliable RBF policy,651

particularly in terms of convergence and diversity (i.e., hypervolume indicator), requires 6652

or 8 basis functions. Note that attaining 95% in terms of Iε resulted to be particularly chal-653

lenging (i.e., probabilities around 10-15%) and, as illustrated in Figure 4c this threshold is654

almost equivalent to require the identification of the best known approximation of the Pareto655

front in a single run. In the following, we select the 6-basis structure because it depends on656

a lower number of parameters and allows a better comparison with the 6 neurons ANNs.657

658

The last step of the analysis looks at the runtime evolution of the Borg MOEA search659

to ensure that the algorithm’s search is at convergence. To this purpose, we run a longer660

optimization with 2 millions function evaluations for a 6 neurons ANN policy and a 6 basis661

RBF policy, with 20 optimization trials for each approximating network. In each run, we662

track the search progress by computing the values of IGD, Iε, and IH every 1,000 function663

evaluations until the first 50,000 evaluations and, then, every 50,000 until 2 millions. The664

runtime search performance are reported in Figure 5 as a function of the number of function665

evaluations used. The values of IGD in Figure 5a show that few function evaluations (i.e.,666

around 250,000) allows the identification of solutions close to the reference set identified from667

the results obtained at the end of the optimization (i.e., after 2 million function evaluations)668

across the 20 random optimization trials performed for each approximating network (i.e., 6669

neurons ANN and 6 basis RBF). The performance in terms of IGD of both ANN and RBF670

policies are then almost equivalent from 250,000 to 2 millions function evaluations.671

A higher number of function evaluations is instead necessary to reach full convergence in672

the other two metrics, namely Iε and IH illustrated in Figures 5b-c, respectively. In general,673

the runtime analysis of these two metrics further confirm the superiority of the RBF operating674

policies over the ANN ones, both in terms of consistency (i.e., Iε) as well as convergence675

and diversity (i.e., IH). Such a superiority of RBFs is evident from the beginning of the676
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search, when it is probably due the larger dimensionality of the ANN parameters’ domain,677

which increases the probability of having a poor performing initial population. However, the678

Borg MOEA successfully identifies improved solutions for both ANN and RBF policies in few679

runs, with diminishing returns between 100,000 and 200,000 function evaluations. The search680

progress stops around 400,000 function evaluations, with the RBF policies that consistently681

outperform the ANN ones. The limited improvements in the performance of each solution682

from 400,000 to 2 millions demonstrate the convergence of the Borg MOEA search for both683

ANNs and RBFs, guaranteeing the robustness of the results previously discussed, which were684

obtained with 500,000 functions evaluations.685

Validation of EMODPS policy performance686

The performance of the operating policies discussed in the previous section is computed687

over the optimization horizon 1962-1969. To validate this performance, the designed oper-688

ating policies are re-evaluated via simulation over a different horizon, namely 1995-2004, to689

estimate their effectiveness under different hydroclimatic conditions. We focus the analysis690

on the most reliable policy structures resulting from the previous section, using a 6 neurons691

ANN and a 6 basis RBF parameterization. The comparison between the performance over692

the optimization and the validation horizons is illustrated in Figure 6a, which reports the693

reference set obtained in the two cases across the 20 optimization trials. It is not surprising694

that the performance attained over the optimization horizon (transparent solutions) degrade695

when evaluated over the validation horizon (opaque solutions) since the two sets are indepen-696

dently used in the analysis. Although both ANNs and RBFs successfully explore different697

tradeoffs between Jhyd and Jflo over the optimization horizon, the difference in performance698

between optimization and validation clearly demonstrate that RBF operating policies out-699

perform the ANN ones. This can be explained as a consequence of the ANNs over-fitting700

during the optimization. Indeed, although a subset of ANN policies is Pareto dominating701

some RBF solutions over the optimization horizon (i.e., for Jflo values between 220 and702

300), the ANN Pareto approximate front is completely dominated in validation by the RBF703
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solutions. The designed ANN policies seem to be over fit on the hydroclimatic conditions on704

which they were trained and suffering from too much parametric complexity. Consequently,705

the ANN policies fail to manage unforeseen situations. Conversely RBFs maintains good706

performance over the validation horizon, with the corresponding Pareto front that presents707

less gaps and with a more consistent exploration of the tradeoff between the two objectives.708

Figure 6b contrasts the performance of the RBF policies with solutions designed via709

Stochastic Dynamic Programming (represented by black circles) over the validation horizon710

1995-2004. To provide a fair comparison, we illustrate both the RBF solutions conditioned711

upon It = [sin(2πt)/365, cos(2πt)/365, sHBt , qDt , q
lat
t ] (red crosses) and, those obtained by712

conditioning the decisions on the same variables employed by SDP, namely the day of the713

year t and the Hoa Binh storage sHBt (magenta crosses). Results demonstrate that, de-714

spite the theoretical guarantee of optimality, SDP solutions produce a significantly lower715

performance than EMODPS even with basic information. The two main reasons for this716

are that SPD uses a simplified representation of the spatial and temporal correlation of717

the inflows and a discretization of state, decision, and disturbance domains. Optimization718

experiments with SDP using finer discretization grids (not shown for brevity) demonstrate719

that improvements enabled by finer resolution would be marginal. In contrast, we expect720

that SDP performance would likely increase by improving the model of the inflows, either721

by using an autoregressive model to characterize their autocorrelation in time or by extend-722

ing the time-series to better estimate their pdf and their spatial correlation. However, this723

refinement would further increase the computational requirements of SDP. In addition, the724

difficulty of balancing the two objectives when aggregated through a convex combination725

produces multiple Pareto dominated or overlapping solutions, ultimately limiting the explo-726

ration of the tradeoff between Jhyd and Jflo. Moreover, this objectives’ aggregation provides727

a convex approximation of the Pareto front and prevents the design of solutions in concave728

regions, resulting in large gaps among the SDP solutions. This limitation does not affect the729

EMODPS approach, which indeed identifies Pareto approximate sets with concave region in730
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correspondence to the gaps in the SDP solutions. Finally, the possibility of directly employ-731

ing exogenous information in conditioning the decisions successfully enhances the resulting732

policy performance, with the red solutions that completely dominate the magenta and black733

ones.734

Analysis of the EMODPS operating policy735

In order to provide effective recommendation supporting the operation of the Hoa Binh736

reservoir, we select a potential compromise solution (see Figure 6b) and we analyze the737

corresponding operating policy. Figure 7a provides a multivariate representation of the738

multi-input single-output RBF policy, approximated with an ensemble of 5,000 elements739

obtained via Latin Hypercube Sampling of the policy inputs domains. The parallel-axes plot740

represents each release decision ut (reported on the first axis and highlighted by the green741

color ramp) as a line crossing the other axes at the values of the corresponding policy inputs742

(i.e., the day of the year t, the Hoa Binh storage st, and the previous day flow observations743

of the Da River qDt and of the lateral contribution of Thao and Lo Rivers qlatt , respectively).744

The figure shows that the highest release decisions (dark green lines) are concentrated at the745

beginning of the monsoon season (i.e., May and June), when it is necessary to drawdown746

the reservoir storage to make space for the flood peak, while are less dependent on the Hoa747

Binh storage or the flow in the Da river. As expected, since the policy under consideration748

is a compromise between the two objectives, it ensures flood protection by suggesting high749

releases when the flows in the Thao and Lo rivers are small. Focusing on the second axis,750

representing the day of the year, it is possible to appreciate the cyclostationary behavior of751

the operating policy, which provides similar release decisions (i.e., mid-tone green lines) at752

the beginning (bottom) and at the end (top) of the year.753

Further details are provided by Figure 7b-d, which represents the release decision pro-754

jected as a function of the reservoir storage, with the colors illustrating how the release755

decision changes depending on the day of the year (panel b), the flow in the Da River756

(panels c-d), and the lateral flow in Thao and Lo Rivers (panel e). Figure 7b confirms the757
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cyclostationary behavior of the operating policy throughout the year (for fixed, intermediate758

values of flow in the Da River as well as in the Thao and Lo Rivers). The release decision759

is indeed increasing to make room for the incoming flood before and during the monsoon760

season, from May (green lines) to August (blue lines). Then, after the monsoon, it decreases761

and the operation at the end of the year is equivalent to the one at the beginning of the year762

(red lines). Figure 7c shows the release decision as a function of the Hoa Binh storage on763

January the 1st for different values of flow in the Da River (and a fixed intermediate value764

of flow in the Thao and Lo Rivers). In this case, according to the value of the inflow (i.e.,765

moving from light to dark green) the release decision increases to maximize the hydropower766

production, while maintaining a high and constant water level in the Hoa Binh reservoir.767

Although we are considering a compromise policy, such increasing releases are acceptable768

also in terms of flood protection because the monsoon season is far in the future. The mod-769

ification of the policy during the monsoon season is evident in Figure 7d, which shows again770

the release decision as a function of the Hoa Binh storage for different values of flow in the771

Da River (and a fixed intermediate value of flow in the Thao and Lo Rivers) but on May772

the 1st. In this case the release decision is first increasing with the inflow but, when this773

latter exceeds 9,000 m3/s, it starts decreasing to reduce the flood costs in Hanoi. Finally,774

Figure 7e represents the dual situation, namely the release decision as a function of the Hoa775

Binh storage on May the 1st for different values of flow in the Thao and Lo Rivers (and a776

fixed intermediate value of flow in the Da River). In this case, effective flood protection is777

obtained by decreasing the release decision when the lateral flow increases (i.e., moving from778

light to dark green lines).779

CONCLUSIONS780

The paper formalizes and demonstrates the potential of the evolutionary multi-objective781

direct policy search approach in advancing water reservoirs operations. The method com-782

bines direct policy search method, nonlinear approximating networks, and multi-objective783

evolutionary algorithms to design Pareto approximate operating policies for multi-purpose784
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water reservoirs. The regulation of the Hoa Binh water reservoir in Vietnam is used as a785

case study.786

The comparative analysis of two widely used nonlinear approximating networks (i.e.,787

Artificial Neural Networks and Gaussian Radial Basis Functions) for the parameterization788

of the operating policy suggests the general superiority of RBFs over ANNs. Results show789

that RBF solutions are more effective that ANN ones in designing Pareto approximate790

policies for the Hoa Binh reservoir, with better performance attained by the associated791

Pareto fronts in terms of convergence, consistency, and diversity. Moreover, the adopted792

EMODPS diagnostic framework demonstrates that the search of RBF policies is more reliable793

than using ANNs, thus guaranteeing an high probability of designing high quality solutions.794

Finally, the performance of RBF policies consistently outperform the ANN ones also when795

simulated on a different horizon with respect to the one used for the optimization. Although796

accurate calibration and preconditioning of ANN policies have been shown to improve their797

performance (Castelletti et al. 2013), they require a priori information about the shape of798

the optimal policy. On the contrary, RBF operating policies successfully attain high quality799

results without any tuning or preconditioning of the policy design process, thus representing800

a potentially effective, case study-independent option for solving EMODPS problems. In801

addition, although the Hoa Binh policy design problem formulation as a 2-objective Markov802

Decision Process should maximize the potential of Stochastic Dynamic Programming, our803

results demonstrate that EMODPS successfully improves the SDP solutions, showing the804

potential to overcome most of the limitations of DP family methods. The general value of805

the proposed EMODPS approach would further increase when transitioning to more complex806

problems. Finally, the analysis of the RBF policy shows physically sound interpretations,807

favoring its acceptability for the reservoir operators and contributing quantitative practical808

recommendation to improve the Hoa Binh regulation.809

Future research efforts will focus on testing the scalability of EMODPS with respect810

to the dimensionality of the state and decision vectors as well as to the number of objec-811
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tives, particularly to support the use of EMODPS in multireservoir systems (Biglarbeigi812

et al. 2014), possibly including robustness criteria to face global change (Herman et al.813

2015). Moreover, the scope of the comparative analysis might be enlarged by including814

other approximators, such as fuzzy systems or support vector machine. Finally, a diagnostic815

assessment on different state-of-the-art MOEAs in EMODPS problems will be developed.816
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FIG. 1. Schematization of the evolutionary multi-objective direct policy search
(EMODPS) approach. The dashed line represents the model of the system, the gray
box the MOEA algorithm.
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FIG. 2. (a) Map of the Red River basin and (b) schematic representation of the main
components described in the model.
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FIG. 3. Policy performance obtained with different structures of ANNs and RBFs
over the optimization horizon 1962-1969 (a), and evaluation of the associated Pareto
fronts in terms of generational distance (b), additive ε-indicator (c), and hypervolume
indicator (d).
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FIG. 4. Probability of attainment with a threshold equal to 75% (a) and to 95% (b)
of the best metric values for different ANN and RBF architectures.
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FIG. 5. Analysis of runtime search dynamics for ANN and RBF operating policy
optimization in terms of generational distance (a), additive ε-indicator (b), and hyper-
volume (c).
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FIG. 6. Validation of EMODPS operating policies via comparison of ANN and RBF
performance over the optimization and the validation horizons (a) and comparison with
SDP solutions (b).
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FIG. 7. Visualization of the compromise operating policy selected in Figure 6b.
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