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have now conclusively shown that more than 90% of 
genes are alternatively spliced in humans. This makes 
AS one of the main drivers of proteomic diversity and, 
consequently, determinant of cellular function repertoire. 
Unsurprisingly, given its extent, numerous splice isoforms 
have been described to be associated with several dise­
ases including cancer. Many of them have antagonistic 
functions, e.g. , pro- and anti-angiogenic or pro- and 
anti-apoptotic. Additionally several splice factors have 
been recently described to have oncogene or tumour 
suppressors activities, like SF3B1 which is frequently 
mutated in myelodysplastic syndromes. Beside the 
implications for cancer pathogenesis, de-regulated AS 
is recognized as one of the novel areas of cell biology 
where therapeutic manipulations may be designed. This 
editorial discusses the possibilities of manipulation of AS 
for therapeutic benefit in cancer. Approaches involving 
the use of oligonucleotides as well as small molecule 
splicing modulators are presented as well as thoughts 
on how specificity might be accomplished in splicing 
therapeutics. 
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Core tip: Genome-wide studies have recently shown 
that more than 90% of genes are alternatively spliced 
in humans. This makes alternative splicing (AS) one 
of the main drivers of proteomic diversity. Numerous 
splice isoforms have been described to be associated 
with cancer. Additionally several splice factors have 
been shown to have oncogene or tumour suppressors 
activities. Beside the implications for cancer pathogenesis, 
de-regulated AS is recognized as one of the novel areas 
of cell biology where therapeutic manipulations may 
be designed. This editorial discusses the possibilities of 
manipulation of AS for therapeutic benefit in cancer. 
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Abstract
Alternative splicing (AS), the process of removing introns 
from pre-mRNA and re-arrangement of exons to give 
several types of mature transcripts, has been described 
more than 40 years ago. However, until recently, it has 
not been clear how extensive it is. Genome-wide studies 
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INTRODUCTION
In the last years we have seen a plethora of anticancer 
agents that try to acquire more specific and targeted 
treatment in comparison with the conventional chemo- 
and radiotherapies used in the clinic. While it is highly 
unlikely they will be able to be used as mono-thera
pies on a large scale in oncology - due to the inherent 
problem of developing resistant clones as exemplified 
by the B-Raf inhibitor vemurafenib in melanoma[1], they 
have certainly proved very useful in combination thera
pies or as adjuvants that can improve overall survival 
in association with conventional therapies or reduce the 
doses used in chemo- and radiotherapies and therefore 
decrease side-effects.

Most of targeted anti-cancer drugs approved in clinical 
practice today are targeting receptor tyrosine kinases 
or cytoplasmic signalling molecules. However, since 
cancer cells are different from normal cells in virtually 
any property and function from DNA repair to regulating 
apoptosis or metabolism, theoretically drugs that hamper 
tumour growth may be designed at any level of gene 
regulation – transcriptional, post-transcriptional or post-
translational. Indeed, recent years have produced in
tense research on potential new drugs (some already in 
trials or in the clinic) that are based on epigenetic modul
ation[2], DNA repair[3] or microRNAs[4] to name a few. 

One level that has not been explored so far is repre
sented by modulation of alternative splicing (AS).

AS
Splicing is the removal of introns during processing of 
pre-mRNA. Through AS the composition of the mature 
RNA may be changed through exon skipping, mutually 
exclusive exons, intron retention or 3’ and 5’ alternative 
splice sites[5]. AS has emerged in the post-genomic era 
as the main driver of proteome diversity with at least 
94% of multi-exon genes being alternatively spliced in 
humans[6,7]. AS is one of the main control mechanisms 
for cell phenotype, and a process deregulated in disease. 
There are over 2000 splicing mutations known, involving 
303 genes and implicated in 370 diseases[8]. Therefore 
it has become essential to study how this process is regu
lated, and how it can become deregulated in disease.

While the disease most commonly linked to dere
gulation of AS in several genes is cancer[9], there are 
many in-depth reports of pathogenic splice variants in 
diseases ranging from neuromuscular disorders[10] to 
diabetes[11] or cardiomyopathies[12].

AS IN CANCER - ASSOCIATED NOISE OR 
CAUSALITY?
An increasing amount of literature in the last years 
shows involvement of splicing in cancer and an incredible 
number of splice variants have been described to be 
associated with tumour progression - for recent reviews 
see[9,13,14]. For example, epidermal growth factor receptor, 
which is mutated in several cancers, has a splice vari
ant that is missing exon 4 and is highly expressed in 
several cancers; this exon deletion makes the protein 
constitutively active[15]. K-Ras has two alternate exons - 
4A and 4B - and depending on their inclusion/exclusion 
there is a strong differential association with various 
forms or localization of colon cancer[16]. The tumour 
suppressor p53 has two splice isoforms p53beta and 
p53gamma that result from two alternate exons; these 
isoforms modulate the activity of the main isoform and 
the way it regulates apoptosis in various contexts[17]. 
Finally, another notable example is the well-studied 
tumour suppressor retinoblastoma protein for which 
more than 15% of the mutations described in various 
cancers are related to splicing[18,19].

The main question that arises - especially having a 
therapeutic purpose in mind - are these modifications 
simply by-products of the oncogenic process or do 
they drive pathogenesis of cancer? While inevitably 
some splice variants are “associated noise” similar to 
physiology, there is compelling evidence for “pathogenic” 
AS in cancer.

Firstly, similar with mutations in transcription factors 
that denote many of them as oncogenes, there are 
mutations of spliceosome components or splice factors - 
e.g., SF3B1 in myelodysplastic syndromes[20].

Secondly, there is clear evidence of splicing-specific 
variants that may be induced by signalling in the cancer 
cell environment and result in acquired functions for 
the cancer cells that helps their pathogenic evolution. 
For example, while normal cells/tissues generally have 
a high level of the anti-angiogenic vascular endothelial 
growth factor A (VEGF-A) isoforms VEGF165b, this is 
lost in cancers, with expression of predominantly pro-
angiogenic VEGF165a, which maintains a state of high 
and chaotic neovascularization in tumours[21]. However, 
no mutation has been identified so far that could account 
for this shift in the ratio of the two splice isoforms which 
is highly likely due to changes in the microenvironment 
during step-wise progression of the oncogenic process.

Finally, recent years have clearly shown that defective 
splicing contributes to one of the most challenging 
problems in oncology - acquired resistance to treatments. 
While there are numerous examples[22] we want to point-
out the well-known case of Vemurafenib. Patients treated 
with this drug invariably develop resistance. While 
several mechanisms have been described, in about a 
third of cases this occurs through faulty AS that results 
in truncated B-Raf which do not have the Ras-binding 
domain[23].
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THERAPEUTIC MANIPULATION OF 
SPLICING
Can we modify splicing and use it as a new level where 
therapeutic interventions may be designed? While there 
is no drug in the clinic that modifies splicing yet, there 
are certainly extremely exciting developments in the 
past few years. The general idea is to try and switch 
the splicing of a certain isoform that has been identified 
as deleterious and promoting the oncogenic process in 
functional studies towards a beneficial isoform.

The strategy most used so far involves anti-sense 
oligos (ASO) or splicing-switching oligos (SSOs). The 
general principle is to design ASOs that bind either exon-
intron junctions or regulatory sequences like enhancers 
or silencers in introns or exons, therefore affecting the 
splice outcome of the targeted event. So far SSOs have 
been proved very promising, with several of them in 
clinical trials, e.g., for Duchenne muscular dystrophy or 
spinal muscular atrophy[24]. 

There is a growing number of small-molecule splicing 
modulators (smSM) that have been shown to affect 
splicing. An interesting example is amiloride. This is a 
long-time used diuretic with the main mechanism of 
action through effects on the ion pumps in the renal 
tubules. However, it has been found in a screen to 
potently affect splicing of several genes involved in 
apoptosis and further-on to be able to decrease tumour 
growth in animal models[25]. Recently a class of small 
molecule compounds that inhibit SRPK1, a major reg
ulator of AS through SR-protein phosphorylation, has 
been shown to inhibit VEGF splicing and angiogenesis 
in a model of ocular neovascularization[26] as well as 
melanoma xenografts growth[27] and orthotopic prostate 
cancer mouse models[28].

Potentially, other types of molecules could be invo
lved in splicing modulation, like chemicals that affect 
splice factor/RNA interactions or molecules that affect 
directly the tertiary structure of a particular splice 
junction (Figure 1).

WILL SPLICING MODULATORS BE 
SPECIFIC?
Specificity is highly unlikely to be an important problem 
for SSOs, which are designed to bind on defined RNA 
sequences, though potential problems with delivery and 
toxicity might still be challenging. 

SmSMs could potentially affect several other splice 
events regulated by the same splicing kinase or splicing 
factor intended to be modulating - however, the key 
issue is whether the manipulation of the intended targe
ted splice event is dominant functionally in the system/
cell line of interest (i.e., the other splice events affected 
do not result in major unintended modifications in cell 
properties).

It is interesting to point-out a recent paper reporting 
the development of smSMs of the SMN splicing and 
attenuation of spinal muscular atrophy[10]. The com
pounds were found in a screen using a splicing reporter 
that mimicked the endogenous splicing event. When an 
RNA-seq analysis was performed to assess specificity 
it was found that very few splice junctions are affected, 
therefore proving that specificity in splicing therapeutics 
using small molecules may be accomplished.
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