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validation routine is applied to the PIV analysis of experi-
mental studies focused on the near wake behind a porous 
disc and on a supersonic jet, illustrating the potential gains 
in spatial resolution and accuracy.

1  Introduction

Particle image velocimetry (PIV) is a mature measurement 
technique whereby flow-induced displacement of tracer 
particles between sequential image recordings is deduced 
by means of statistical operators. The most common of 
these operators is cross-correlation (Keane and Adrian 
1992). Although versatile, the robustness and accuracy of 
correlation are strongly influenced by image quality, nota-
bly image noise and particle image density, and underlying 
flow features such as velocity gradients (Westerweel 2008) 
and flow curvature (Scarano 2004). An insufficient number 
of particle images to constitute a traceable pattern or too 
strong a distortion of the particle image pattern between 
snapshots can lead to erroneous velocity estimates. Incor-
rect vectors in turn severely penalise the iterative image 
analysis process and the computation of derivative quanti-
ties (Etabari and Vlachos 2005), while further deteriorating 
measurement uncertainty. Vector outlier detection has con-
sequently received considerable attention within the PIV 
community resulting in a variety of detection schemes.

Song et  al. (1999), for example, identify spurious vec-
tors on the basis of continuity in the aforementioned pat-
tern deformation adopting Delaunay tessellation. However, 
a simpler and more commonly applied approach to discern 
an erroneous displacement vector in the post-processing 
stage is through its mismatched appearance with respect 
to neighbouring vectors. This can be either along the tem-
poral and/or spatial dimension. In the former, even for 

Abstract  The universal outlier detection scheme (Wester-
weel and Scarano in Exp Fluids 39:1096–1100, 2005) and 
the distance-weighted universal outlier detection scheme 
for unstructured data (Duncan et  al. in Meas Sci Technol 
21:057002, 2010) are the most common PIV data valida-
tion routines. However, such techniques rely on a spatial 
comparison of each vector with those in a fixed-size neigh-
bourhood and their performance subsequently suffers in 
the presence of clusters of outliers. This paper proposes an 
advancement to render outlier detection more robust while 
reducing the probability of mistakenly invalidating correct 
vectors. Velocity fields undergo a preliminary evaluation 
in terms of local coherency, which parametrises the extent 
of the neighbourhood with which each vector will be com-
pared subsequently. Such adaptivity is shown to reduce the 
number of undetected outliers, even when implemented 
in the afore validation schemes. In addition, the authors 
present an alternative residual definition considering vec-
tor magnitude and angle adopting a modified Gaussian-
weighted distance-based averaging median. This procedure 
is able to adapt the degree of acceptable background fluctu-
ations in velocity to the local displacement magnitude. The 
traditional, extended and recommended validation methods 
are numerically assessed on the basis of flow fields from an 
isolated vortex, a turbulent channel flow and a DNS simula-
tion of forced isotropic turbulence. The resulting validation 
method is adaptive, requires no user-defined parameters 
and is demonstrated to yield the best performances in terms 
of outlier under- and over-detection. Finally, the novel 
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non-time-resolved PIV data, proper orthogonal decomposi-
tion (POD) has been implemented as a filter (Wang et  al. 
2015; Raiola et al. 2015) or one resorts to more statistical 
approaches (Griffin et al. 2010). Intermediate outlier detec-
tion in iterative image processing sequences can, however, 
only rely on spatial information. Artificial neural net-
works have been proposed to evaluate the interconnection 
between individual vectors in the instantaneous velocity 
field (Liang et al. 2003). A more straightforward prediction 
of the model vector is based on the local median of a 3 × 3 
neighbourhood, followed by imposing a fixed, uniform 
threshold on the residual between the scrutinised vector 
and estimator (Westerweel 1994). To relax the limitation of 
a spatially invariant threshold, Raffel et  al. (1992) imple-
mented an adaptive threshold utilising a local velocity vari-
ability based on the moving average of the vectors. Wester-
weel and Scarano (2005) constructed a reliable and robust 
threshold adopting a normalised median threshold (hereaf-
ter referred to as NMT); the difference between a correct 
vector and its estimator, which is based on the neighbour-
hood median, must fall within two times the median of the 
discrepancy between the neighbouring vectors and the pre-
diction. Though widely applied, Duncan et al. (2010) high-
light this approach to be unsuitable for unstructured data 
such as in particle tracking velocimetry (PTV) or adaptive 
PIV routines (Theunissen et  al. 2007) and should include 
a weighting inversely proportional to the distance between 
vectors. This technique will be referred to as DW-NMT.

Both NMT and DW-NMT approaches have been cate-
gorically demonstrated to identify isolated outliers even if 
local median tests may suffer from under- and over-detec-
tion (Lecuona et al. 2002). The former refers to failing to 
detect an outlier. Especially in the presence of clusters of 
erroneous vectors, the augmented fluctuation level causes 
the normalised threshold to be on a par with correct vec-
tors. These faulty vectors are subsequently wrongly con-
sidered correct. Clustering of outliers is a quite common 
problem in PIV due to low seeding areas or strong light 
reflections on surfaces for instance, and the inherent prob-
lematic for validation is worth the attention. Over-detection 
refers to the case of classifying correct vectors as errone-
ous, which is prone in the presence of strong velocity gra-
dients. To minimise this sensitivity, Nogueira et al. (1997) 
iteratively discriminated outliers on the basis of a valida-
tion criterion utilising predictions from interpolations con-
sidering the eight nearest vectors assessed to be coherent. 
Coherency was quantified as the ratio between the mean 
residual and the mean magnitude. This solution was shown 
to minimise the overall influence of outliers in data valida-
tion in the form of a reduced ratio between root mean value 
of the error and displacement, but at the cost of complexity. 
Moreover, as stated by the authors the method would fail 
in the presence of outlier clusters and continued the need 

of defining an appropriate validation threshold. The lat-
ter has been addressed by Shinneeb et  al. (2004) through 
the implementation of a spatially varying threshold. Prior 
to evaluating the residual between the measured vector 
and the prediction, potential outliers are identified using a 
median filter and replaced with a distance-based Gaussian-
weighted average. After adding a user-defined constant, 
the filtered discrepancy serves as a heuristic for the local 
median test. This approach yielded promising results in 
terms of reducing over- and under-detection despite the 
continuing need of refinement of the introduced constant. 
To further mitigate over-detection, Young et al. (2004) dis-
tinguish between spurious vectors and variations due to 
local velocity gradients by incorporating a local thin-plate 
spline model to which vectors are compared. By adjusting 
the degree of smoothness in the spline model and the vec-
tor removal criterion, over-detection could be diminished in 
the presence of significant velocity gradients.

In this paper, the authors present a novel adaptive vec-
tor validation algorithm capable of (1) detecting clusters of 
outliers, (2) reducing the degree of over-detection, (3) over-
coming the restrictions of existing methodologies by negat-
ing user input and (4) safeguarding computational simplic-
ity. Although the process still applies the concept of median 
normalised thresholds, three ideas are introduced which 
elaborate on the findings of the studies mentioned afore. 
First, the number of neighbours for comparison is adjusted 
based on local flow coherency. The latter is quantified by 
means of second-order regression. The authors argue that 
clusters of outliers are characterised by a higher variance 
(randomness) and the size of the vector basis for compari-
son must be extended accordingly. This step renders the 
validation algorithm fully adaptive. Second, an average-
weighted median is introduced to reduce over-detections 
by relaxing the importance of distant data sites. Third, 
erroneous vectors are defined as local anomalies in vector 
direction and magnitude, whereas traditionally validation is 
based on the Cartesian velocity components. The authors 
would like to stress that the current work does not inves-
tigate the appropriate method of outlier replacement. The 
interested reader can find further information in relevant 
references such as Nogueira et  al. (1997), Garcia (2011), 
Raben et al. (2012) and Sciacchitano et al. (2012).

After illustrating the problematic surrounding outlier 
identification, the suggested methodology is explained in 
Sect. 3. Section 4 concerns the assessment on the basis of 
benchmark velocity fields contaminated with synthetic spu-
rious vectors. Appreciable amelioration in under- and over-
detection is demonstrated. Incorporation of the adaptive 
neighbourhood is also shown to be a very efficient concept 
to decrease the number of under-detections when applied 
to the traditional techniques. The improved validation pro-
cess is finally incorporated in a recursive multi-grid image 
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analysis routine and applied to the experimental wake of a 
porous disc and supersonic jet in Sect. 5.

2 � Problem statement: coherency

Human vision is considered the best tool in the identification 
of outliers, and its strength lies in the cognitive ability to dis-
tinguish coherent structures (Reiz and Pongor 2011). Each 
vector is unconsciously juxtaposed with its closest neigh-
bours, and this basis for comparison is extended until a rec-
ognisable pattern emerges providing sufficient reliability to 
discriminate outliers. This process is illustrated in Fig. 1. The 
small collection of vectors in Fig. 1a could be deemed inva-
lid if only the local neighbourhood were to be considered. 
However, extending the neighbourhood it becomes clear the 
vectors form part of either a coherent structure (Fig. 1b) or 
outlier cluster (Fig. 1c). While classic spatial outlier detec-
tion methodologies consult a restricted vicinity of typically 
eight (3 × 3-1) to 24 (5 × 5-1) vectors, the example high-
lights the need to adaptively expand the locality as to emu-
late human vision. Simultaneously, a group of actual outliers 
should not influence the validation process in such a manner 
as to invalidate correct outliers (over-detection).

Prior to validating a vector, an appropriate neighbour-
hood extent must therefore be selected. The methods of 
Nogueira et  al. (1997) and Shinneeb et  al. (2004) both 
incorporate an initial consistency heuristic to specify the 
basis for vector comparison in the following process stage. 
However, neither method accounts for the adverse effect 
of velocity gradients in coherent structures. As depicted in 
Fig. 1, both methods conjecture several correct elements of 
the vector collection as incoherent. A majority of vectors 
may consequently be invalidated already in the prepara-
tory stage and excluded or replaced successively. Either 
approach inherently neglects underlying flow physics and 

essentially filters measured data, thereby influencing the 
overall accuracy of the results. Instead, in the current work 
the authors argue that each vector should be considered 
valid from the outset and coherency should only dictate 
the extent of the proximity to take into account. Reminis-
cent of the typical decay in spatial velocity correlations a 
weighting inversely proportional with spacing must then be 
applied to reflect the influence of each comparative vector. 
Differentiation between vectors must thus take place at a 
later stage with care to minimise the effect of outliers. Such 
an approach will greatly reduce the percentage of over-
detection, irrespective of the degree of vector accumulation.

Concerning the validation criteria, these are most com-
monly based on velocity component magnitudes. These 
magnitudes are attributed an acceptable fluctuation level 
during validation (Westerweel and Scarano 2005), which is 
assimilated with the typical RMS level ε of 0.1 pixels in dis-
placement data. A simple graphical representation in Fig. 2a 
indicates that this can lead to validation of vectors which 
are sufficiently different. More importantly, this disparity 
increases as the vector magnitude decreases (Fig. 2b) neces-
sitating a variable background fluctuation level proportional 
to the vector magnitude. On the other hand, imposing such 
adaptive fluctuation levels εα in the angular direction while 
allowing tangential fluctuations of ε shows a promising 
reduction in potential vector disparity (Fig. 2c–d). Such val-
idation criteria are in line with the observation of Reiz and 
Pongor (2011) that human vision mainly identifies anoma-
lies in patterns based on deviations in angle and magnitude.

3 � Methodology

This paper addresses the problematic of over- and under-
detection when validating PIV and PTV data. To account 
for spatially varying vector densities and flow properties, 

Fig. 1   Illustration of the need 
for adaptive neighbourhood 
selection in vector validation. a 
Detail of vectors echoing outli-
ers. Scrutinised vectors are bold. 
Only by expanding the local 
neighbourhood does it become 
clear these vectors belong to b a 
valid flow structure or c outlier 
cluster. Symbols in b indicate 
which vectors are consid-
ered incoherent based on the 
values of (Σi|Vi|)

−1∙(Σi|Vi − Vo|) 
according to Nogueira et al. 
(1997) (blue circle) and the 
median test of Shinneeb et al. 
(2004) (red triangle)
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an adaptive validation process with a three-tiered structure 
is proposed (Fig. 3). The problem of under-detected outli-
ers due to their aggregation in clusters is settled through 
a comparison of vectors with a variable number of neigh-
bours based on flow coherence. Over-detection is dealt with 
by different improvements; an average Gaussian-weighted 
distance-based median estimation and a revised calcula-
tion of vector discrepancy. The starting point of the lat-
ter is the local median concept (Westerweel and Scarano 
2005) because of its demonstrated robustness. In the cur-
rent work, the authors alter the residual calculation on the 
basis of vector orientation and magnitude and implement 
an adaptive estimation of the acceptable level of reminis-
cent noise-induced velocity fluctuations. The proposed 
methodology thus consolidates an adaptive weighted angle 
and magnitude threshold and will be referred to with the 
abbreviation AWAMT.

3.1 � Coherence adaptive neighbourhood level

To define the required number of neighbouring vectors, the 
authors introduce a heuristic for coherency. The authors 
argue that the condition for a vector to be considered coher-
ent is its agreement with a second-order surface fitted to its 
eight closest neighbours. It is important to underline that 
this coherence function is not used to discern correct vec-
tors from outliers. Coherency is only used to predict the 
number of neighbours to be taken into account when esti-
mating the local true flow velocity.

The choice of a quadratic surface is selected assimilat-
ing the common Q-parameter to identify and visualise 
coherent structures (Hunt et  al. 1988). Adopting the Ein-
stein summation convention, Q values are calculated as 

Q = −0.5(∂ui/∂xj∙∂uj/∂xi). Imposing a surface of the form 
Φ = a0 + a1y + a2x + a3xy + a4y

2 + a5x
2 for the veloc-

ity components will thus ensure all Q isosurfaces to be 
also second-order continuous. To minimise the influence 
of outliers on the parabolic regression, a diagonal matrix W 
is implemented containing Gaussian weights utilising the 
deviation σj of each vector from the local median (includ-
ing all 9 vectors) as argument; W(j + 1,j + 1) = exp(−½∙
σj

2∙κj
−2) where j  =  0…8, σj

2  =  (uj  −  um)2  +  (vj  −  vm)2, 
um = median(uj), vm = median(vj) and κj = ε + 1

9
Σσj. The 

coefficients of the parabolic surface fitted to the components 
of the nine vectors are then estimated in a least-squares 
manner; a =  (XTWX)−1(XTWf) where a =  [a0 a1 … a5]

T, 
f = [(u,v)j], X = [1 yj xj xjyj yj

2 xj
2].

The coherence C is subsequently quantified as the aver-
age residual between the scrutinised vector’s components 
u0 and v0 and Φu,v evaluated at the vector’s location (x0,y0), 
normalised with the median of the vector magnitudes |V|m 
and background error ε (Westerweel and Scarano 2005);

The differentiation between coherent and non-coherent 
vectors is thereon done by thresholding; values of C infe-
rior to the threshold T are classified as coherent. Although 
the threshold T can be adjusted to reflect the sensitivity of 
the number of neighbours to the size of clusters, the authors 
found performances to be relatively unaffected by the 
choice of T and a threshold of 10 % was empirically found 
by the authors to yield a reliable and generally robust selec-
tion criterion.

Once the coherence function has been evaluated for all 
the data points in the vector field, the level of neighbour-
hood L for each data point is progressively increased con-
sidering the neighbours of the neighbours until at least half 
of the basis for comparison comprises coherent vectors. 
Note that L as such is a spatially varying parameter. To 

(1)

C = Cu+Cv

2
with C(u,v) = 1

(|V |m+ε)2
(Φ(u,v)(x0, y0)

− (u0, v0))
2

and |V |m = median

(

(

u2j + v2j

)0.5
)

Fig. 2   Acceptable vector vari-
ations for a fluctuation level ε 
in a both horizontal and vertical 
velocity components u and v, 
respectively, for larger and b 
small vector magnitudes. Limits 
in variations with adaptive angle 
variations εα for c large and d 
small vector magnitudes

Fig. 3   Three steps in adaptive vector validation, based on a metric 
for vector coherency; the number of vectors in the local vicinity is 
increased to provide a reliable basis for subsequent outlier detection
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account for vector dependency due to correlation window 
overlap WOR, a minimum value for L is imposed which 
depends on WOR; Lmin =  Round(4∙WOR). In the case of 
a structured grid for example, the total number of neigh-
bours No is readily given as No = (2L + 3)2 − 1 (Fig. 4a). 
This stopping criterion ensures the median of an examined 
neighbourhood will return a reliable and coherent predic-
tion for ensuing validation purposes since at least half 
the considered adjoining vectors are deemed coherent. 
The coherency check accordingly addresses the effects of 
under- and over-detection in the presence of outlier clusters 
and is straightforward to implement in existing validation 
routines.

Figure  4b illustrates the outcome of the coherency 
test when a cluster of outliers is surrounded by coher-
ent vectors. The local neighbourhood level gradually 
increases towards the centre of the cluster, as indicated 
by the greyscale, such that each outlier can be compared 
with a reliable prediction even when surrounded by 
outliers.

3.2 � Adaptive angle and magnitude median normalised 
residual

While the methodology presented above will be shown to 
already improve standard validation processes, the authors 
implement two additional modifications to the traditional 
normalised residual calculation to further lessen the num-
ber of over-detections: (1) average Gaussian-weighted 
median estimation and (2) comparison of direction and 
magnitude instead of Cartesian vector components. The 
underlying principle still remains consistent with com-
mon detection routines; a normalised residual is evaluated 
for each vector of the field based on the fluctuation of its 
neighbours and is used to discern correct vectors from 
outliers.

•	 Average-weighted median estimation

To identify the scrutinised vector as being erroneous, a 
comparison is required with an adequate estimation of the 
true, underlying flow vector. Such a prediction is ideally 
based on interpolation of neighbouring vectors. Because of 
the fundamental sensitivity of interpolation to the presence 
of spurious vectors, the median offers a more robust alter-
native. Following the selection of an adequate neighbour-
hood level based on coherency, a distance-based weighting 
is introduced when calculating a vector prediction from the 
No vectors to reflect their relative importance. While still 
inversely proportional with spacing di between the central 
vector located at (xo,yo) and those in the constrained vicin-
ity, in the current paper the weights wi are drawn from a 
Gaussian functional in line with adaptive Gaussian win-
dowing (AGW) with optimal filter width σ (Agui and Jimé-
nez 1987);

To achieve an efficiency of the statistical estimator 
higher than that of the weighted median, an averaging is 
introduced. The resulting average-weighted median opera-
tion will be symbolised in the following by awmed(∙). The 
concept of this novel process is illustrated considering the 
velocity magnitude, i.e. awmed(|V|), for the situation in 
Fig.  5a where the central vector is adjoined by No neigh-
bours (here No  =  8). The No velocity magnitudes (indi-
cated by the vertical abscissa location of the ● symbols) 
are sorted in ascending order |V|S with the corresponding 
weights wS, attributed according to Eq.  (2), represented 
by the bar widths in Fig. 5b. The weighted median (solid 
vertical line) is located at half the cumulative sum Sw,No of 
the weights wS per its definition. To classify as an outlier, 

(2)wi = exp
(

−d2i
σ 2

)

with σ = 1.24
No

No
∑

i=1

di

Fig. 4   a Incremental neigh-
bourhood level with Lmin = 0 in 
case of a vector placement on 
the nodes of a structured grid. 
b Illustration of the automatic 
evaluation of the required 
neighbourhood level L indicated 
by the greyscale. The central 
area of the flow field has been 
artificially contaminated with 
outliers. Towards the centre of 
the cluster, the level increases 
indicative of strongly incoher-
ent vectors necessitating an 
enlarged number of vectors for 
validation
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vectors will need a magnitude sufficiently different from 
this value. Such vectors will consequently have weights 
lying at the extremes of the set wS. Vectors with weights 
lying in the immediate vicinity of the weighted median 
on the other hand cannot constitute outliers and can thus 
be used for reliable interpolation. An averaging interval 
Δw varying between 0 and 1 and centred on the weighted 
median is therefore introduced. The new, average-weighted 
median value is finally evaluated as the weighted average 
of those velocity magnitude values of which the bar widths 
overlap with the Δw interval. The averaging weights λi are 
then taken proportional to this amount of overlap;

where Sw,i =
∑i

j=1 w
S
j  and �i = min(

Sw,i
Sw,No

− 1−∆w

2
,

wS
i

Sw,No
,

1+∆w

2
− Sw,i−1

Sw,No
).

Note that this average-weighted median constitutes a 
form of weighted AGW interpolation but with improved 
reliability against outliers since the considered neighbours 
are less likely to be outliers. A unity value of Δw degener-
ates the operation into a weighted average of all neighbour-
ing values, whereas a value of 0 yields again the weighted 
median. As will be demonstrated in Sect.  4, a value of 
Δw  =  0.3–0.5 is found to offer a generically conducive 
compromise between over- and under-detection (Fig. 8).

•	 Angle and magnitude validation

(3)

awmed(|V |) = 1
∑

�i

∑

i
�i|V |Si ∀|V |Si ∈ |V |S

∣

∣

∣

Sw,i
Sw,No

≥ 1−∆w

2
∧ Sw,i−wS

i

Sw,No
= Sw,i−1

Sw,No
≤ 1+∆w

2

The single validation parameter will be the normalised 
residual r* combining the individual residuals rα and r|V| 
related to, respectively, a vector’s angle α and magnitude 
|V|;

where r|V | = ||Vo|−|V |awm|
median(||V |j−|V |awm|)+ε

, 

|V |awm =
√

awmed(uj)2 + awmed(vj)2 and |V|j
2 = uj

2 + v2j  
with j = 1…No

The denominator of r|V| invokes the standard median 
operator since the median norm |V|awm already applies a 
distance weighting. Parameter ε relates again to the meas-
urement error and is indicative of the background error 
for the vector magnitude (ε ≈ 0.1 pixels). The normalised 
residual in angle is calculated in a similar manner;

The choice of αj
* ensures angle differences to be smaller 

than π radians. Value αj is the simple arc-tangent of the dis-
placement components. Angle αawm considers the average-
weighted median of the individual phases to negate any 
bias originating from vector magnitudes;

Misdetection of outliers is addressed by automatic adap-
tation of the acceptable RMS level in αj to predicted vector 
magnitude; the minimum measurable angle is defined by 
the angle of the triangle formed by |V|awm and ε;

(4)r∗ =
(

r2α + r2|V |

)0.5

(5)rα = α∗o
median(α∗j )+εα

α∗
j = min

(∣

∣αj − αawm
∣

∣, 2π − |αj − αawm|
)

(6)αj = tan−1(vj/uj) and αawm = tan−1(
awmed(sin(αj))

awmed(cos(αj))
)

Fig. 5   a Vector validation involves the comparison of the cen-
tral (black) vector with the predicted vector (grey) on the basis of 
the neighbouring vectors. The prediction follows from an average-
weighted median. b Weights in the awmed(∙) operator depend on the 
distance between the investigated vector and its neighbours following 

Eq. (2) and are reflected in the bar widths. An interval Δw is centred 
on the weighted median (solid black line), and the weighted aver-
age is taken of the data overlapping the defined interval according to 
Eq. (3)



Exp Fluids (2016) 57:33	

1 3

Page 7 of 21  33

Once the normalised residual has been evaluated 
throughout the vector field, r* values below a threshold of 
2 are considered non-valid. This value is in agreement with 
the findings of Westerweel and Scarano (2005) and Duncan 
et al. (2010).

•	 Computational effort

The selection of the adequate neighbourhood level and 
the evaluation of the average-weighted median can be 
expected to come with some computational overhead. To 
estimate the increase in processing time as a result of the 
elaborated vector validation, the evaluation of the experi-
mental images discussed in further detail in Sect.  5 is 
considered. The total processing time for the porous disc 
recordings with AWAMT increased by a factor of 1.01 rela-
tive to the traditional NMT. Similarly, the ratio in compu-
tation time between NMT and AWAMT for the analysis 
of the 280 image recordings related to the supersonic jet 
equalled 1.05. Stand-alone, the proposed validation based 
on magnitude and angle, although strongly dependent on 
flow type, number of outliers and clustering factor, was 
approximately four times more computationally intense 
compared to the standard routine based on Cartesian com-
ponents. The above heuristics are only exemplary and per-
tinent to the current test cases. Nevertheless, results imply 
the computational expense of the more elaborate AWAMT 
method to be marginal relative to the overall process and 
will be shown to be outweighed by the achievable improve-
ment in measurement accuracy in the remainder of this 
paper.

Because of the enhanced robustness, the iterative dis-
placement evaluation with AWAMT returns both lower 
absolute levels in ensemble average image disparity δI and 

(7)εα = tan−1( ε
|V |awm )

a faster decay with iteration number (Fig.  6). The image 
disparity δI is defined as the ensemble-averaged absolute 
difference in image intensity between the corrected snap-
shots (based on the validated displacement fields obtained 
each step of the iterative image analysis), normalised by 
the maximum image intensity. Figure  6 also presents the 
normalised probability density in δI for the two validation 
routines and shows AWAMT to be consistently assimilated 
with lower probabilities at higher disparities. This attests 
the proposed method to yield displacement fields which are 
more representative of the underlying distortion in particle 
image intensity distribution, offering the potential to speed 
up convergence of image analyses adopting optical flow 
concepts.

4 � Numerical assessment

4.1 � Evaluated test cases

In order to assess the proposed adaptive vector validation 
in terms of ameliorated under- and over-detection ratios, 
deterministic velocity fields were contaminated with spuri-
ous vectors.

Three flow cases were considered: a turbulent channel 
flow, a cellular vortex and isotropic turbulence (Fig. 7). The 
first two flow fields1 were obtained from the PIV Challenge 
website (Stanislas et al. 2001, 2003). The PIV images were 
analysed with an adaptive PIV algorithm (Theunissen et al. 
2007). This algorithm locates and sizes correlation windows 
on the basis of local seeding density and velocity gradients, 
thus returning velocity data on an unstructured grid. Images 
were initially sampled with square correlation window sizes 

1  Time-resolved channel flow: 3rd PIV Challenge, Case B, Synthetic 
images. Strong vortex: 1st PIV challenge, Case A, Experimental 
images.

Fig. 6   Evolution in ensemble 
average image disparity and 
associated probability density 
function with iteration number 
for the experimental test cases 
described in Sect. 5: a porous 
disc and b supersonic jet
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of 128 pixels and recursively refined. To enforce a very 
gradual reduction in interrogation window size, 20 refine-
ment iterations were imposed to yield a minimum final win-
dow size of 15 pixels. Bias of the results towards any of the 
assessed outlier detection routines was avoided by manually 
inspecting at each intermediate iteration vector areas pro-
ducing high levels of local variation. Potential outliers were 
accordingly replaced by the local median. The third test 
case consisted of readily available direct Navier–Stokes 
velocity data provided on a structured grid from the Johns 
Hopkins Turbulence Databases2 (Li et al. 2008).

2  Dataset isotropic1024coarse: x-range 1.1781–1.5650, y-range 
1.1781–1.5650, z-offset: 0.0055, time: 1.9013.

The vector fields were selected as to cover a wide vari-
ety of vector field characteristics (Fig. 7). Both the chan-
nel flow and vortex are characterised by spatially non-
isotropic flow features. The vortex represents an isolated 
region of strong velocity gradients, while the turbulent 
channel flow portrays besides a region of circular motion 
a strong spatial variation in flow properties. In the outer 
area, the flow is quasi-uniform, whereas approaching the 
wall the vector field becomes more turbulent with accom-
panying variations in both vector magnitude and direction. 
The isotropic turbulence case on the other hand features a 
spatially more uniform distribution of vector magnitudes 
and directions.

Fig. 7   Flow test cases used 
to assess vector validation 
algorithms a turbulent channel 
flow (Stanislas et al. 2003), b 
isolated vortex (Stanislas et al. 
2001) and c DNS simulation of 
isotropic turbulence (Li et al. 
2008)

Fig. 8   Sample vector field with imposed outliers located at circle with M = 1 a Cf = 1, b Cf = 8 and c Cf = 32
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To simulate realistic velocity fields containing outli-
ers, each of the three final velocity fields was corrupted 
with spurious vectors of prescribed characteristics. In par-
ticular, two pertinent parameters were varied in line with 
Shinneeb et  al. (2004): outlier magnitude and clustering. 
When replacing a vector Vo =  (uo,vo) with a spurious ele-
ment Vs = (us,vs), the outlier norm is defined to be at most a 
percentage M of the local vector magnitude. The erroneous 
velocity components are then calculated by multiplying the 
norm with a random number distributed uniformly between 
−1 and 1, U([−1,1]), resulting in an outlier with random 
direction and deviating a certain percentage in magnitude 
from the correct local velocity;

The clustering factor Cf is defined as the number of ran-
domly imposed neighbouring vectors, each with magnitude 
ratio M (Fig. 8). Clusters were distributed randomly across 
the vector fields. In the simulations, Cf is varied between 1 
and 40, where a value of one equals randomly located iso-
lated outliers. While it can be argued that cluster sizes of 40 
vectors are rare, cluster sizes in the order of 10 are com-
monly encountered when dealing with image regions of 
poor quality, low seeding or insufficient spatial resolution 
in regions of strong velocity gradients. Nevertheless, the 
extent of Cf allows the detection of any asymptotic ten-
dency. The number of imposed erroneous vectors was kept 
constant irrespective of Cf at least 15 % the total number of 
vectors in accordance with good PIV practice.3 Above this, 
critical value experimental settings would generally have to 
be re-evaluated to possibly mitigate the amount of outliers 
and enhance measurement reliability.

For each outlier parameter setting, 3000 Monte Carlo 
simulations were performed to ensure convergence in sta-
tistical findings. Results are presented in terms of over- and 
under-detection ratios Ro and Ru, respectively. Parameter Ro 
is defined as the ratio between the number of correct vec-
tors wrongly detected as outliers (Nw) and the total num-
ber of vectors (valid and invalid) in the field Nt, while Ru 
expresses the ratio between the number of missed outliers 
(Nm) and the imposed number of spurious vectors (Ni).

(8)

us = |VS |√
2
· U([−1, 1]), vs = |VS |√

2
· U([−1, 1]) where

|Vs| = M|Vo| = M

√

u2o + v2o

3  The integer number of clusters for a given Cf is such that the num-
ber of outliers Ni amounts to at least 15 % of the total number of vec-
tors Nt; Ni = ceil(0.15∙Nt∙Cf

−1)∙Cf. This may lead to variations in Ni 
depending on Cf and Nt. These variations are visible as oscillations in 
the obtained results (e.g. Fig. 10).

(9)Ro = Nw

Nt
and Ru = Nm

Ni

∼= Nm

0.15·Nt

In addition, the ratio between Nm and Nt, denoted by 
Ru

*, allows the calculation of the percentage of erroneously 
invalidated correct vectors (Nw) with respect to either the 
number of correct vectors (Nc) or the number of imposed 
outliers (Ni);

With the fixed percentage of imposed outliers 
(Nc ≅  0.85 Nt), these ratios become Nw/Nt ≈  1.18∙Ro and 
Nw/Ni ≈ 6.67∙Ro. Table 1 presents an overview of the defi-
nition of the different parameters for clarity.

4.2 � Validation algorithm performance

Figure 9 presents the results of Monte Carlo simulations to 
illustrate the effect of Δw in the average-weighted median 
on the validation performance in terms of over- and under-
detection. The relevant flow fields were degraded with 
outliers of randomness M =  5 and clustering factor of 1. 
Though not presented, observable tendencies remained 
consistent when altering either M or Cf.

For small Δw, the average-weighted median serves as 
a standard distance-weighted median providing a robust 
outlier detection criterion in terms of under-detection. 
Nevertheless, this approach is less efficient than interpola-
tion. Increasing Δw will assimilate the awmed(·) with an 
adaptive Gaussian-weighted interpolation, utilising only 
vectors which are less likely to be outliers and warrant a 
reliable interpolation. When increasing Δw, more vectors, 
including potential outliers, are again taken into account, 
thereby reducing the reliability of the interpolation. This 
renders the validation less stringent, under-detecting more 
vectors (Fig. 9a) yet simultaneously classifying fewer cor-
rect data values as erroneous (Fig.  9b). Detection ratios 
Ru and Ro will consequently obey opposite behaviours 
with varying Δw. Figure 9 corroborates Ru to increase in 
an exponential fashion, whereas the over-detection ratio 

(10)

Nw

Nc
= RoNt

Nt−Ni
= Ro ·

(

1− R∗u
Ru

)−1

and
Nw

Ni
= RoRu

R∗u
with R∗

u = Nm

Nt

Table 1   Parameters used in validation method assessment

Symbol Description Definition

Nc Number of correct vectors

Ni Number of imposed outliers

Nt Total number of vectors =Ni + Nc

Nw Number of correct vectors classed as outliers

Nm Number of missed outliers

Ro Over-detection ratio =Nw/Nt

Ru Under-detection ratio =Nm/Ni

Ru
* Re-scaled under-detection ratio =Nm/Nt
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Fig. 9   Evolution in normalised 
a under-detection and b over-
detection ratios (normalisation 
by maximum value) with vary-
ing Δw for flow fields represent-
ing an isolated vortex (Stanislas 
et al. 2001), turbulent channel 
flow (Stanislas et al. 2003) and 
DNS simulation of isotropic 
turbulence (Li et al. 2008)

Fig. 10   Comparison between 
universal outlier detection 
(NMT), distance-weighted 
outlier detection (DW-NMT), 
NMT and DW-NMT extended 
with a variable neighbourhood 
(ANMT and ADW-NMT) and 
the proposed adaptive weighted 
angle and magnitude threshold-
ing (AWAMT) in terms of the 
evolution in under-detection 
Ru and Ru

* (left column) and 
over-detection Ro (right column) 
with increasing cluster size of 
outliers for the case of unstruc-
tured velocity data of a cellular 
vortex (top row), turbulent 
channel flow (middle row) and 
structured DNS simulation data 
of isotropic turbulence (bottom 
row). The maximum magnitude 
of the outlier was set at 10 % of 
the local velocity (M = 0.1)
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shows a quasi-linear decline. Given that the depicted 
tendencies are quasi-flow-case independent, the authors 
propose a value of Δw  =  0.3–0.5 as a generally con-
ducive compromise to minimise both the under- and 
over-detection.

Figures 10, 11 and 12 present the under- and over-detec-
tion ratios defined in Eq.  (9) with varying sizes of outlier 
clusters for the three flow cases when fixing the magnitude 
ratios M, respectively, to 0.1, 1 and 10. Results of the new 
algorithm (AWAMT) are juxtaposed with the NMT (West-
erweel and Scarano 2005) and DW-NMT method (Dun-
can et al. 2010). To stress the importance of the adaptivity 
introduced in the current work, both methodologies have 
been extended to include the coherency test and automati-
cally select the adequate number of neighbours in the vali-
dation process. These extended routines are annotated as 
ANMT and ADW-NMT, respectively. Although cluster 
sizes Cf were incremented in steps of one, data symbols are 
depicted sporadically to retain figure clarity.

Independent of the considered flow case, all figures 
substantiate the detrimental influence of outlier clusters. 

With growing cluster size, Ru initially rises steeply up to 
Cf  =  10. Depending on the M value, for larger clusters 
either a quasi-constant level is reached or Ru continues to 
grow more gradually. For the turbulent channel flow case 
with M =  0.1 (at Cf =  10), this results in the inability to 
detect up to 90 % of imposed outliers with NMT or DW-
NMT (Fig.  10). By increasing M, the outliers’ disparity 
grows, facilitating their detection. Figures  10, 11 and 12 
imply the overall levels of Ru to decrease by roughly a fac-
tor 0.66–0.75 for every increase in order of magnitude of 
M. At M =  1, this still leaves 10–40  % of the individual 
(Cf = 1) spurious vectors undetected by the NMT method, 
deteriorating to 40–60 % and above for clusters containing 
more than ten vectors.

An asymptotic behaviour with Cf is also observed in the 
over-detection ratio Ro, though strongly dependent on the 
flow type and randomness level. For M = 0.1, application 
of NMT to the isolated vortex, for example, returns a ratio 
Nw/Ni growing from 15 % at Cf = 1 to 23 % at Cf = 10, 
reaching a quasi-constant level of 20 % for larger Cf. When 
augmenting M to 10, these ratios alter to 11, 15 and 16 %, 

Fig. 11   Comparison between 
vector validation methodologies 
applied to velocity fields con-
taminated with imposed outlier 
clusters of varying size and 
fixed magnitude. The maximum 
magnitude of the outlier was set 
at 100 % of the local velocity 
(M = 1). See Fig. 10 for further 
details and legend entries
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respectively. Data related to the DNS vector field for 
M = 0.1 on the other hand result in Nw/Ni = 0.026 (Cf = 1), 
0.033 (Cf = 10) and 0.013 (Cf = 40), while ratios become 
negligible (less than 0.05 %) for M = 10. The observable 
flow dependency can be explained as follows. With excep-
tion of the central area, neighbouring vectors in the vortical 
flow field show a high degree of similarity. As a result, any 
small discrepancy can render a vector invalid leading to an 
elevated over-detection. Because of their inherent nature, 
the turbulent flows on the other hand allow slightly more 
variation in each vector before it is identified as spurious. 
Over-detection is also prominent at the edge of outlier clus-
ters because a correct velocity estimate may seem incoher-
ent with its nearest (spurious) neighbours as illustrated in 
Fig. 13. This can be demonstrated considering for simplic-
ity a uniform horizontal velocity field with component u. 
The central vector will be assumed correct and to be sur-
rounded by eight spurious neighbours of which the velocity 
components are defined by Eq. (8). Given that the statisti-
cal median of the random variable X ∈  U([−1,1]) equals 
zero and that median(|X|)  =  ½, the normalised residual 

following the NMT4 is then given as r∗NMT = ( M√
8
+ ε

u
)−1. 

Adopting the common validation criterion r∗NMT < 2, the 
central vector consequently has a high probability of being 
mistakenly identified as erroneous for any value of M 
below 

√
2 or when u is in the same order of magnitude as ε. 

This behaviour is confirmed by the observed trends of 
reduced Ro and Ru with increasing M in Fig. 14.

Adopting a distance-based weighting (DW-NMT) offers 
an improvement in over-detection only in case of unstruc-
tured data in accordance with the findings of Duncan et al. 
(2010). The current figures suggest such achievements 
to be again strongly reliant on flow case and random-
ness magnitude M. The cellular vortex case, for example, 
indicates DW-NMT to lower the over-detection Ro from 
approximately 2.5 % with NMT to 1 % across the range of 
M values (Figs. 10, 11, 12). Such gains are, however, less 
prominent in the channel flow and of course nihil for struc-
tured DNS data. Moreover, distance weighting is observed 

4  ui = M∙u∙X/2½, median(ui) = M∙u/2½∙median(X) = 0, median(|ui − 
0|) = median(M∙u∙|X|/2½) = M∙u/2½∙½.

Fig. 12   Comparison between 
vector validation methodologies 
applied to velocity fields con-
taminated with imposed outlier 
clusters of varying size and 
fixed magnitude. The maximum 
magnitude of the outlier was set 
at ten times the local velocity 
(M = 10). See Fig. 10 for fur-
ther details and legend entries
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to adversely address under-detection as related Ru values 
are consistently higher or at least on a par with NMT, even 
in case of isolated spurious vectors (Cf = 1).

The presented results advocate the beneficial impact 
when implementing an adaptive neighbourhood extent 
(exemplified in Fig.  13) in NMT and DW-NMT. At low 
M, under-detection can be abated by roughly a factor 1.5; 
when applied to the wall turbulent flow field for exam-
ple, for a cluster of ten vectors Ru drops from 90 to 65 % 
and from 80 to 65 % in case of the DNS flow (Fig.  10). 
Improvements become most remarkable at higher levels 
of randomness where Ru is lowered by at least a factor 
4, from 30 to 7 % at Cf = 10 and M = 10 for the chan-
nel flow and from 20 to 4 % for the DNS case (Fig. 12). 
Betterment is also achieved in Ro as a result of the added 
adaptivity, though the relative improvement drops with 
higher M values. Irrespective of cluster size, coherency 
adaptivity lowers the NMT-related Ro level. At M = 1 for 
example by 0.1 % for the vortex field and 0.01 % for the 
channel flow, whereas for M = 0.1 the differences in the 
vortex flow amount to 1 % when Cf = 5 and 0.3 % when 
Cf = 40. Maintaining a constant cluster size of eight vec-
tors and varying the outlier randomness further corrobo-
rates the neighbourhood adaptivity to attain under- and 
over-detection levels sufficiently below those of the stand-
ard approaches (Fig.  14). Under-detection ratios of tradi-
tional validation routines asymptotically reach values of 
20  % with increasing M compared to levels approaching 
0 % when implementing adaptivity. For the case of the iso-
lated vortex, NMT retains 2 % over-detection, whereas the 
original and extended DW-NMT and AWAMT reach levels 
below 0.8 %. This is an important finding as it implies tra-
ditional validation routines are, contrary to those enhanced 
with adaptivity, unable to identify all spurious vectors 
within the cluster, independent of their magnitude. While 
appreciable gains can be achieved in Ru, all validation 

methods reach comparable asymptotic values in over-
detection when applied to more turbulent flows.

Validation on the basis of residuals in magnitude and 
orientation allows the AWAMT approach proposed within 
this work to further reduce over- and under-detections. As 
per the simplistic mathematical model discussed afore, 
potential advantages will be particularly noticeable at lower 
M and displacement magnitudes in the order of one pixel 
or below. Figure 10 advocates the adaptation of the back-
ground fluctuation level in vector phase to its magnitude 
to offer noticeable improvements particularly at M = 0.1. 
Across the various flow fields, AWAMT consistently yields 
the lowest Ru and Ro levels compared to the standard and 
enhanced median threshold techniques. Under-detection 
levels are overall lessened by roughly 10  % compared to 
the improved ANMT and ADW-NMT. Changes in Ro are 
flow dependent but vary between 0.15 and 0.3  %. With 
increasing M, relative improvements obtained by adding 
the magnitude and angle validation diminish compared to 
the benefit of purely a varying neighbourhood.

To summarise, the performed assessment has shown 
the traditional NMT and DW-NMT to be highly sensi-
tive to the presence of outlier clusters especially in terms 
of under-detection. Although over-detection is prominent 
in the vicinity of such clusters, it is strongly dependent on 
the local level of velocity fluctuation and lowers as ran-
domness increases. By adapting the considered neighbour-
hood level to local flow coherency, under-detection can be 
improved considerably in the case of large outlier clusters 
and strong spatial velocity variations, while gains in over-
detection are most noticeable with smaller displacements. 
Further improvements in under- and over-detection are 
achieved by adapting the validation process to consider 
vector magnitude and orientation, whereby ameliorations 
are particularly noticeable in case of smaller displacements. 
Incorporation of an adaptive weighted angle and magnitude 

Fig. 13   Influence of cluster size and outlier magnitude on neighbour-
hood level L in the case of the vortex flow a Cf = 1 (isolated outli-
ers), M = 0.1, b Cf = 10, M = 0.1, c Cf = 10, M = 10. With increas-
ing size of outlier clusters and outlier magnitude, the number of 

neighbours No considered in the average-weighted median operation 
increases adaptively. Increased neighbourhood levels emanate from 
the outliers to surrounding vectors, indicative of their non-localised 
detrimental influence towards over-detection
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threshold in the vector validation process is subsequently 
expected to be most beneficial to reduce under- and over-
detection in turbulent flows, flows containing strong veloc-
ity gradients, image sequences with small particle image 
displacements and image recordings of lower quality which 
would give rise to outlier clusters. This will be confirmed 
by the experimental assessment in the following section.

5 � Experimental application

Vector validation can have a strong influence on the out-
come of a PIV analysis. Because of its iterative nature, the 
influence of non-detected spurious vectors or incorrectly 
replaced velocities is propagated into the image deforma-
tion stage with associated consequences. To assess the new 
vector validation algorithm in a real application, the adap-
tive routine has been applied to experimental PIV images of 
the near-wake flow behind a porous disc and over-expanded 

supersonic jet and compared with the conventional NMT 
technique.

5.1 � Porous disc

Measurements were taken behind a circular disc 
placed in the low turbulence wind tunnel of the Uni-
versity of Bristol. This tunnel attains turbulence lev-
els below 0.05  % and has an octagonal test section of 
0.8  m ×  0.6  m. Four 3-mm-diameter piano wires held 
the disc in place, which was subjected to a freestream 
velocity Ufs of 30  m/s impinging perpendicular to the 
frontal surface. The disc had a thickness of 6  mm and 
a diameter Ddisc of 6 cm resulting in a negligible block-
age of 0.16 % at a diameter-based Reynolds number ReD 
of 11.6 × 104. Six perforations, each with a radius rp of 
3.87 mm (rp ≈ 0.065∙Ddisc), were located at a radius ra of 
1.08 cm to establish a porosity β (=open/closed area) of 
0.11 (Fig. 15a).

Fig. 14   Comparison between 
vector validation methodologies 
applied to velocity fields con-
taminated with imposed outlier 
clusters of fixed size (Cf = 8) 
and varying magnitude. See 
Fig. 10 for further details and 
legend entries
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PIV measurements were taken with a 2D2C Dantec 
Dynamics PIV system. Seeding was generated by atom-
ising a mixture of PEG-80 and water producing 1-μm 
tracer particles. Illumination was provided by a Litron 
200 mJ laser with a repetition rate of 15 Hz. An optical 
arrangement of cylindrical and spherical lenses trans-
formed the laser beam into a 1-mm-thick laser sheet 
positioned along the centre of two pores. Images were 
recorded with a Speedsense M340 camera. A 75-mm 
focal length lens with f-stop set at 16 was utilised, pro-
ducing particle image diameters of approximately 2–3 
pixels. The CMOS sensor consisted of 10  μm pixels 
arranged in a 2560  ×  1600 array. With a calibration 
factor of 15.5  pixels/mm, the corresponding field of 
view covered approximately 2.75 disc diameters down-
stream and 1.72∙Ddisc in vertical direction. The separa-
tion between laser pulses was set at 40 μs, producing a 
maximum particle image displacement of approximately 
20 pixels at the pores. An exemplary image snapshot is 
depicted in Fig. 15b.

In total, 500 image recordings were analysed with a 
standard PIV processing routine incorporating iterative cor-
relation window size reduction (Scarano and Riethmuller 
2000) and image deformation using quintic B-spline inter-
polation (Astarita and Cardone 2005). Correlation windows 
were reduced in four iterations to final sizes of 37 × 37pix-
els2 (~2.4 mm × 2.4 mm) with an overlap of 50 % result-
ing in a structured vector field with approximately 1.2-mm 
grid spacing. Every iteration, the obtained vector field was 
subjected to validation utilising either the universal outlier 
method (NMT) or the newly proposed adaptive weighted 
angle and magnitude threshold technique (AWAMT). Inval-
idated vectors were subsequently replaced with the median 
of the eight closest neighbours.

The under-sampled ensemble-averaged flow field behind 
the porous disc is detailed in Fig.  16 and shows com-
plex flow features. Flow with momentum higher than the 
freestream is ejected from the pores and interacts with the 
outer shear layers to create zones of recirculating flow on 
the upper and lower part of the disc. Between approxi-
mately 1.2∙Ddisc and 2∙Ddisc, a large zone of reverse flow 
appears. This region is formed by the merging of the outer 
shear layers, forging two stagnation points along the cen-
treline at the zone edges. In addition, two outward vorti-
ces are present within the reverse flow zone. The near wake 
pushes the freestream outwards similar to the bluff body 
wake behind solid discs (Kalra and Uhlherr 1971) which 
merges again at approximately 2.5∙Ddisc downstream initi-
ating wake recovery. It should be noted that such features 
are only present in the time average. From an instantane-
ous perspective, the jets display a flapping behaviour, giv-
ing rise to the appearance of the multiple stagnation points 
in the ensemble average. This flapping is in reaction to the 
vortex shedding from the disc which takes place at random 
locations along the circumference (Miau et al. 1997). The 

Fig. 15   a Sketch of the porous disc tested (β = 0.11). The green line indicates the location of the PIV measurement plane. b Exemplary PIV 
image recording illustrating the reflections off the disc surface (left) and mirror images/reflections (middle). Flow goes from left to right

Fig. 16   Ensemble-averaged flow field (under-sampled by a factor 
3 in both directions for clarity) of 500 snapshots of the near wake 
behind the porous disc. Dashed red lines indicate the locations of the 
extracted velocity profiles
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flapping in addition gives rise to mobile zones of turbu-
lence and accompanying velocity gradients, making the 
flow a challenging test case for vector validation.

Figure  17 juxtaposes contour maps quantifying the 
percentage of replaced vectors in the final iteration, 
R = Ro + Ru

*, by the NMT and AWAMT method across the 
image ensemble. Since outliers are replaced, this quantity R 
is indicative of the vector validation performance in detect-
ing outliers. The detrimental effect of laser reflections can 

be observed in the vicinity of the disc for both validation 
methods. Throughout, the authors have argued that existing 
vector validation routines are susceptible to over-detection 
in regions of higher turbulence intensity. Figure 17 attests 
especially the bounding shear layers of the disc and jets, 
and jet interaction region to be attributed a higher percent-
age of outliers compared to the bulk. However, Fig.  17 
also demonstrates the AWAMT approach to consistently 
detect fewer outliers in these regions compared to NMT. 
This supports the Monte Carlo simulations which indicated 

Fig. 17   Comparison of the number of replaced vectors across the PIV data series (500 images) as per the outcome using (left) NMT vector vali-
dation (right) AWAMT vector validation. Dashed lines indicate the locations of profile extraction

Fig. 18   a Profiles in horizontal velocity component extracted along 
the vertical directions indicated in Fig. 16. b Comparison of stream-
wise velocity along the lower jet centreline obtained from LDA and 
PIV data incorporating NMT, ANMT and AWAMT validation

Fig. 19   a Profiles in longitudinal turbulence intensity extracted along 
the vertical directions indicated in Fig. 16. b Comparison in longitu-
dinal turbulence intensity along the lower jet centreline obtained from 
LDA and PIV data incorporating AWAMT and NMT validation
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AWAMT to abate the number of undetected outliers and 
lower the number of over-detections. In the shear lay-
ers of the jets exiting from the perforations for example, 
NMT invalidates 60  % of the vectors compared to 30  % 
by AWAMT. In the outer shear layers, AWAMT lowers the 
number of replaced outliers on average from 30 to 15 %.

The advantage of coherence adaptivity in terms of meas-
urement accuracy is highlighted in Figs. 18 and 19 where 
ensemble-averaged profiles in horizontal velocity and 
longitudinal turbulence obtained with NMT, ANMT and 
AWAMT are juxtaposed. Despite the higher uncertainty 
in second-order statistics as a result of the limited number 
of velocity fields, tendencies in differences between the 
validation methods will prevail and can be used to quali-
tatively assess performances. While velocity profiles at x/
Ddisc =  0.2 are on a par in the regions |y/Ddisc| < 0.1 and 
|y/Ddisc|  >  0.25, a larger disparity between the validation 
methodologies can be observed in jet centreline velocities. 
Whereas ANMT and AWAMT yield a peak velocity ratio 
of approximately 1.05 and 1.1, respectively, NMT predicts 
a ratio of approximately 0.8. The observed modulation in 
jet velocity thus shows a strong correlation with R as the 
inherent vector re-interpolation will introduce a smooth-
ening effect. The coherence adaptivity in ANMT and 
AWAMT reduces over-detection and limits the assimilated 
modulation, corroborating the importance of the proposed 
adaptivity process. Travelling downstream, the two pore 
jets increase in width and the centrelines arc inwards to 
merge at x/Ddisc =  0.7 similar to well-documented paral-
lel jet theory (Anderson and Spall 2001). Velocity gradients 
gradually reduce in strength and validation based on vec-
tor magnitude and direction becomes less stringent, caus-
ing ANMT and AWAMT to attain nigh equal results. An 
underestimation of the jet centreline velocity obtained with 
NMT remains noticeable; 0.64 for AWAMT and ANMT 
compared to 0.61 with NMT at x/Ddisc ≈ 0.7.

To provide an estimate of the underlying true flow 
field, PIV data extracted along y/Ddisc = 0.18 are superim-
posed with results obtained from a two-component Dan-
tec Dynamics Laser Doppler Anemometry (LDA) system 
operating in crossed beam mode (Fig.  18b). The LDA 
measurement volume extended approximately 0.17  mm 
(~0.0028∙Ddisc) in streamwise normal direction providing 
spatially highly resolved measurement data. Because of 
the inherent beam alignment measurements closest to the 
disc were restricted to 0.3 disc diameters. Velocity samples 
were spaced approximately 0.017∙Ddisc up to 1.3 diameters 
downstream. At each measurement, location velocity statis-
tics were evaluated on the basis of typically 6000 instanta-
neous samples sampled at 4 kHz from which the depicted 
error bars at 95  % confidence level were inferred. Error 
bars for PIV data are not depicted in the figures as they 

scale directly with the LDA data by a factor 
√
12, which is 

based on the number of independent data samples.
The observable tendency in LDA data confirms veloc-

ity exiting from the pores can surpass the freestream condi-
tion, suggesting the holes to act as contractions. Towards 
the disc, the magnitude of the average LDA horizontal 
velocity component is seen to exceed the PIV data which 
is caused by the bias of the PIV data towards lower veloci-
ties. In vertical direction, the flow emitted from the pore 
decreases from nearly freestream conditions to reverse flow 
over approximately half the pore diameter, equating to a 
velocity gradient du/dy ~ 0.37 pixels/pixel. It is well known 
that such magnitudes in velocity gradient are challenging 
for any PIV image analysis (Westerweel 2008) and veloci-
ties will be biased towards lower values as supported by the 
observations. Given its small interrogation volume and by 
weighting velocity data by the corresponding transit times, 
LDA velocity data will suffer to a much lesser extent from 
such a bias (Gould and Loseke 1993). As substantiated by 
Fig. 18, in the region 0.3 ≤ x/Ddisc < 0.9 where RNMT > RAW-

AMT, NMT yields the lowest velocity values in comparison 
with AWAMT, advocating the improved accuracy of the lat-
ter. Incorporating coherence adaptivity clearly enhances the 
accuracy of the ensemble average velocity data (cf. ANMT 
vs. NMT), which can be further ameliorated by means of 
validation based on velocity magnitude and direction (cf. 
AWAMT vs. ANMT). Beyond 0.9 disc diameters, dif-
ferences in the percentage of replaced vectors by the two 
methods become smaller and all validation methods return 
velocity data coinciding with LDA data.

The smoothening inherent to vector replacement can 
also be used to explain the smaller amplitudes in longi-
tudinal fluctuations obtained with NMT as opposed to 
ANMT and AWAMT (Fig. 19a). Differences in root mean 
square value of the streamwise velocity tend to persist fur-
ther downstream as opposed to the velocity magnitude and 
are still visible at x/Ddisc =  1.5. Nearer to the disc, at x/
Ddisc = 0.2, the turbulence levels predicted with NMT sur-
mount those of AWAMT and ANMT. However, LDA data 
corroborate these lower levels of AWAMT in Fig. 19b, fur-
ther substantiating the conduciveness of the proposed vali-
dation criteria in AWAMT. Despite heightened uncertainty, 
AWAMT and ANMT also show to capture the higher lev-
els in longitudinal turbulence measured with LDA between 
0.5∙Ddisc and 1.1∙Ddisc (Fig.  19b). It should be noted that 
turbulence intensity profiles are expected to reveal a bi-
modal shape near every jet pore (Lin and Sheu 1990), with 
peaks separated by approximately 0.6–0.7 jet half widths. 
Because the latter equals the pore radius in close vicinity of 
the disc (Tanaka 1970), the presently adopted interrogation 
window size of 37 pixels, WS/rp ≈ 0.62, offered insufficient 
spatial resolution to fully resolve the turbulence intensity 
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distribution across the jet. Nevertheless, whereas the bi-
modal shape is reminiscent in the AWAMT and ANMT 
data (Fig. 19a), only a single apex is obtained with NMT. 
On the basis of the improved accordance with LDA data, 
this example has demonstrated the potential gain in accu-
racy of PIV data and therefore implies the importance of 
the vector validation process within iterative image analy-
ses in case of turbulent flows.

5.2 � Over‑expanded supersonic jet

Experiments were conducted at the von Karman Insti-
tute for Fluid Dynamics, Brussels. The supersonic over-
expanded jet flow was issued from a conical nozzle with 
exit diameter Dnoz of 17.3  mm and throat diameter of 
5.85  mm. A pressure ratio between stagnation chamber 
and ambient of 25 was imposed, producing an exit veloc-
ity Ujet of approximately 633 m/s equivalent to a maximum 
displacement of about 9.5  pixels. At a corrected Mach 
number of 3.33, normal shock relations predict a velocity 
of 153.4  m/s (≈2.3  pixels) downstream of the first nor-
mal shock at the nozzle exit (u/Ujet ≈ 0.24). Submicron oil 
tracer particles issued from a Laskin nozzle were injected 

upstream of the nozzle. The flow was illuminated in a 
light sheet of 0.5 mm thickness by a Nd:Yag laser pulsed 
at 0.5 μs. A 12-bit PCO digital camera captured a field of 
view of approximately 4 × 2 cm2 covered by a sensor area 
of 1280 × 544 pixels2, equating to a conversion factor of 
34 μm/pixel. Details regarding the experimental campaign 
can be found in Jerónimo et al. (2002). A total of 280 PIV 
image pairs were analysed with the same interrogation 
algorithm as described in the porous disc case adopting 
final square correlation windows of size WS/Dnoz ≈ 0.037 
and 50 % mutual overlap.

The characteristic shock cell patterns of the over-
expanded jet, which are visible in the average velocity field 
(Fig. 20b), are emphasised by strong gradients in seeding 
density as illustrated in Fig. 20a, enabling the first normal 
shock to be easily discerned. The image recording further 
reveals the absence of seeding in the outer jet areas near 
the nozzle exit and the presence of turbulent mixing lay-
ers. Moreover, sliplines emanating from the intersection 
points of oblique shocks with the Mach disc (Yüceil et al. 
2000) are visible as regions of lower density. These shear 
layers grow and merge at the jet’s centreline to develop a 
turbulent wake (Love et  al. 1959). The presence of both 

Fig. 20   a Experimental PIV recording of an over-expanded jet at Mach 3.33 (contrast enhanced for clarity) and b ensemble-averaged velocity 
field (under-sampled by a factor 2 for readability). Red lines indicate the locations of the extracted profiles

Fig. 21   Comparison of the number of replaced vectors across the PIV data series (280 images) for the case of the over-expanded supersonic jet 
as per the outcome using (left) NMT vector validation (right) AWAMT vector validation
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inhomogeneous seeding concentrations and rapid changes 
in flow scales makes this flow field susceptible to over-
detection and constitutes a challenging test case for vector 
validation.

Comparison of the percentage of replaced vectors R in 
Fig.  21 reveals the traditional NMT approach to replace a 
higher number of vectors (~30 %) in the vicinity of the nor-
mal shock (x/Dnoz  ≈  0.25) compared to AWAMT (RAW-

AMT ≈ 10 %). This tendency can be observed to continue along 
the central sliplines. The outer turbulent shear layers are also 
susceptible to a slightly higher probability of vector replace-
ment with NMT due to the velocity gradients. On the other 
hand, NMT arguably invalidates less vectors in the regions of 
very low seeding density (x/Dnoz ≤ 0.75, |y/Dnoz| ≈ 0.5) where 
unreliable correlation can be expected, whereas AWAMT cor-
rectly invalidates a higher percentage of vectors.

The detrimental effects of over-detection are again 
noticeable when juxtaposing profiles of ensemble statistics 
in horizontal velocity magnitude (Fig.  22) and turbulence 
intensity (Fig.  23). Near the nozzle (x/Dnoz =  0.1), differ-
ences between NMT, ANMT and AWAMT in terms of 
streamwise velocity are negligible within the potential core 
of the jet but become apparent in the outer, poorly seeded 
regions. The outer regions are nevertheless attributed height-
ened RMS levels as vectors, even when re-interpolated, 
remain unreliable in this region (Fig. 23). It should be noted 
that presented quantitative data in terms of higher order 
statistics are associated with larger uncertainty due to the 

small number of flow fields. This does not, however, endan-
ger their potential to evaluate comparative performances of 
the assessed validation methods. The profile positioned at x/
Dnoz = 0.28 is slightly behind the normal shock. Jerónimo 
et al. (2002) estimated the amplitude of the normal shock’s 
average longitudinal oscillation Δx caused by the interaction 
between the turbulent boundary layer and oblique shocks 
to be in the order of 1 mm (Δx/Dnoz ~ 0.06). In this area, 
NMT replaces about 30 % of the vectors. Given the nomi-
nal stepwise variation in velocity across the shock, replaced 
velocities will thus tend towards either higher or lower val-
ues. This is evidenced by the corresponding probability den-
sity functions (Fig. 23b). The bi-modal probability density 
function (pdf) relevant to NMT shows elevated probabilities 
at u/Ujet ≈  0.3 and u/Ujet ≈  0.6, whereas AWAMT allows 
more variety in the retrieved velocity data. Although not 
depicted, the distribution in horizontal velocity obtained 
with ANMT is nearly identical to AWAMT, explaining the 
agreement between the two approaches in terms of mean 
and turbulence statistics. The inherent velocity bias with 
NMT artificially introduces a higher longitudinal turbulence 
level which is visible in the turbulence profile at the corre-
sponding spatial location (Fig. 23a). At x/Dnoz = 0.48, the 

Fig. 22   a Profiles in average horizontal velocity extracted along the 
vertical directions indicated in Fig. 20b. b Mean streamwise velocity 
along the jet centreline

Fig. 23   a Profiles in longitudinal turbulence intensity extracted along 
the vertical directions indicated in Fig. 20b. b Comparison in prob-
ability distribution of horizontal velocity at x/Dnoz = 0.28 incorporat-
ing NMT and AWAMT vector validation in PIV
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extraction line crosses the turbulent sliplines. Because of 
the validation utilising coherency heuristics in AWAMT and 
ANMT, less vectors are incorrectly identified as outliers, 
minimising any induced smoothening contrary to the lower 
turbulence levels obtained with NMT (Fig. 22a). This is in 
line with the findings for the porous disc. The advantage 
of the alternative validation process is further evidenced in 
Fig. 23a by the elevated fluctuation levels in the outer shear 
layers, which at this downstream position start to become 
properly seeded. More importantly, NMT hinders accurate 
retrieval of the evolution in centreline velocity across the 
shock. Figure 22b reveals choosing a more conducive vec-
tor validation process is capable of reducing the associated 
modulation in velocity jump; u/Ujet = 0.38 with NMT and 
u/Ujet = 0.37 with AWAMT versus the theoretical value of 
u/Ujet = 0.24. A difference between AWAMT and ANMT is 
also noticeable with the latter yielding a u/Ujet = 0.375. The 
figure also shows that by incorrectly replacing more vectors 
along the turbulent slipline (cf. Fig. 21), and NMT predicts 
a faster velocity recovery. Further downstream differences 
between the validation methods become negligible in terms 
of vector replacement equating their performances relevant 
to velocity statistics.

6 � Conclusions

Velocity fields obtained from PIV image analysis tech-
niques are always contaminated with erroneous vectors, 
and such outliers often appear in clusters as a result of 
underlying degraded image quality or strong gradients in 
flow velocity. Existing validation methodologies for instan-
taneous PIV velocity fields are commonly based on com-
parison of the scrutinised vector with its immediate neigh-
bourhood. As a result, such methods are unable to detect 
false vectors when clustered and are moreover prone to 
mistakenly invalidate correct vectors. For this reason, a 
novel adaptive method for outlier detection has been pro-
posed in this paper with the aim to render validation pro-
cesses more robust in the presence of outlier clusters. The 
detection of false vectors will thereby be improved and 
over-detection can be reduced without the need to fine-tune 
inherent parameters.

The proposed method emulates the process of outlier 
detection in human vision whereby the considered neigh-
bourhood for comparison is a priori extended until the data-
base is sufficiently reliable for posterior validation tasks. 
Selection of the appropriate vicinity is dictated by a meas-
ure of coherency. The latter is quantified as the discrep-
ancy between local velocity values and a parabolic regres-
sion. For each vector, the neighbourhood is automatically 
enlarged until at least half the enclosed vectors are coher-
ent. To further improve the validation algorithm, vector 

comparison is performed on the basis of magnitude and 
direction instead of the traditional horizontal and vertical 
vector components. To limit the potential diversity in vec-
tor direction, the acceptable background fluctuation level is 
automatically adjusted to the vector magnitude and consti-
tutes a second feature of adaptivity. Moreover, applicability 
to both structured and unstructured data grids is ensured by 
the implementation of a distance-based Gaussian weighting 
system.

The algorithm has been assessed with Monte Carlo 
simulations using three flow fields: an isolated vortex, a 
turbulent channel flow and a DNS simulation of isotropic 
turbulence. Flow fields were contaminated with outliers of 
varying magnitude and degree of clustering. The common 
outlier detection schemes resulted in high numbers of unde-
tected outliers and number of wrongly invalidated correct 
vectors. Depending on the amount of clustering and outlier 
magnitude as much as 80 % of the spurious vectors could 
remain undetected, while 3 % of the total vectors could be 
over-detected. Implementation of the coherency adaptiv-
ity dramatically improved the outlier detection, potentially 
reducing the under-detection by as much as one-fourth for 
small outlier magnitudes or even one-tenth for larger mag-
nitudes. These findings advocate coherency adaptivity to 
be a powerful tool to improve the performance of existing 
validation routines even in the presence of outlier clusters. 
The concept is computationally simple and implementation 
is straightforward, even in established validation routines. 
Validation on the basis of angle and magnitude enabled a 
further lowering of the missed outliers and mistaken out-
liers especially in case of lower displacement magnitudes. 
Overall, the proposed validation method proved to be the 
most robust and general without any reliance on user-
defined parameters. Related validation performances con-
sistently surpassed the traditional routines and were better 
or at least on a par with the adaptivity enhanced conven-
tional methodologies.

When implemented in a standard PIV image analy-
sis process and applied to experimental PIV images of a 
porous disc’s near-wake and over-expanded supersonic 
jet, the proposed outlier detection routine was shown to be 
capable of identifying more erroneous vectors (improved 
under-detection). As a consequence of the adaptive vali-
dation in terms of velocity magnitude and direction, 
over-detection was simultaneously reduced in turbulent 
flow regions. When incorporating the presented valida-
tion method, PIV data were in better agreement with LDA 
measurements and theoretical analyses, proving its ability 
to ameliorate the measurement accuracy and resolution.
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