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Abstract—Cloud computing is a type of distributed computing
that enables public, on-demand network (internet) access to a
large pool of shared computing resources, making it easier than
ever to outsource computing tasks on a pay-as-you-go basis. In
this paper, a cloud computing service is used to complement
an existing high-fidelity multi-physics power inductor design
workflow by enabling multiple instances of the design analysis to
be executed in parallel on virtual computers in a cloud computing
environment. This method accelerates the design development
cycle and can allow a more thorough evaluation of the design
space within a short time-frame, at a moderate cost and can
potentially lead to improved designs. The modified workflow is
demonstrated by the design optimisation of a high-energy-density
filter inductor for an automotive application.

I. INTRODUCTION

In order to meet the ever increasing demand for higher
power-density, energy-efficiency and lower-cost of electrical
machines and devices, multiple coupled physical phenomena
must be accounted for at the design stage, [1]. As a minimum
the design synthesis should capture the close interrelation
between the electromagnetic and thermal behaviour, [2]. This
would ideally be achieved using high fidelity electromagnetic
and thermal models which are coupled through a loss es-
timation. The bulk of the losses are generally temperature
dependent requiring the electromagnetic and thermal models
to be iteratively evaluated, [3]. This significantly increases
computation time and tends to prohibit the use of such models,
particularly for iterative design optimisation. The problem
is often addressed by employing computationally efficient
modelling methods, [4], or by compromising the detail and
accuracy of the models, [2], [5]–[7], in favour of short solution
times. Thereby, enabling a design optimisation to be performed
using commonplace desktop computing hardware, [4], [7].
An alternative is to adopt a distributed computing approach,
[8], where high-fidelity models are evaluated using many
networked computers in parallel to reduce solution times. This
approach has been adopted in areas such as Electromagnetic
Compatibility (EMC), [9], electronic chip-package design,
[10] and photonics, [11]. It has also been adopted in the
electromagnetic and later coupled electromagnetic and thermal
design optimisation of a Permanent Magnet (PM) machine,

[12], [13]. However, other efforts are not widely reported in
the area of electrical machine and wound passive component
design, [12], despite the idea being known for a number
of years, [14], and tools being available, [15], [16]. This is
perhaps due to the perceived complexity of integrating the use
of such distributed computing systems in existing workflows.

Cloud computing is a type of distributed computing that
enables public, on-demand network (internet) access to a large
pool of shared computing resources, [8], making it easier than
ever to outsource computing tasks on a pay-as-you-go basis.
In this paper, the use of cloud computing to complement
an existing multi-physics power inductor design workflow is
presented, [17]. The implementation of the computationally
efficient power inductor model is described along with its role
in the current workflow. Limitations of the present single desk-
top computer arrangement, such as reaching computational
feasibility limits and excessive design times, are alleviated by
using a simple algorithm to execute multiple instances of the
multi-physics analysis on virtual computers in a cloud comput-
ing environment. The modified workflow is demonstrated by
the design optimisation of a high-energy-density filter inductor
for an automotive application. An indication of the economic
costs of using the cloud based service is given along with
a discussion of advantages and future improvements to the
implementation.

II. DESCRIPTION OF THE EXISTING WORKFLOW

In the existing workflow, a parametrically defined, compu-
tationally efficient multi-physics model of an E-core power
inductor is used to manually assess the design parameter
space for a given specification. This allows infeasible solutions
to be ruled out based on previous experience and a wider
understanding of the application. Parametric studies are then
performed using a simple algorithm to systematically vary a
parameter of interest and assessing the impact on performance.
For example, the effect of rectangular strip or edge wound
conductors on ac losses can be studied. At this point further
infeasible solutions are identified and discounted. A design
optimisation is then performed using the resulting reduced set
of design parameters and an appropriate algorithm, Fig. 1.
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Fig. 1. Optimisation workflow.

A. Multi-Physics Power Inductor Model

The multi-physics inductor model is composed of individ-
ual electromagnetic and thermal Finite Element (FE) models
coupled by winding and core loss estimations, as illustrated
in Fig. 2, [17]. The models are fully parametrically defined
and appear as a “black-box” problem which takes a set
of design parameters, Dp, containing geometric, material,
boundary condition and specification data as input and returns
a high-fidelity approximation of the electromagnetic, loss and
thermal behaviour of the inductor as output.

1) Electromagnetic Model: A parametric time-harmonic
non-linear 2-D FE model is used to predict the electromagnetic
behaviour and losses, Fig. 3, [18]. Due to symmetry, only
one half of the inductor cross-section is modelled to reduce
computation time. The 2-D nature of the model prohibits
transposed conductors from being directly catered for. The
contribution of the end-winding to inductance and ac loss is
assumed negligible and is confirmed by 3-D FE analysis in
a post-design validation step. The inductance is estimated as
the ratio of change in flux linkage, Ψ, to change in winding
current, I , (1) which requires two FE analyses to be performed
at a winding current of I ± δI .

L =
dΨ

dI
(1)

2) Winding Loss: The temperature and frequency depen-
dent ac winding loss is determined from the ratio of effective
ac to dc resistance, Rac/Rdc, [19], [20]. The operating tem-
perature of the inductor is emulated by scaling the resistivity,
ρ, of the winding material with the well established linearised
equation, (2), where Top, T0 and α are the operating tem-
perature, reference temperature and temperature coefficient of
resistance respectively.

ρ|Top = ρ|T0 (1 + α (Top − T0)) (2)
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Fig. 2. Structure of the multi-physics power inductor model.
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Fig. 3. Example of the 2-D electromagnetic FE model with 9 turns in 3
layers.
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The Rac/Rdc ratio is estimated at Top for a fixed frequency
using an analytical loss function, (3) and (4), informed by
two Rac/Rdc values obtained from the electromagnetic FE
analysis at the reference temperature and the maximum ex-



pected operating temperature, Tmax, respectively, where β is
a curve fitting term, [3]. Hence, two FE analyses are required
to determine the ac winding loss over the expected operating
temperature range at each frequency of interest.

3) Core Loss: The core loss arising from hysteresis, eddy
current and excess loss effects is estimated using the Bertotti
iron loss model, (5), [21], where f and B are the frequency and
peak flux density respectively. The coefficients kh, ke and ka
are derived from measured loss data provided by the electrical
steel manufacturer. Only one FE analysis is required at each
frequency of interest to estimate the iron loss.

WFe = khfB
αfe + kef

2B2 + kaf
1.5B1.5 (5)

B. Thermal Model
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Fig. 4. Example of the 3-D thermal FE model.

A parametric steady-state 3-D FE model is used to predict
the thermal behaviour, Fig. 4. The inductor is assumed to be
potted and housed within a case mounted to a cold-plate at a
fixed temperature. Hence, the model is reduced to a pure con-
duction problem with boundary conditions. The heat extraction
from the cold plate is assumed to dominate over convection
and radiation effects. An adiabatic boundary condition is
applied to each surface with the exception of the base where
a fixed temperature boundary condition is applied to emulate
the cold-plate. The model incorporates slot liner and calibrated
interface gaps in order to better represent a real world device
and improve temperature predictions, [1], [17], [22]. Due to
symmetry only one quarter of the inductor is modelled. The
winding region represents a composite material composed
of conductor, electrical insulation and encapsulant insulation
materials. In order to simplify the thermal model definition and
reduce computation time, the winding region is represented as
a lumped homogeneous material with equivalent anisotropic
thermal properties, [22], [23]. This lumped region is split into
subregions representing each winding conductor, Figs. 3 and 4,
and a unique loss expression informed by the electromagnetic
FE analyses, Section II-A2, is applied as a local loss source.
This enables the temperature variation resulting from non-
uniform loss distribution to be accounted for resulting in an
improved prediction of the hot-spot temperature and location.

The core loss, Section II-A3, is applied as a global loss source
within the core region. Only one execution of the thermal
FE model is required, the iterative update of the loss with
temperature is performed internally by the modelling software,
[24].

C. Parallel Model Execution

Table I details the set of electromagnetic FE analyses, along
with the appropriate winding current, frequency and temperate
cases, required to characterise the electromagnetic and loss
behaviour over the temperature range of interest at a fixed
frequency, f0, Sections II-A1 to II-A3. The electromagnetic
model assumes pure sinusoidal excitation current, however,
non-sinusoidal current can be approximated by decomposing
the waveform into its Fourier components and evaluating the
FE model at each significant harmonic along with the dc
average and superimposing the result, [20], [25]. Hence, the
number of FE analyses required, NEM , to characterise the
electromagnetic and loss behaviour is given by, (6), where Nh
is the number of significant harmonics.

NEM = 2 + 2Nh (6)

TABLE I
ELECTROMAGNETIC FE ANALYSES

Characteristic Winding Current Frequency Temperature

Inductance and
Ipk + δI 0 T0winding loss (dc)

Inductance and
Ipk − δI 0 T0winding loss (dc)

Winding and
Irms f0 T0Core loss

Winding loss Irms f0 Tmax

The electromagnetic FE analyses are independent and as
such can be performed in parallel. A simple queueing algo-
rithm is used to control the timing of the model executions
as illustrated in Fig. 5. Initially all of the required FE models
are generated and one model is executed for each available
processor core, Ncore, typically in the range 1–8 for a desktop
computer. When a model is complete, the results are written
to a file and the next model is executed. The process repeats
until all NEM FE analyses are complete. This ensures a high
utilisation of modern multi-core processors and minimises the
computation time of the electromagnetic and loss modelling
stage. The time required to predict the electromagnetic, loss
and temperature behaviour of an inductor with sinusoidal
current excitation is in the range 60 - 90 seconds using
Ncore = 4 processor cores. The computation time is difficult
to approximate as it is dependent on many factors including
the size and mesh density of the models as well as their non-
linear behaviour.

D. Limitations of the Existing Workflow

Despite the computationally efficient implementation of the
inductor model, Section II-A, the number of model analyses
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Fig. 5. Queueing algorithm used to control parallel execution of FE models.

required by the parametric studies and optimisation lead to
a typical computation time of between 5 and 12 hours.
These studies are performed sequentially by necessity and can
therefore lead to excessive design times. However, if multiple
parametric studies and optimisations could be performed si-
multaneously, using a simple to implement approach, then the
design time can be significantly reduced. This could enable a
more thorough evaluation of the design space to be performed
and lead to further design improvements.

III. MODIFIED WORKFLOW - EXPLOITING CLOUD
COMPUTING

Cloud computing, in the context of this work, provides on-
demand, pay-as-you-go, network (internet) access to a large
pool of shared computing resources, [8]. Virtualisation soft-
ware allows users to request the creation of virtual computers
with specific software and hardware configurations which run
on the underlying physical hardware, Table II, [26]. In essence,
the existing workflow can be complemented by enabling
parametric studies and optimisations to be executed on many
virtual computers in parallel on a pay-per-hour basis.

A. Executing Parametric Studies and Optimisations in a Cloud
Computing Environment

An adaptation of the queueing algorithm, Section II-C
and Fig. 5, and an Application Programming Interface (API)
are used to interact with the cloud computing service in a
simple manner and execute the desired parametric studies
or optimisations, as illustrated in Fig. 6. Numerous cloud

TABLE II
EXAMPLE COMPUTER HARDWARE CONFIGURATIONS AND PRICING

Configuration Number Memory Memory Price per
Number of CPUs (RAM) (Storage) Hour [USD]

1 4 7.5 User specified 0.43
2 8 15.0 User specified 0.86
3 36 60.0 User specified 3.44

computing services are available, however the Amazon Elas-
tic Compute Cloud (EC2) is used in this work, [26]. The
algorithm begins by requesting and starting Ncomp identical
preconfigured virtual computers referred to as compute in-
stances, Fig. 6. At this point the compute time is charged on
a per-hour basis for each instance until they are terminated,
Table II, [26]. The inductor model, associated parametric study
or optimisation algorithm and data, such as parameter ranges,
material properties and specification details are uploaded to
each compute instance. The design tool is executed on the
Ncomp compute instances simultaneously. The algorithm polls
for results, if found, they are downloaded and the next study
is executed on the now idle compute instance. This process
repeats until all of the studies or optimisations, NEXEC , are
complete. When a compute instance becomes idle and there
are no more executions required it is terminated.

IV. FILTER INDUCTOR DESIGN CASE STUDY

The benefits of incorporating additional computing re-
sources into the workflow are illustrated by the deign optimi-
sation of a high-energy-density filter inductor intended to be
integrated into the power electronic stage and water cooling
circuit of an automotive power converter. The full specification
is given in Table III. In order to reduce material costs and sim-
plify manufacture, aluminium conductors arranged in a single
layer strip winding are assumed. The six design parameters,
Dp, to be optimised are given in Table IV.

TABLE III
INDUCTOR SPECIFICATION

Parameter Value Unit

Current rating, Irms 200 A
Operating frequency, fop 400 Hz

Inductance, Lt 80 µH
Maximum operating temperature, Tt 180 oC

Target energy density (complete assembly), Edt 1.2 J/kg

A. Optimisation Routine

The inductor specification is described in terms of a target
inductance, Lt, peak operating temperature, Tt, and energy
density, Edt. The energy density is defined as the energy stored
in the magnetic field per unit mass of the complete inductor
assembly, including the case, where L, M , Ipk and Irms
are the inductance, mass and peak and rms winding current
respectively, (7).
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TABLE IV
INDUCTOR DESIGN PARAMETERS

Parameter Value Range Unit

Core thickness*, Tcore 1 ≤ Tcore ≤ 50 mm
Number of turns, Nt 1 ≤ Nt ≤ 75 n/a

Air-gap length (normalised), Lag 0.01 ≤ Lag ≤ 0.99 n/a
Active length*, Lact 1 ≤ Lact ≤ 300 mm

Conductor current density, Jc 1 ≤ Jc ≤ 40 A/mm2

Aspect ratio*, AR 0.1 ≤ AR ≤ 10 n/a
* refer to Figs. 3 and 4

Ed =
LIpk

2

4M
=
LIrms

2

M
(7)

E (Dp) =

∣∣∣∣Lt − Lc (Dp)

Lt

∣∣∣∣
+

∣∣∣∣Edt − Edc (Dp)

Edt

∣∣∣∣
+

∣∣∣∣Tt − Tc (Dp)

Tt

∣∣∣∣
(8)

The multiple design objectives are treated as a single global
objective by formulating the objective function, (8), as a sum
of three normalised error terms representing the deviation of
a candidate design from the inductance, Lt, energy density,
Edt, and peak operating temperature, Tt, targets, respectively
Table III. A Particle Swarm Optimisation (PSO) routine is
employed to systematically vary the design parameters, Dp,
within predetermined bounds and minimise the objective func-
tion, E (Dp), (8). The objective function is multi-valued,
meaning that a number of design parameter sets, Dp, can
equally satisfy the design specification. Therefore, the design
tool is used to generate a set of 150 design candidates and the
results studied.

B. Optimised Filter Inductor Design
Figs. 7 to 9 show the resulting inductance, energy density

and maximum operating temperature of the 150 design can-
didates identified by the design tool. Each design candidate
is within 5 %, 4.6 % and 2.7 % of the inductance, energy
density and temperature targets and could be considered
equally optimal from this limited data. However, when the
predicted total loss is plotted against the predicted mass for
each design, Fig. 10, an approximation to the Pareto front is
identified. Designs which lie on this line are non-dominated
meaning that an improvement in one characteristic, mass or
loss, cannot be realised without a corresponding compromise
in the other, [27]. Six design candidates were identified using
the existing single desktop workflow, Section II and Fig. 10, in
approximately the same time it took to identify the 150 design
candidates using the cloud computing service. The additional
information afforded by the high number of optimisation
executions allows a design to be selected, as shown in Figs. 7
to 10, which exhibits the best compromise between mass and
loss and satisfies secondary considerations which are beneficial
to the inductor design but are not expressly specified. The re-
sulting inductor design is within 5% (76 µH), 1.7% (177 oC)
and 1.7% (1.18) of the inductance, temperature and energy
density targets respectively, the optimised design parameters
are given in Table V, [17].

TABLE V
OPTIMISED INDUCTOR DESIGN PARAMETERS

Parameter Value Unit

Core thickness, Tcore 10.7 mm
Number of turns, Nt 5 n/a
Air-gap length, Lag 1.26 mm
Active length, Lact 133.6 mm

Conductor current density, Jc 17.6 A/mm2

Aspect ratio, AR 2.24 n/a

C. Computation Time and Cost

The computation time required to perform the multi-physics
analysis for one PSO particle, one PSO generation and one
optimised design are given in Table VI along with the approx-
imate cost in USD. Hardware configuration 1 featuring 4 pro-
cessor cores and 7.5 GB of RAM was used for each compute
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instance, Table II. The timing information was collected by
recording the start and end time of each multi-physics analysis
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during each design tool evaluation, NDTE , and averaging over
the number of particles and generations. The timing data does
not include the overheads incurred during the initialisation of
the compute instances which are dependent on a number of
factors including the desired hardware configuration, Table II,
and resource availability. However, in this case they were
relatively small compared to the overall computation time. The
150 design tool evaluations were completed in approximately
68 real-time hours translating to approximately 1688 compute
hours at a cost of approximately 725 USD.

TABLE VI
AVERAGE COMPUTATION TIME AND COST

Evaluation Computation* Computation*

Type Time Cost [USD]

One particle 90 seconds -
One generation 13.50 minutes 0.10(36 particles)

One optimised design 11.25 hours 4.84(50 generations)
* assuming hardware configuration 1, Table II

D. Computation Time and Cost Reduction

The generation of a Pareto optimal set using the PSO
algorithm is contingent on the stochastic nature of the PSO
and performing a sufficiently large set of optimisations, [27],
[28]. Hence this method is computationally inefficient and
tends to result in a low quality approximation to the Pareto
front, where the Pareto points are bunched close together,
[27]. A Pareto set can be identified more efficiently using
alternative optimisation techniques such as Differential Evo-
lution, [4], or Non-dominated Sorting Genetic Algorithm II
(NSGA-II), [29] and can reduce both time and economic
cost. Implementing such a change in optimisation approach
would require the inductor model, Fig. 2, to be executed in
the cloud, controlled by a local optimisation routine which
would add significant complexity to the implementation. This



arrangement is adopted in [12], however, the numerical models
are executed on a local distributed computing environment
using a specialised compute job and resource management
system, [15], [30].

V. CONCLUSION

In this paper, an existing power inductor design workflow,
[17], is extended to enable parametric studies and design
optimisation to be executed in a publicly accessible, pay-
as-you-go cloud computing environment. The extension is
demonstrated by the design optimisation of a filter inductor
for an automotive application, Section IV. The optimisation is
performed 150 times using 25 compute instances in parallel
in order to generate a set of design candidates which meet
the primary design drivers of inductance, energy density and
maximum operating temperature, Table III. The mass and loss
of each candidate design are compared, enabling a Pareto front
to be identified, Fig. 10. This information is used to select
a design that not only meets the inductance, energy density
and temperature specification within 5 %, 1.7 % and 1.7 %
respectively but enables the design with the best compromise
between mass and loss to be selected.

The 150 design candidates were identified in approximately
68 hours, approximately 25 times faster than the existing
workflow, at a cost of approximately 725 USD. Alternative
optimisation methods could identify a Pareto front in a more
robust and efficient manner, [4], [27], [29]. Adding compute
resources using the simple algorithm presented here, Sec-
tion III, accelerates the design development cycle and can
allow a more thorough evaluation of the design space within a
short time-frame, at a moderate cost and can potentially lead to
improved designs. Multiple designs for different applications
can be considered simultaneously and the optimisation proce-
dures and modelling methods can be experimented with more
quickly, enabling the design tools to be further developed and
refined.
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