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Abstract. Time effects on granular soils have been observed in laboratory and in situ 

tests but cannot be reproduced by classical elasto-plastic models. To address these 

concerns, existing specific modelling approaches were based on the theory of 

viscoplasticity formulated by Perzyna or on a viscous evanescent relationship. The 

present work explores an alternative following an elasto-plastic modelling framework 

formulated in a multi-axial structure space. The proposed elasto-plastic model is 

associated with a thixotropic-type framework through the use of a structure 

parameter, the evolution of which illustrates the competition between two effects: the 

time-dependent tendency of the granular system to reach its stable configuration – 

restructuration – and its destructuration under external perturbations. The structure 

parameter is linked to the existence of a stress dependent target structure towards 

which the current granular material structure evolves. The time scale is explicitly 

introduced by postulating a rate for this structure evolution. The modelling of the 

material behaviour has shown good similarities with the response of granular soils 

observed in monotonic loading, as well as during creep and variable strain rate 

loading experiments. 

Constitutive relations; Sands; Time dependence; Fabric/structure of soils; Elasto-plasticity 

 

INTRODUCTION 

Time effects on granular soils - time dependent strains under constant stress (creep), 

time dependent reduction of stresses under constant strain (relaxation) and rate 

dependency - have been observed in laboratory tests by Lacerda and Houston 

(1973), Murayama et al. (1984), Delage et al. (1990), Lade (1994), Tatsuoka et al. 

(1997), Di Benedetto and Tatsuoka (1997), (2002), Cazacliu and Di Benedetto 

(1997), Matsushita et al. (1999), Di Benedetto et al. (1999), (2005), Howie et al. 
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(2002), Kuwano and Jardine (2002), Bowman and Soga (2003), Van Bang et al. 

(2007) but also on some field applications reported by Mitchell & Solymar (1984), 

Mesri et al. (1990), Schmertmann (1991), Jardine et al. (2006). The soil response is 

affected by the extent of time over which the effective stress (or strain) has been 

sustained. Concerning the rate dependency, tests on sand conducted at different 

constant strain rates (within laboratory testing capabilities) showed minor differences, 

mainly within the experimental repeatability range (Matsushita et al., 1999). In 

contrast, if the strain rate is suddenly changed stepwise either increased or 

decreased, the stress-strain relationship temporarily either overshoots or 

undershoots before progressively re-joining the curve response for the constant 

strain rate.  

The time effects on sands cannot be reproduced by classical elasto-plastic models 

and different modelling approaches have emerged to include the observed time-

dependent behaviour. One approach, offered by Di Prisco and Imposimato (1996), 

Imposimato et al. (2000), refers to and is based on the theory of viscoplasticity 

formulated by Perzyna (1966). Alternatively, Di Benedetto and Tatsuoka (1997), 

Tatsuoka et al. (1999), Di Benedetto et al. (2001), (2002) proposed a viscous 

evanescent relationship within a general three-component model framework, recently 

implemented in finite element method code (Peng et al, 2010). 

Unless particle crushing occurs, no clear physical justification is given to explain the 

fundamentals of the time effect mechanisms. However, macro-response 

observations on sand under stresses (creep) or strains (relaxation) left unchanged 

over time show, under subsequent reloading, an increase in stiffness and strength, 

and apparent signs of erasure of the stress and strain histories (Ibraim et al. 2009). 

These suggest that a continuous relative rearrangement of the individual particles 

occurs towards a more stable structure configuration (Delage et al. 1990, 

Schmertmann, 1991, Di Prisco and Imposimato, 1996, Bowman and Soga, 2003, 

Miksic and Alava, 2013). The particle rearrangement mechanism, although of 

unknown origin, should be bounded by the accessible geometrical constraints of the 

system and thus is relatively limited – as also observed in experiments.  

Based on this context, the present work explores ways to incorporate the time-

dependency of sand behaviour into a classical elasto-plastic modelling framework for 

sands. A rearrangement mechanism of the granular material structure towards a 

target structure is assumed. By postulating a rate for this structural evolution, the 

time scale is explicitly introduced; this subsequently allows the study of its influence 
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on the granular media loading processes. The model simulations focus mainly on the 

response of granular soils in monotonic loading, including creep stages and rate 

dependency effects.  

 

CONSTITUTIVE MODEL 

Classic elasto-plastic model formulations have adopted the conventional stress 

space framework, but developments have also been conducted in the strain space 

(Einav and Carter, 2007).  In this work, the model is formulated in a structure space 

defined as an isomorphic transformation (Mac Lane, 1971) of the stress space.  

The elasto-plastic model is associated here with a thixotropic-type framework 

(Coussot, 2007), by considering a structure parameter (of tensorial form) the 

evolution of which illustrates the competition between two effects: the continuous 

tendency of the system to reach its stable configuration – restructuration – and its 

destructuration under shear. The decrease of the structure parameter corresponds to 

restructuration, while destructuration implies its increase under perturbations. The 

usual thixotropic macroscopic models take the form of a shear stress vs. shear strain 

rate relation in which the parameters depend on a variable describing the actual state 

of the structure. In this context, the variable (structure parameter) evolves with the 

flow history, an effect which is generally described with the help of a kinetic equation 

expressing its current rate of variation as a function of its current value and the 

current shear strain rate (Coussot, 2007). In the present approach, the tensor 

structure evolution rate depends on its current value and on the current stress rate. 

Structure space  

The structure space is defined as a 3-dimensional space with the axes representing 

the three principal directions of a material structure tensor. In this development we 

adopt the formulation of the second-order structure tensor, ijN , used by Radjai et al. 

(2012), which associates the coordination number and the structure tensor as 

defined by Satake (1982): 

 dEnN jiij )(


         (1)  

 



 4 

where i  is the inter-particle contact normal in the i-direction, )(E  is the contact 

normal distribution function (spatial probability density function of  ), Ω is the space 

of contact orientations.   ijNtrn   designates the coordination number, half of the 

average number of contacts per particle. ijN  eigenvalues could be considered as 

representative indicators for structure intensity over the principal directions (Maeda 

and Ibraim, 2008). 

Destructuring / restructuring framework 

We introduce a target stress state dependent structure tensor, ijN .  It is further 

assumed that the current material structure tensor, ijN , tends in time towards the 

target structure, in line also with the work of Richard et al. (2005).  This is expressed 

here as: 

 
ijijijij NNN           (2)  

where   is a material constant and )( ijij N  is the structure parameter tensor 

defined by the distance between the target and the current structure. 

If the stress state changes, the target structure, ijN , instantaneously changes and 

the structure parameter, ij , generally increases; this describes the destructuration 

mechanism. At sufficiently low stress rates, the structure parameter tensor 

decreases, and relation (2) characterises the restructuring mechanism. This 

decrease, of 
te 
 type, explicitly introduces the physical time dimension into the 

problem.   is the inverse of the half-life time of the evolution of the structure tensor, 

ijN , towards the target structure, ijN . 

One relatively simple relation of the target structure tensor and its evolution with the 

change in the current stress is given based on the following two assumptions: 

(i) proportionality of the target structure tensor with the power m of the current 

stress state tensor:   

 
m

ijm

ij

ij
tr

n
N 




          (3) 
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where )(   ijNtrn  is the target coordination number, tr( ) indicates the trace of the 

tensor   and m is a material constant which controls the evolution of the distortional 

part of the target structure, ijN , with the distortional part of the stress ij .  Taking 

into account relation (2), the relation (3) implies that the principal directions of the 

current structure tensor follow the directions of the stress tensor.  m < 1 restrains the 

evolution of the target structure tensor.   

(ii) proportionality between: 

(a) crnn  , the difference between the target coordination number and the 

coordination number at the critical state, crn , and  

(b)   max , the distance between a hardening variable associated to the target 

structure state,  , and a failure limit in the direction of loading, max .  

Incrementally, the proportionality condition (ii) yields: 

  








 







maxsig

nn
n cr        (4) 

The relation (4) suggests that the target coordination number, n , converges 

monotonically towards the coordination number at the critical state, crn , once 

 changes. If   does not change, for instance during creep tests, n  remains 

unchanged.  In this approach, the failure limit max  is assumed state independent, 

and confounded with the value of the hardening variable at the critical state.  

Elasto-plastic framework 

The strain rate follows the classical decomposition into elastic, 
e

ij , and plastic, 
p

ij , 

incremental strain rate tensors: 

 ij =
e

ij +
p

ij          (5) 

The elastic strain response is defined as follows: 

klijkl
e

ij C             (6) 
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where ijklC  is the elastic compliance fourth-order tensor and kl  is the stress rate 

tensor.   

The yield surface and limit surface are defined in the structure space, following a 

Drucker-Prager type criterion: 

    pqijy nnNf 
3

1,        (7) 

where   is the hardening variable which indicates the current size of the yield locus 

and  ijp NIn 13
1  and  ijq NJn 23

2 .  1I  represents the first invariant of the 

tensor  , while  2J  is the second invariant of its deviatoric part.  The hardening 

variable progressively increases with the monotonic shear loading until the loading 

direction is changed or up to a fixed limiting value, max . The latter takes place when 

the yield surface reaches the failure surface limit: 

    max3

1
max,  pqij nnNF        (8) 

The flow rule that describes the mechanism of plastic deformation is: 

 

ij

ijp

ij
N

Ng
µ




         (9) 

where g is the plastic potential function and µ is a scalar multiplier. The plastic 

potential function, g, is defined in the structure space: 

  ijijijNg           (10) 

where  ijij N  is the structure parameter tensor. The plastic potential function is the 

square of the distance between the current structure tensor and the target structure 

tensor. The choice of (10) provides a way to insure proportionality between the 

plastic strain increment and the current structure increment. 

 

Finally, the hardening rule assumes that the current size of the yield locus,  , 

depends only on the plastic distortional strain, 
p

q , through a very simple monotonic 

hyperbolic relationship that captures the soil stiffness degradation under monotonic 
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loading (Muir Wood, 2004):  

p

q

p

q

a 










max

         (11) 

which becomes in an incremental form:  

 





 

2

max

max




ap

q         (12) 

a in the relation (11) is a material constant which scales the plastic distortional strain.  

The plastic distortional strain is  p

ij

p

q J  23
2 .  

Figure 1 gives a graphic description of the yield and plastic potential functions in the 

meridian structure plane, including the structure, target structure and their evolutions.  

In an incremental time:  

- the structure evolves incrementally, ijN , in the direction of the current 

target structure, ijN ; the hardening parameter,  , changes; 

- the associated increment of stress produces an incremental evolution of 

the target structure, ijN ; n  evolves towards crn ; 

- the structure parameter, ij , is the distance between ijN  and ijN . 

Strain rate 

By introducing (3) in relation (10) and using (2) one can deduce that: 

ij

p

ij Nµ   2          (13) 

Based on this relation, one can obtain the plastic distortional strain rate (12) and 

determine µ  to completely define the plastic compliance relationship linking plastic 

strain rate with the structure evolution:  

 
ij

q

p
ij N

n

a 












2
max

max


        (14) 

where the rate of the hardening parameter,   , is determined by the consistency rule, 
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after developing (8): 

p

pq

n

nn 






          (15) 

Introducing (14) and (7) in relation (6) we obtain the final expression of the strain rate 

response: 

  ij

q

klijklij N
n

a
C 













2

max

max


       (16) 

Figure 2 presents the flow chart of the model in stress-controlled mode.  

 

SIMULATIONS 

A few examples based on drained triaxial axisymmetric test conditions to illustrate 

the features embedded in the proposed model are given. In the present 

development, the model uses 7 parameters: 2 for the elastic ( maxE  and  ) and 2 for 

the plastic ( max  and a ) behaviours, 2 for the target structure ( m  and crn ) and one 

for the restructuration mechanism ( ).  In these simulations, loose and dense sand 

conditions are defined by initial coordination numbers, no, ±2.5% or ±5% lower and 

higher, respectively, than the critical coordination number, crn . For simplicity, the 

parameters a  and   are kept unchanged for both loose and dense sands, while 

max  takes a range of values that would correspond to a series of angles of friction 

between 34o and 43o. The relationship between Emax and the initial coordination 

number simply follows an arbitrary increasing function. The values of m and   are 

0.33 and 0.14x10-3 s-1, respectively. No inherent anisotropy of samples is considered 

and time-effects are assumed to be fully consumed at the beginning of the tests 

( 00 ij ). 

Typical simulation results in monotonic triaxial loading in compression and extension 

(loading rate of 2.7 kPa/s) at a lateral constant confining pressure of 100 kPa are 

shown in Figure 3: axial stress and volumetric strain versus axial strain. The 

tendencies of stress-strain and volumetric strain thus obtained correlate qualitatively 

well with known response of granular material. The volumetric response in 
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compression is density dependent and shows initial densification followed by either 

dilatancy for dense sand or by further densification for loose packing structure. For 

the extension loading case, the volumetric response is initially dilative for all densities 

and it indicates a continuous response of the granular material from compression to 

extension at the same initial isotropic stress state. Further loading produces the 

same volumetric pattern response as in compression, density dependent.   

Figure 4 shows stress-controlled triaxial compression tests (loading rate 1.3 kPa/s) 

four on identical loose (no = 0.95 ncr) and four tests on dense (no = 1.05 ncr) sand 

samples. In each case, three tests were stopped at different axial stress and creep 

tests were performed over identical time periods. As similarly observed in 

experiments (Murayama et al. 1984, Delage et al. 1990, Mejia and Vaid, 1988, Di 

Benedetto and Tatsuoka, 1997, Tatsuoka et al. 2002) creep deformation is occurring 

and its amount is a function of the stress level at which the creep test is performed: 

the higher the stress level, the higher the creep strain.  The curves of volumetric 

strain recorded during creep prolong the curve obtained during the monotonic 

loading, while the stress-strain curves after the creep stages converge towards the 

monotonic one. The evolution of the axial strain with the logarithm of time reproduces 

well the experimentally observed trends (Figure 5). For creep tests performed at the 

same hardening to maximum hardening ratio, time effects are much more 

pronounced as sample density decreases.  

Four stress-controlled triaxial compression tests on loose samples with creep tests 

performed at similar deviator stress, but under different creep times, are presented 

on Figure 6.  The material stiffness after reloading increases with the creep time, in 

agreement with experimental observations. The influence of the rate dependency is 

studied in the Figure 7. If the strain rate is suddenly changed stepwise, either 

becoming faster or slower, the stress-strain relationship temporarily either overshoots 

or undershoots before progressively re-joining the relationship for the constant rate of 

strain (Figure 7a). Triaxial test simulations at different constant strain rates (Figure 

7b) show minimal differences in the stress-strain and volumetric responses, also in 

line with experimental results.   
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CONCLUSIONS 

The present work has explored ways to model the experimentally observed time-

dependency behaviour of granular soils. The model, based on a classical elasto-

plastic framework, is formulated in a multi-axial structure space. The elasto-plastic 

model was associated with a thixotropic-type framework through the use of a 

structure parameter. The evolution of the structure parameter describes the 

competition between two effects: the time-dependent tendency of the granular 

system to reach its stable configuration – restructuration – and its destructuration 

under external perturbations. The structure parameter is linked to the existence of a 

granular material target structure towards which the current structure evolves 

asymptotically. The target structure is supposed to be related to the current stress 

state. The time scale is explicitly introduced by postulating a rate for this structure 

evolution. Despite its reduced number of parameters, the simulations qualitatively 

captured the peculiarities of the observed response of granular soils in triaxial 

experiments. Multi-axial loading conditions including rotation of principal axes will be 

explored in subsequent work.  

Further model developments for phenomena that cannot be captured by the present 

form, include: (i) the dependency of the elastic constants and the scaling plastic 

distortional strain parameter, a, on the current structure, stress and density; (ii) post-

peak softening and tertiary creep responses by introducing the dependency of the 

maximum hardening variable on the current void ratio; (iii) isotropic plastic effects by 

dependency of critical coordination number on the current stress state. The 

dependency of the characteristic time, 1/, on the internal kinetic energy of the 

granular packing could also be explored.  
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Meridian structure plane
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Figure 1. Schematic presentation of the yield and potential functions in the meridian 

structure plane, including the structure, target structure and their incremental evolution, 

ijN  and ijN . 

 

 

Figure 2.  Flow chart of the model. 
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Figure 3. Typical simulation results of monotonic triaxial loading in compression and 

extension (loading rate of 2.7 kPa/s) at constant lateral confining pressure of 100 kPa. 
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Figure 4. Stress-controlled triaxial compression tests (loading rate 1.3 kPa/s) on 

initially identical loose (no = 0.95 ncr) and dense (no = 1.05 ncr) sand at constant 

lateral confining pressure of 100 kPa; creep test of identical time performed at 

different vertical stress levels. 
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Figure 5. Evolution of the axial strain with the logarithm of time during creep for the 

tests presented in Figure 4; max/  indicates the hardening to maximum hardening 

ratio at each corresponding creep level. 

 

 

Figure 6. Stress-controlled triaxial compression tests at constant lateral confining 

pressure of 100 kPa with creep periods performed at similar deviator stress, but with 

different creep time 
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(a)                                                                (b) 

Figure 7. Strain-controlled triaxial compression tests at constant lateral confining 

pressure of 100 kPa with constant vertical strain rate of 5x10-3%/s and (a) stepwise 

change of the strain rate (5 times slower and 5 times faster) at the same vertical 

stress and strain levels, and (b) two tests at constant vertical strain rates, one 5 times 

slower and one 5 times faster. 

 

 


