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Abstract

In this series we examine the calculation of the 2kth moment and shifted moments of the Riemann zeta-
function on the critical line using long Dirichlet polynomials and divisor correlations. The present paper is
concerned with the precise input of the conjectural formula for the classical shifted convolution problem
for divisor sums so as to obtain all of the lower order terms in the asymptotic formula for the mean square
along [T, 2T ] of a Dirichlet polynomial of length up to T 2 with divisor functions as coefficients.
c⃝ 2015 The Authors. Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

This paper is part 3 of a sequence of papers devoted to understanding how to conjecture all
of the integral moments of the Riemann zeta-function from a number theoretic perspective. The
method is to approximate ζ(s)k by a long Dirichlet polynomial and then compute the mean square
of the Dirichlet polynomial (c.f. [8]). There will be many off-diagonal terms and it is the care
of these that is the concern of these papers. In particular it is necessary to treat the off-diagonal
terms by a method invented by Bogomolny and Keating [1,2]. Our perspective on this method is
that it is most properly viewed as a multi-dimensional Hardy–Littlewood circle method.

In parts 1 and 2 [5,6] we considered the second and fourth moments of zeta in this new light.
In this paper we embark on the higher moments. Here we only consider the classical shifted
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convolution problem but we try to solve it precisely in a way that exhibits all of the main terms
of the expected formula. This requires some care! In the next paper we will introduce the new
terms for the higher moments (much as we did for the fourth moment in paper 2 [6]).

One way to think of this paper is that it is a more precise version of [4] in that we obtain
all of the main terms in the asymptotic formula. Our treatment is not rigorous; in particular we
conjecture the shape of the fundamental shifted convolution at a critical juncture. This is to be
expected since for example no one knows how to evaluate

n≤x
τ3(n)τ3(n + 1)

asymptotically in a rigorous way.
The formula we obtain is in complete agreement with all of the main terms predicted by the

recipe of [3] (and in particular, with the leading order term conjectured in [9]).

2. Shifted moments

Some of the underlying mechanism of moments becomes a little clearer if we introduce
shifts. (The initial work is possibly harder but the payoff makes it worthwhile.) Basically we
are interested in the moment T

0
ζ(s + α1) · · · ζ(s + αk)ζ(1 − s + β1) · · · ζ(1 − s + βk) dt

where s = 1/2+i t and we think of the shifts as being small complex numbers of size ≪ 1/ log T .
Now

ζ(s + α1) · · · ζ(s + αk) =


m1,...,mk

1

ms+α1
1 . . .ms+αk

k

=

∞
m=1

τα1,...,αk (m)

ms

where

τα1,...,αk (m) =


m1·m2...mk=m

m−α1
1 . . .m−αk

k .

(We have here used τ for the divisor function rather than d.) Let

Dα1,...,αk (s; X) =


n≤X

τα1,...,αk (n)

ns .

More succinctly if A = {α1, . . . , αk} we let

τA(m) = τα1,...,αk (m)

and

DA(s) =

∞
m=1

τA(m)

ms =


α∈A

ζ(s + α);

for the Dirichlet polynomial approximation to this we use the notation

DA(s; X) =


m≤X

τA(m)

ms .
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For a set A it is convenient to designate this set translated by w with the notation Aw; i.e.

Aw = {w + α1, . . . , w + αk}.

The moment we are interested in is

RψA,B(T ) =


∞

0
ψ


t

T


α∈A

ζ(s + α)

β∈B

ζ(1 − s + β) dt (1)

where ψ is a smooth function with compact support, say ψ ∈ C∞
[1, 2]. The recipe [3] tells us

how we expect this moment will behave, namely

RψA,B(T ) = T


∞

0
ψ(t)


U⊂A,V ⊂B

|U |=|V |


tT

2π

−

α̂∈U
β̂∈V

(α̂+β̂)

× A Z(A − U + V −, B − V + U−) dt + o(T )

where

Z(A, B) :=


α∈A,β∈B

ζ(α + β)

and A(A, B) is a product over primes that converges nicely in the domains under consideration
(see below). Also we have used an unconventional notation here; by A − U + V − we mean the
following: start with the set A and remove the elements of U and then include the negatives of
the elements of V . We think of the process as “swapping” equal numbers of elements between
A and B; when elements are removed from A and put into B they first get multiplied by −1. We
keep track of these swaps with our equal-sized subsets U and V of A and B; and when we refer
to the “number of swaps” in a term we mean the cardinality |U | of U (or, since they are of equal
size, of V ).

The Euler product A is given by

A(A, B) =


p

Z p(A, B)
 1

0
A p,θ (A, B) dθ,

where z p(x) := (1 − p−x )−1, Z p(A, B) =


α∈A
β∈B

z p(1 + α + β)−1 and

A p,θ (A, B) :=


α∈A

z p,−θ


1
2

+ α

 
β∈B

z p,θ


1
2

+ β


with z p,θ (x) := (1 − e(θ)p−x )−1.

The technique we are developing here is to approach our moment problem (1) through long
Dirichlet polynomials, i.e. we consider

IψA,B(T ; X) :=


∞

0
ψ


t

T


DA(s; X)DB(1 − s; X) dt

= T


m,n≤X

τA(m)τB(n)ψ̂
 T

2π log m
n


√

mn
(2)
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for various ranges of X . We can use the recipe of [3] to conjecture a formula for Iψ . We start
with

DA(s; X) =
1

2π i


w

Xw

w
DAw (s) dw.

Thus,

IψA,B(T ; X) =
1

(2π i)2


z,w

X z+w

zw
RψAw,Bz

(T ) dw dz.

We insert the conjecture above from the recipe and expect that

IψA,B(T ; X) = T


∞

0
ψ(t)

1

(2π i)2


z,w

X z+w

zw


U⊂A,V ⊂B

|U |=|V |


tT

2π

−

α̂∈U
β̂∈V

(α̂+w+β̂+z)

× A Z(Aw − Uw + V −
z , Bz − Vz + U−

w ) dw dz dt + o(T ).

We have done a little simplification here: instead of writing U ⊂ Aw we have written U ⊂ A
and changed the exponent of (tT/2π) accordingly.

Notice that there is a factor (X/T |U |)w+z here. As mentioned above we refer to |U | as the
number of “swaps” in the recipe, and now we see more clearly the role it plays; in the terms
above for which X < T |U | we move the path of integration in w or z to +∞ so that the factor
(X/T |U |)w+z

→ 0 and the contribution of such a term is 0. Thus, the size of X determines how
many “swaps” we must keep track of. For example, if X < T , then we only need to keep the
terms with |U | = |V | = 0, i.e. no swaps. We then have

IψA,B(T ; X) = T ψ̂(0)
1

(2π i)2


ℜz=2
ℜw=2

Xw+z

wz
A Z(Aw, Bz) dw dz + o(T ). (3)

We let s = z + w and have

IψA,B(T ; X) = T ψ̂(0)
1

(2π i)2


ℜs=4
ℜw=2

X s

w(s − w)
A Z(As, B) dw ds + o(T );

(here we used an identity A Z(Aw, Bz) = A Z(Aw+z, B); this is obvious for the Z factor and less
obvious for the A factor). We move the w integral to the left towards ℜw = −∞ and evaluate
that integral as the residue at w = 0. Thus,

IψA,B(T ; X) = T ψ̂(0)
1

2π i


ℜs=4

X s

s
A Z(As, B) ds + o(T ).

Since
∞

n=1

τA(n)τB(n)

ns = A Z(As, B)

it follows that

IψA,B(T ; X) = T ψ̂(0)

n≤X

τA(n)τB(n)

n
+ o(T ).

This is exactly the same as what we have referred to previously [5,6] as the diagonal term.
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3. Type I off-diagonals with shifts

What happens if T ≪ X ≪ T 2? From the recipe we add on the terms with one swap,
i.e. |U | = |V | = 1. These terms are

T


∞

0
ψ(t)


α̂∈A
β̂∈B


T t

2π

−α̂−β̂ 1

(2π i)2


ℜz=2
ℜw=2

Xw+z

wz

× A Z

(Aw − {α̂ + w}) ∪ {−β̂ − z}, (Bz − {β̂ + z}) ∪ {−α̂ − w}


dw dz dt + o(T ).

Let A′
= A − {α̂} and B ′

= B − {β̂}. Then

Z

(Aw − {α̂ + w}) ∪ {−β̂ − z}, (Bz − {β̂ + z}) ∪ {−α̂ − w}


= Z(A′

w, B ′
z)Z(A

′
w, {−α̂ − w})Z({−β̂ − z}, B ′

z)Z({−β̂ − z}, {−α̂ − w})

= Z(A′
z+w, B ′)Z(A′, {−α̂})Z({−β̂}, B ′)ζ(1 − α̂ − β̂ − w − z).

Letting s = w + z and integrating the w-integral, we obtain

T


∞

0
ψ(t)


α̂∈A
β̂∈B


T t

2π

−α̂−β̂

Z(A′, {−α̂})Z({−β̂}, B ′)

×
1

2π i


ℜs=4


2πX
T t

s

s
A(A′

∪ {−β̂ − s}, B ′
s ∪ {−α̂})Z(A′

s, B ′)ζ(1 − α̂ − β̂ − s) ds. (4)

How does such a term appear on the coefficient correlation side of things? The correlation
sum

DA,B(u, h) :=


n≤u

τA(n)τB(n + h)

when averaged over h turns out to lead to just such an expression. We conjecture that (see [4,7])

DA,B(u, h) = m A,B(u, h)+ O(u1/2+ϵ)

uniformly for 1 ≤ h ≤ u1−ϵ , where m A,B(u, h) is a smooth function of u whose derivative is

m′

A,B(u, h) =


d|h

f A,B(u, d)

d
,

where

f A,B(u, d) =

∞
q=1

µ(q)

q2 PA(u, qd)PB(u + h, qd),

in which PA(u, q) is the average of


n≤u τA(n)e(n/q), i.e.

PA(u, q) =
1

2π i


|s|=1/8


α∈A

ζ(s + 1 + α)G A(s + 1, q)


u

q

s

ds,
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with

G A(s, q) =


d|q

µ(d)

φ(d)
ds

e|d

µ(e)

es gA(s, qe/d),

and, if q =


p pqp ,

gA(s, q) =


p|q


α∈A


1 − p−s−α ∞

j=0

τA


p j+qp


p js


.

Thus,

PA(u, q) =


α̂∈A

G A(1 − α̂, q)


u

q

−α̂ 
α∈A′

ζ(1 − α̂ + α).

So, looking back to (2), we have to consider


m=n+h
T ≤m≤X

τA(m)τB(n)

m
ψ̂


T h

2πm


∼


h

 X

T
⟨τA(m)τB(n)⟩

∗
m∼uψ̂


T h

2πu


du

u

where ∗ indicates the condition m = n + h. We replace ⟨τA(m)τB(n)⟩∗m∼u with

∞
q=1

µ(q)

q2


d|h

1
d

PA(u, dq)PB(u, dq)

and then switch the sums over h and d . Thus, the above is


α̂∈A
β̂∈B


α≠α̂

ζ(1 + α − α̂)

β≠β̂

ζ(1 + β − β̂)


q,d,h

µ(q)G A(1 − α̂, qd)G B(1 − β̂, qd)

d1−α̂−β̂q2−α̂−β̂

×

 X

T
u−α̂−β̂ψ̂


T hd

2πu


du

u
.

We make the change of variable v =
T hd
2πu and bring the sum over h to the inside; u < X implies

that

hd <
2πXv

T
.

Thus, we have


α̂∈A
β̂∈B


α≠α̂

ζ(1 + α − α̂)

β≠β̂

ζ(1 + β − β̂)


T

2π

−α̂−β̂ 
v

ψ̂(v)vα̂+β̂

×


hd< 2πXv

T

µ(q)G A(1 − α̂, qd)G B(1 − β̂, qd)

q2−α̂−β̂hα̂+β̂d

dv

v
.



742 B. Conrey, J.P. Keating / Indagationes Mathematicae 26 (2015) 736–747

We use Perron’s formula to write the sum over d, q and h as

1
2π i


(2)


h,d,q

µ(q)G A(1 − α̂, qd)G B(1 − β̂, qd)

q2−α̂−β̂hs+α̂+β̂d1+s

(2πXv/T )s

s
ds. (5)

Recall that

G A(s, q) =


d|q

µ(d)

φ(d)
ds

e|d

µ(e)

es gA(s, qe/d),

and

gA(s, q) =


p|q


α∈A


1 − p−s−α ∞

j=0

τA


p j+qp


p js



for q =


p pqp , so that

G A(1 − α̂, p) = gA(1 − α̂, p)−
p1−α̂

p − 1
+

gA(1 − α̂, p)

p − 1

=
p

p − 1


gA(1 − α̂, p)− p−α̂


=


α∈A

(1 − p−1−α+α̂)

∞
j=0

τA(p j+1)

p j (1−α̂)
− p−α̂

+ O(1/p)

= τA(p)− p−α̂
+ O(1/p) = τA′(p)+ O(1/p).

Thus,

∞
d,q=1

µ(q)G A(1 − α̂, qd)G B(1 − β̂, qd)

d1+sq2−α̂−β̂

=


p

∞
d,q=0

µ(pq)G A(1 − α̂, pd+q)G B(1 − β̂, pd+q)

pd+dz+2q+qw

= A A,B,α̂,β̂(s)

a∈A′

b∈B′

ζ(1 + a + b + s)

where

A A,B,α̂,β̂(s) =


p


α∈A′

β∈B′

(1 − p−1−α−β−s)


×

∞
d,q=0

µ(pq)G A(1 − α̂, pd+q)G B(1 − β̂, pd+q)

pd+ds+q(2−α̂−β̂)



B. Conrey, J.P. Keating / Indagationes Mathematicae 26 (2015) 736–747 743

is an Euler product that is absolutely convergent when the real parts of z and w are near 0. Thus,
(5) becomes

1
2π i


(2)
ζ(s + α̂ + β̂)


a∈A′

b∈B′

ζ(1 + s + a + b)A A,B,α̂,β̂(s)


2πXv

T

s

s
ds.

Now
v

ψ̂(v)vα̂+β̂+s dv

v
=


∞

0
ψ(t)t−α̂−β̂−sχ(1 − s − α̂ − β̂).

Thus, the above is


α̂∈A
β̂∈B


α≠α̂

ζ(1 + α − α̂)

β≠β̂

ζ(1 + β − β̂)


T

2π

−α̂−β̂  ∞

0
ψ(t)t−α̂−β̂

×
1

2π i


(2)
ζ(1 − s − α̂ − β̂)Z(A′

s, B ′)A A,B,α̂,β̂(s)


2πX
tT

s

s
ds dt.

This should be compared with (4):

T


∞

0
ψ(t)


α̂∈A
β̂∈B


T t

2π

−α̂−β̂

Z(A′, {−α̂})Z({−β̂}, B ′)

×
1

2π i


ℜs=4


2πX
T t

s

s
A(A′

∪ {−β̂ − s}, B ′
s ∪ {−α̂})Z(A′

s, B ′)ζ(1 − α̂ − β̂ − s) ds.

These are identical provided that

A A,B,α̂,β̂(s) = A(A′
∪ {−β̂ − s}, B ′

s ∪ {−α̂});

so it just remains to prove this identity.

4. The Euler products

To prove the identity we follow the method of [4]. We compare the p-factor of each Euler
product

A p
A,B,α̂,β̂

(s) :=


α∈A′

β∈B′

(1 − p−1−α−β−s)

∞
d,q=0

µ(pq)G A(1 − α̂, pd+q)G B(1 − β̂, pd+q)

pd+ds+q(2−α̂−β̂)

and

A p(A′
∪ {−β̂ − s}, B ′

s ∪ {−α̂})

:= Ap(A
′
s, B ′)Ap(A

′, {−α̂})Ap({−β̂}, B ′)(1 − p−1+α̂+β̂+s)

×

 1

0
A p,θ (A

′
∪ {−β̂ − s}, B ′

s ∪ {−α̂}) dθ.
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Now the integral over θ is

∞
j=0

τA′∪{−β̂−s}(p
j )τB′

s∪{−α̂}(p
j )

p j .

Thus, cancelling the factor A p(A′, B ′
s) from both sides and replacing all of the β + s ∈ Bs by β

(i.e. taking s = 0), we see that we have to prove

Ap(A
′, {−α̂})Ap({−β̂}, B ′)(1 − p−1+α̂+β̂)

∞
j=0

τA′∪{−β̂}
(p j )τB′∪{−α̂}(p

j )

p j

=

∞
d,q=0

µ(pq)G A(1 − α̂, pd+q)G B(1 − β̂, pd+q)

pd+q(2−α̂−β̂)
. (6)

We note an easily proven identity that will be useful: if a ∈ A and A′
= A − {a} then for r ≥ 1

τA(p
r ) = τA′(pr )+ p−aτA(p

r−1). (7)

Thus, for r ≥ 1 we have

G A(s, pr ) = gA(s, pr )
p

p − 1
−

ps

p − 1
gA(s, pr−1)

=


α∈A

(1 − p−s−α)
p

p − 1


∞
j=0

τA(p j+r )

p js − ps−1
∞
j=0

τA(p j+r−1)

p js


;

and with s = 1 − a we have by (7)

G A(1 − a, pr ) =


α∈A′

(1 − p−1+a−α)

∞
j=0

τA′(p j+r )

p j (1−a)
.

The right side of (6) is

∞
d=0

G A(1 − α̂, pd)G B(1 − β̂, pd)

pd

− p−2+α̂+β̂
∞

d=0

G A(1 − α̂, pd+1)G B(1 − β̂, pd+1)

pd . (8)

Now

G A(1 − α̂, pd)G B(1 − β̂, pd)− p−2+α̂+β̂G A(1 − α̂, pd+1)G B(1 − β̂, pd+1)

=


G A(1 − α̂, pd)− p−1+α̂G A(1 − α̂, pd+1)


G B(1 − β̂, pd)

+p−1+α̂G A(1 − α̂, pd+1)


G B(1 − β̂, pd)− p−1+β̂G B(1 − β̂, pd+1)

. (9)
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Using

G A(1 − α̂, pd)− p−1+α̂G A(1 − α̂, pd+1)

=


α∈A′

(1 − p−1+α̂−α)


∞
j=0

τA′(p j+d)

p j (1−α̂)
− p−1+α̂

∞
j=0

τA′(p j+d+1)

p j (1−α̂)


=


α∈A′

(1 − p−1+a−α)τA′(pd)

we find that
∞

d=0


G A(1 − α̂, pd)− p−1+α̂G A(1 − α̂, pd+1)


G B(1 − β̂, pd)

=


α∈A′

(1 − p−1+α̂−α)

β∈B′

(1 − p−1+β̂−β)

∞
d=0

τA′(pd)

pd

∞
j=0

τB′(p j+d)

p j (1−β̂)
.

The sum over d and j here may be rewritten as

∞
r=0

τB′(pr )

pr

r
d=0

p(r−d)β̂τA′(pd). (10)

We recognize that this last sum over d is a convolution:

r
d=0

p(r−d)βτA′(pd) =


g|pr

(pr/g)−β̂τA′(g) = τA′∪{−β̂}
(pr ).

Thus, (10) is
∞

r=0

τB′(pr )τA′∪{−β̂}
(pr )

pr .

The second term on the right side of (9) is slightly different; it is
α∈A′

(1 − p−1+α̂−α)

β∈B′

(1 − p−1+β̂−β)p−1+α̂
∞

d=0

τB′(pd)

pd

∞
j=0

τA′(p j+d+1)

p j (1−α̂)
.

Now

p−1+α̂
∞

d=0

τB′(pd)

pd

∞
j=0

τA′(p j+d+1)

p j (1−α̂)
=

∞
d=0

τB′(pd)

pd

∞
j=1

τA′(p j+d)

p j (1−α̂)

=

∞
d=0

τB′(pd)

pd

∞
j=0

τA′(p j+d)

p j (1−α̂)

−

∞
d=0

τB′(pd)τA′(pd)

pd ;

using the argument above this is

∞
r=0

τA′(pr )τB′∪{−α̂}(p
r )

pr −

∞
r=0

τA′(pr )τB′(pr )

pr .
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Thus, (8) is
∞

r=0

τB′(pr )τA′∪{−β̂}
(pr )

pr +

∞
r=0

τA′(pr )τB′∪{−α̂}(p
r )

pr −

∞
r=0

τA′(pr )τB′(pr )

pr .

Now

τB′(pr )τA′∪{−β̂}
(pr )+ τA′(pr )τB′∪{−α̂}(p

r )− τA′(pr )τB′(pr )

= τB′(pr )

τA′(pr )+ pβ̂τA′∪{−β̂}

(pr−1)


+ τA′(pr )

τB′(pr )+ pα̂τB′∪{−α̂}(p

r−1)


− τA′(pr )τB′(pr )

= τA′(pr )τB′(pr )+ pβ̂τB′(pr )τA′∪{−β̂}
(pr−1)+ pα̂τA′(pr )τB′∪{−α̂}(p

r−1)

=


τA′(pr )+ pβ̂τA′∪{−β̂}

(pr−1)
 
τB′(pr )+ pα̂τB′∪{−α̂}(p

r−1)


− pα̂+β̂τA′∪{−β̂}
(pr−1)τB′∪{−α̂}(p

r−1)

= τA′∪{−β̂}
(pr )τB′∪{−α̂}(p

r )− pα̂+β̂τA′∪{−β̂}
(pr−1)τB′∪{−α̂}(p

r−1).

This leads to

1 +

∞
r=1

τA′∪{−β̂}
(pr )τB′∪{−α̂}(p

r )− pα̂+β̂τA′∪{−β̂}
(pr−1)τB′∪{−α̂}(p

r−1)

pr

=


1 − p−1+α̂+β̂

 ∞
r=0

τA′∪{−β̂}
(pr )τB′∪{−α̂}(p

r )

pr ;

and (6) follows.
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