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By performing a full analysis of the projected local density of states (LDOS) in a photonic crystal waveguide,
we show that phase plays a crucial role in the symmetry of the light-matter interaction. By considering a quan-
tum dot (QD) spin coupled to a photonic crystal waveguide (PCW) mode, we demonstrate that the light-matter
interaction can be asymmetric, leading to unidirectional emission and a deterministic entangled photon source.
Further we show that understanding the phase associated with both the LDOS and the QD spin is essential for
a range of devices that that can be realised with a QD in a PCW. We also show how suppression of quantum
interference prevents dipole induced reflection in the waveguide, and highlight a fundamental breakdown of the
semiclassical dipole approximation for describing light-matter interactions in these spin dependent systems.

Nanophotonic structures are routinely used to enhance
light-matter interactions by modifying the density of elec-
tromagnetic (EM) field modes. This is often simplified to
a scalar quantity, the LDOS. However we show that the
EM field modes also contain important phase information,
which interacts with a phase-dependent emitter in a non-
trivial, non-intuitive way. This extra phase information is
vital in practical designs of integrated quantum photonic
circuits, a leading contender for future quantum technolo-
gies [1].

In a quantum photonic circuit, information may be stored
and transmitted via photons. Photons suffer little from de-
coherence, and single qubit gates are straightforward. Less
straightforward is the ability to create two qubit gates as di-
rect photon-photon interactions are extremely weak. QDs
have the potential to mediate photon-photon interactions
acting as an artificial atom. Its solid-state nature means that
it is relatively simple to enhance the light-matter interaction
by incorporating it into nanophotonic structures. Simul-
taneously the electron spin state in QDs have shown long
spin coherence times (µs) [2, 3], and ease of optical initial-
isation, coherent control and readout have all been demon-
strated [2, 4, 5]. Thus the potential exists to use the QD spin
to mediate deterministic photon-photon interactions.

If future devices are to be part of an integrated quantum
photonic chip then a promising platform is PCW and cavi-
ties [6]. A QD embedded in a PCW has already been recog-
nised as an excellent single photon source [7–10]. This
is because PCWs are approximately “one-dimensional”,
where most of the energy from the emitter couples to the
waveguide. Accordingly simple “one-dimensional-atom”
models[11, 12] may be applied to a PCW. In this Letter,
we consider the coupling between polarized spin-dependent
transitions of a QD trion to a PCW. We demonstrate that
there is a complex interplay between the polarization struc-
ture of the PCW mode, the QD spatial location and its spin

state, leading to different functionalities that are not pre-
dicted by a standard one-dimensional atom model.

A two-dimensional PC is formed from a slab of dielec-
tric containing periodically spaced air-holes which modu-
late the refractive index, giving rise to an in plane photonic
bandgap. The resulting confinement dramatically reduces
the LDOS, relative to bulk material, into which a dipole
can emit [8]. By incorporating a line of missing holes a
waveguide is formed (see Fig. 1a.). The propagation of
light along the waveguide supports slow light modes [13],
which increase the LDOS in the waveguide region. As a
result, the dominant modes for dipole emission are into this
region thus forming a one-dimensional “wire-like” waveg-
uide structure [14]. In contrast, in a standard waveguide the
bulk LDOS is not significantly modified, and light scattered
from the emitter is mainly into leaky modes.

Another significant difference between a standard planar
waveguide and a PCW is the polarization state of the light
propagating inside the structure. A standard waveguide sup-
ports a TE-mode which is constant along the length of the
guide. However, the PCW supports bound Bloch modes
(BMs) with components of both Ex and Ey fields, that vary
across one lattice period. Hence different locations inside
the PCW support different superpositions of Ex, and Ey
with a fixed relative phase that varies spatially. At each
point the field may be expressed as a polarization ellipse,
as shown in Fig. 1(a). There are clearly points where the
ellipse becomes circular which corresponds to a “C-point”
singularity [15, 16], and also where the ellipse collapses to a
line (L-line) where the polarization is linear. It is clear that
the polarization of the mode is intricate, with an arbitrary
point in the PCW (r0) showing an arbitrary local electric
field polarization, with ek(r0) = αEx + eiφβEy .

The QDs themselves are modelled as point-like emitters.
In addition, negatively doped QDs with a resident electron
spin undergo strict selection rules that couple to σ+ circu-
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FIG. 1: (Color online) (a) Zoom in of a W1 PCW made from a
suspended slab of GaAs with air holes (marked with dashed blue
line) lattice constant a = 250 nm and the hole size is 0.34a. A
line of holes is missing through the centre forming the waveguide.
Grayscale background shows field intensity, red markings show
polarization ellipse, where straight lines represent linear polariza-
tion. (b) Zoom of specific area where the yellow circle represents
the C-point and yellow line the Ey polarized point we consider
in this paper. FDTD simulations showing emission from a neg-
atively charged QD at the identified C-point for (c) spin up (σ+

polarized), and (d) spin-down (σ− polarized)

larly polarized light for spin-up (| ↑〉) and σ− light for spin-
down (| ↓〉). The QD spin transitions may be modelled as
superpositions of orthogonal dipoles aligned along x and y,
i.e. µ = αµx+eiφβµy , where µ represents a unit vector in
the dipole direction. In bulk or simple dielectric structures,
the coupling strength of the emitter is calculated to be pro-
portional to the scalar product of |µ · E(r0)|/|µ|.|Emax|,
with the available LDOS proportional to |Emax|2. How-
ever, the LDOS does not contain the full phase informa-
tion present in the EM field modes. This necessitates a
departure from this model and the use of a Green func-
tion analysis [9, 17, 18], where the radiative coupling be-
tween the dipole and the waveguide mode is proportional
to µ† · G(r0, r0) · µ. The Green’s function describes the
response at r to an oscillating dipole at r0.

In the frequency domain, the Green’s function for the
waveguide mode is described through [9] (ω is implicit)

Gw(r, r0) = Gf(r, r0) + Gb(r, r0) = (1)
iaω

2vg

[
Θ(x− x0)ek(r)e∗k(r0)eik(x−x0)+

Θ(x0 − x)e∗k(r)ek(r0)e−ik(x−x0)
]

where a is the lattice constant, vg is the group velocity, Θ
is the Heaviside step function, x0 is the x coordinate of the
dipole, ek(r) is the propagating mode for wavenumber k,
normalized according to

∫
Vc
ε(r)|ek(r)|2dr = 1, where Vc

is the spatial volume of a PC unit-cell, with ε(r) the di-

electric function. The first (second) term in Eq. (1) rep-
resents the Green’s function for the forwards (backward)
propagating mode. An arbitrary point in the PCW (r0)
will thus have a local electric field polarization ek(r0) =
αEx + eiφβEy , for light that is propagating in a forwards
propagating BM. Whereas in the backwards propagating
BM, ek(r0) = αEx + e−iφβEy . We now consider a spe-
cific point in the PCW where the field is circular (C-point),
i.e. where α = β, and φ = π/2. Here we find if one sets
µ = σ+ then (excluding constants) µ† ·Gf(r0, r0) ·µ = 1
and µ† ·Gb(r0, r0) · µ = 0. Hence a right (left) circularly
polarized dipole will only couple to the forwards (back-
wards) propagating mode.

This is confirmed by performing in-house FDTD simula-
tions of a W1 waveguide with slab thickness of 0.56a, hole
radius of 0.34a, where ka/2π = 0.39 and vg = c/88. In
Fig. 1c we consider a | ↑〉 (|σ+〉 dipole) located at the C-
point and in Fig.1d. a | ↓〉 (|σ−〉 dipole). Both show a uni-
directional emission, dependent on spin orientation, in con-
currence with the Green function analysis above. This strik-
ing result is due to the spin helicity in this system breaking
the symmetry. Recent work has shown partial spin path cor-
relations in other structures [19, 20]. We show here, for the
first time to our knowledge, how to precisely engineer these
correlations, which is in excellent agreement with recent
measurements using near field microscopy techniques [21].
Spin-path entanglement is a natural consequence of this
analysis. A | ↑〉 dipole emits photons in the forward di-
rection in the state |f〉, while a | ↓〉 dipole emits photons in
the backwards direction in state |b〉. An equal superposition
of |↑〉+ |↓〉 results in the output state:

|ψ〉out = |↑〉|f〉+ |↓〉|b〉, (2)

an entangled state of photon path and spin orientation.
The efficiency of the source is given by the β-factor, de-

fined as β = Γw
Γw+Γ0

, where Γ0 represents radiative losses
to modes above the light line; typically this latter contri-
bution is much smaller than radiative decay to the waveg-
uide mode, and is computed to be around 0.1Γhom, where
Γhom represents the decay in the homogenous bulk mate-
rial. The coupling rate to waveguide modes, Γw, depends
on the coupling to the projected LDOS. The rate of emis-
sion can be split into two parts: the rate forwards is given
by Γf

w = 2d2
0µ
† ·Gf(r0, r0)·µ/~ε0 and the rate backwards,

Γb
w = 2d2

0µ
† ·Gb(r0, r0) · µ/~ε0, where d0 is the dipole

moment of the optical transition. At a C-point, a dipole
aligned to the field for the forwards propagating BM, will
be orthogonal to the field of the backwards propagating BM.
Hence we find the following rate for spontaneous emission
at a C-point:

ΓC
w = Γf

w =
d2

0e2
0aω

2vgε0~
=
d2

0η(r0,µ)Qw

ε0~Veffεs
, (3)

where we have introduced an effective mode volume for the
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waveguide mode, Veff ≡ 1/(εs|ek(r0)|2), where the BM is
at the antinode position, and εs is the slab dielectric con-
stant in which the QD is embedded. The waveguide mode
decay rate is defined as κw = 2vg/a, so Qw = ω/κw.
We have also introduced η; a spatial and polarization de-
pendent function, varying between 0 and 1, to account for
deviations from the antinode and polarization coupling with
the target PCW mode. In contrast, at a point where the po-
larization is linear, and if the dipole is aligned to the field,
ΓL

w = Γf
w + Γb

w = 2ΓC
w. So despite the fact the dipole is

aligned to the local field in both cases, the decay rate at the
C-point is inherently half (assuming maximum coupling) of
that at a point of linear polarization. This is due to the lifting
of the polarization degeneracy between the forwards and
backwards propagating modes. As such the density of avail-
able EM modes at a C-point is halved relative to a linear
point where the local field contains no phase information.
Using the PCW in Fig.1, and assuming a dipole moment
of d0 = 30 Debye we find a rate of emission for a spin-
photon entangled source at a C-point of Γw ∼ 1.7 GHz,
corresponding to a Purcell factor of Pf = Γw/Γhom = 1.8.
This yields a beta factor of β ∼ 0.95.

By allowing the spin to emit several photons in a row,
large entangled photon states may easily be built up, use-
ful for quantum metrology or one way quantum compu-
tation using the cluster state model [22, 23]. The device
may therefore operate as a pumped source (optically out-of-
plane, or electrically) of spin-path entangled photons when
the QD spin is located at the C-point, the only place in the
waveguide where this is possible, due to the perfect correla-
tion of spin with path. Such device operation could never be
predicted using a simple linear-dipole and LDOS approach
commonly employed in cavity-QED.

As well as deterministic entangled photon sources, deter-
ministic quantum gates would be a crucial component for
scalable quantum devices. We now explore implications of
considering polarization in PCWs when designing quantum
circuits. To perform a general analysis of the propagation
and scattering of light in the PCW we again take a Green
function approach, where the total field in the PCW, includ-
ing the QD, and homogenous input field Eh(r) may be ex-
pressed as E(r) = Eh(r) + G(r, r0) · α · Eh(r0), where
α = α0µµ†

1−α0µ†·G(r0,r0)·µ is the QD polarizability, which in-
cludes coupling to the medium (while allowing for complex
dipoles in a Cartesian coordinate system), and the bare po-
larizability α0 = 2ω0d

2
0/ε0~

ω2
0−ω2 , where we have neglected non-

radiative losses.
Now consider a photon injected in the waveguide

mode from the left (homogeneous solution), Eh(r) =√
a
Lekh(r)eikhx. For a sufficiently long waveguide, the

transmitted and reflected fields are given by Et(r;x →
∞) =

√
a
Lekh(r)eikhx + Gw(r;x → ∞, r0) · α ·√

a
Lekh(r0)eikhx0 , and Er(r, x → −∞) = Gw(r;x →

FIG. 2: (Color online) Transmitted (blue) and reflected (dashed
red) intensity as a function of detuning for (a) linear Ey dipole
placed at a point in the PCW with pure Ey polarized light, (b)
σ+ dipole at a σ+ polarized C-point, with (c) the accompanying
phase shift on the transmitted signal as a function of detuning. (d)
An Ey dipole at a σ+ polarized C-point. All plots use the W1
waveguide shown in Fig. 1, with parameters Γ0 = 0.1Γhom and
d0 = 30 Debye.

−∞, r0) · α ·
√

a
Lekh(r0)eikhx0 , where we assume x0 =

0. The transmitted and reflected amplitudes are, respec-
tively, given by t(ω) = Et(r;x→∞)/Eh(r;x→∞) and
r(ω) = Er(r;x→ −∞)/Eh(r;x→ −∞), which are de-
rived to be

t(ω) = 1 +
iω02Γf

w

ω2
0 − ω2 − iω0(Γf

w + Γb
w + Γ0)

, (4)

and

r(ω) =
iω02Γf→b

w e2ikhx0

ω2
0 − ω2 − iω0(Γf

w + Γb
w + Γ0)

, (5)

where Γf→b
w is the scattering rate backwards given a for-

wards injected BM.
Now considering the case of a linearly polarized dipole,

on an L-line in the PCW with the same linear polarization
(yellow line in Fig. 1b). A photon with a narrow bandwidth
relative to the dipole transition (weak excitation approxima-
tion) input into the forwards propagating waveguide mode
leads to the frequency dependent response in Fig. 2a. On
resonance (ω = ω0), the dipole will scatter with the rates
Γf

w = Γb
w = Γf→b

w . Hence |t(ω)|2 ≈ 0, and |r(ω)|2 ≈ 1,
and scattering from a QD leads to reflection back along
the waveguide as predicted in earlier works [24]. One ob-
serves a dipole-induced-reflection [25] identical to that in
a cavity-waveguide architecture [11, 26]. The dipole in-
duced reflection feature in Fig. 2a. has a width of∼ 14 GHz
based on the waveguide simulated in Fig. 1 again assuming
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d0 = 30 Debye. This compares favourably with drop filter
cavity designs [11], where the transparency window has a
width of ∼ 100 GHz. Optimisations away from the stan-
dard W1 waveguide should result in the transparency win-
dow becoming even wider. We now consider a charged QD
at this L-Line; by initialising in the spin-up state | ↑〉, a res-
onant photon injected into the forwards propagating mode
after scattering will end up in the entangled state:

|ψ〉 = |b〉|+〉+ |f〉|−〉 (6)

where |+〉 = | ↑〉 + | ↓〉, and |−〉 = | ↑〉 − | ↓〉. Also,
since along L-lines the local field has no fixed phase rela-
tion between Ex and Ey , the local field at the QD location
(r0) is the same in both forwards and backwards propagat-
ing directions, i.e., ek(r0) = e∗k(r0). This allows one to
encode photons via their path (|f〉 or |b〉) and realise a fully
deterministic spin-photon-interface [27–29].

At a point where the local polarization is circular one
sees a significant departure from the above. Figure 2b is
a plot of the frequency dependant response to a forwards
propagating photon for a right circularly polarized dipole
at a C-point (yellow circle in Fig. 1b). Since we inject
photons into the forwards propagating mode the field cre-
ated at the dipole location (r0) is σ+ polarized. For the
case when the dipole is also σ+ polarized then we find that
Γb

w = Γf→b
w = 0, on resonance and Γ0 = 0.1Γhom, then

|r(ω)|2 ≈ 0 and |t(ω)|2 ≈ 0.8. In this instance no light
is reflected but is transmitted with a π phase shift due to
the interaction with the dipole. The reduction in the trans-
mitted intensity is due to out of plane scattering. Since the
C-point considered here is not at a field antinode, we find
η(r0,µ) ∼ 0.25. Optimising the PCW structure to increase
η(r0,µ) will increase Γf

w, improving the β-factor to give
near unit transmission with a π phase shift. If the dipole
is σ− polarized, then Γf

w = Γf→b
w = 0, i.e., there is no

interaction and the photon transmits without a phase shift.
Considering a two level system model, if the dipole is lin-

early polarized (interacting equally with σ+ and σ−), then
Γf

w = Γb
w = Γf→b

w , and at the dipole resonance |t(ω)|2 ≈ 0,
|r(ω)|2 ≈ 0.9 as in Fig. 2d. Near unit reflection and a
zero in transmission is caused by destructive interference
between the scattered ( σ+) and the non-interacting ( σ−)
components in the forwards propagating direction. This
is exactly the same as in Fig. 2a except the bandwidth
and intensity of the dipole induced reflection feature is re-
duced. This is due to polarization mismatch and because
the C-point is moved from the antinode of the BM, giving
η(r0,nR) ∼ 0.125.

In contrast for a charged QD at the C-point, if the spin
is | ↓〉, then there is no interaction and a forwards injected
resonant photon will transmit. If the spin is | ↑〉, then the
light transmits with a π phase shift. If we prepare the QD
spin in an equal superposition (|+〉), then after interaction

with a forwards injected resonant photon we have the state,

|ψ〉out = −|f〉|↑〉+ |f〉|↓〉 = −|f〉|−〉. (7)

where we have set Γ0 = 0 for simplicity. This output state
clearly does not correspond with the semiclassical result for
a simple two level system in Fig. 2d, there is no longer an
available backwards propagating photon state. It is clear
from this equation that the addition of spin into the system
prevents destructive interference in the forwards propagat-
ing direction. Measurement of a transmitted photon rotates
the spin from the state |+〉 → |−〉. However if one chooses
to measure the phase of the forward propagating photon
(e.g. with a Mach-Zehnder interferometer) then spin-path
entanglement is a natural consequence [30]. This predicts
a stark contrast between a charged QD at a C-point, where
one always sees transmission, and a fine-structure split neu-
tral QD where one always sees a reflection. It further con-
trasts with the incoherent spontaneous emission result in
Eq.2 where one would detect output photons in the for-
wards and backwards mode with equal probability. This
result highlights the role that coherence and quantum entan-
glement can play in spin mediated light-matter interactions,
emphasising the care that one needs to take when making
predictions about light propagation in nanophotonic struc-
tures. It is key to have a full description of the field of the
local photonic environment, and also nature of the dipole
emitter to which it couples.

In conclusion we demonstrate, using a rigorous Green
function method, that the LDOS in complex nanophotonic
structures such as PCWs has important phase information
that must not be neglected. We show the importance of this
by considering a QD spin emitter in a PCW, and show that
one may control the direction of photon emission by con-
trolling the spin orientation. Entangled photon sources may
be generated at a C-point polarization singularity whilst at
both C-points and L-lines one may entangle photons via
dipole induced reflection, all with > 90% efficiency. Most
importantly, we develop a general mathematical framework
to understand the interaction between dipoles and fields in
chiral photonic structures, and show the limitations of a
semiclassical analysis, where suppression of quantum inter-
ference prevents the dipole induced reflection of photons.
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Note added. After submission we became aware of two

related works: Ref. 30 considers a CNOT gate implementa-
tion in similar structures, and Ref. 31 shows directionality
of emission from single atoms coupled to optical fiber.
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