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Abstract
Metamaterials are artificial composite structures designed for controlling waves orfields, and exhibit
interaction phenomena that are unexpected on the basis of their chemical constituents. These
phenomena are encoded in effectivematerial parameters that can be electronic,magnetic, acoustic, or
elastic, andmust adequately represent thewave interaction behavior in the composite within desired
frequency ranges. In some cases—for example, the low frequency regime—there exist various efficient
ways bywhich effectivematerial parameters for wave propagation inmetamaterialsmay be found.
However, the general problemof predicting frequency-dependent dynamic effective constants has
remained unsolved.Here, we obtain novelmathematical expressions for the effective parameters of
two-dimensionalmetamaterial systems valid at higher frequencies andwavelengths than previously
possible. Byway of an example, random configurations of cylindrical scatterers are considered, in
various physical contexts: soundwaves in a compressiblefluid, anti-plane elastic waves, and
electromagnetic waves. Our results point towards a paradigm shift in our understanding of these
effective properties, andmetamaterial designs with functionalities beyond the low-frequency regime
are nowopen for innovation.

Introduction

Metamaterial research in the past decade offered an entirely new route to further enhance our capability to
engineermaterial properties at will. Here,metamaterials are artificially fabricated structures (often periodic, i.e.,
crystalline)which are designed so that they exhibit wave properties not observedwith commonmaterials, e.g.,
they can, in theory, bend electromagnetic [1], acoustic [2], and even surface gravity waves [3] so as to achieve
sub-wavelength focusing [4], create cloaks [5, 6], and attain shielding [7]. Other unexpected properties include
artificialmagnetism [8], negative permeability [9], negative refraction index [10], and hyperbolic dispersion
[11], to name a few. Suchmaterials have allowed us to gain unprecedented control over a range of
electromagnetic/optical and acoustic wave phenomena. Inmanywaysmetamaterials parallel the development
of photonic and phononic crystals (optical and acoustic analogues of semiconductors)which also rely on small-
scale structures for their properties. However, themajor difference lies in the sub-wavelength nature of
metamaterial structure. This enables us to summarize their properties in terms of permittivity and permeability

,e m( ) for electromagnetic waves, or bulkmodulus andmass density ,k r( ) for acoustic waves, just as wewould
for any naturally occurringmaterial. This is an enormous simplification for the design process, and research is
now focusing on the realization of a new generation ofmetadevices [12]with novel and useful functionalities
achieved by the structuring of functionalmatter on the sub-wavelength scale. Novel devices such as superlens
[13], hyperlens [14], invisibility cloaks [15, 16], and plasmonic waveguides [17] have been fabricated and tested
in the past few years. The technology behind suchmetadevices is fairly well established in the low-frequency
regimewhere inclusions have sizesmuch smaller than thewavelength of operation. At these relatively low
frequencies this is commonly obtained by assuming onlymonopole and/or dipole interactions, e.g., by utilizing
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conductingmaterials shaped as dipoles [18] and split-ring resonators [19]. The existence of resonances poses a
considerable challenge to classical effectivemedium theories. This is because their basic principle is tominimize
the scattering in the quasi-static limit, while the local resonances occurmost often at longer wavelengths.

Here, following these concepts, we develop and analyse a supra1-classical dynamicmodel ofmetamaterial
response. There is an abundance ofmiscellaneous effectivemedium theories [20–26], some quite recent
[27–29]; many of theseworks claim to be valid not only in the quasi-static limit but also atfinite frequencies
beyond the long-wavelength limit: a situation that happenswhen thewavelengthΛ is long in the hostmedium,
while thewavelength in the particles, ,0L can be small. (This is in contrast to the quasi-static limit where bothΛ
and 0L should bemuch larger than the size of the particles.) Such extension tofinite frequencies is sometimes
denoted as the dynamic effectivemedium theory. However, even this dynamic approximation relies exclusively
on themonopolar and dipolar response of the scattering objects, which implicitly assumes longwavelengths. In
this paper, this restriction is relaxed and the full effect of the ensemble of particles that constitute the effective
medium is included, as higher diffraction orders are encompassed. This will allow the design of newmetadevices
working over awider wavelength range.We shall illustrate this by solving a simple scalar problem in two-
dimensions, having applications not only in electromagnetics but also in acoustics and elasticity. The similarities
between the equations of acoustics, elasticity and electromagnetics allowus to use some of the same techniques
to solve problems in these seemingly disparatefields.

Viewon classical homogenization

The theoretical approach to the field ofmetamaterials is provided through dynamic homogenization techniques
which relate themicrostructure of a composite to the frequency dependence of its effective properties. The
majority of research interest in the area ofmetamaterials is restricted to periodicmicrostructures [30, 31] (as the
arrangement ofmolecules according to solid-state physics)which admit Bloch (or Floquet)waves as solutions
andmany different numerical algorithms have been developed (see, e.g., [32, 33]) for calculating the dispersive
properties of these waves. A popular route to determining these parameters is by the use of retrievalmethods
[34, 35]where the assumption is that local effective propertiesmay be used to define periodic composites. The
retrievalmethod leads to the refractive index n and thewave impedance , which defines the reflectivity of a
semi-infinite slab.However, while simple in principle, such retrievalmethods are limited to ordered arrays and
often produce ambiguous results due to oversimplified initial assumptions of the bulkmodel [36].

Certainly engineers like structures and designs that follow some type of order. However,materialsmay be
also amorphous and isotropic, and naturalmaterials on themacroscopic level are quite often random in essence.
Itmaywell be that a randomplacement of complex particles would be enough to produce emergent properties
in the overall wave response and therefore give us a sample ofmetamaterial [37]. The effective behavior of
metamaterials whosemicrostructure is randomdepends strongly on the governing statistics of the random
distribution. Effective propertiesmay be determined by using the self-consistent effectivemediummethods for
which a substantial body of literaturemay be found. Although variants exist, thesemethods often consider the
scattering problemof a coated particle embedded in amatrix which has the properties of the effectivemedia.
These properties are then determined by requiring the vanishing of the effective forward-scattering amplitude
f f

0
eff

0
eff= q= and as such are formally restricted to the low-frequency and long-wavelength ranges. For examples

where thismethod has been applied to electromagnetic, acoustic and elastic waves, see [20–22, 28, 38, 39].
Although the above self-consistent condition ( f 0

0
eff = ) is physically sufficient to describe the effectivemedium,

two effective properties, i.e. , ,eff effe m( ) cannot be determined ‘simultaneously and uniquely’ from the single
condition. A supplementary condition is needed; this prevents the application of effectivemediummethods to
finding dynamic effective properties. Note however that the above condition is sufficient for wave propagation
in ametamaterial inwhich a singlematerial constant is involved, e.g. in dielectricmedia. Another deficiency of
many current enhancements of the effectivemediummethods is their failure to describe the influence of the
spatial distribution of particles on the effective constitutive parameters. Such a description is possible in the
framework of a self-consistent scheme called the effective fieldmethod [37] and ourwork is within the
framework of this scheme. One of the principal results of the effective field approachwas an adequate definition
of the coherent wave and a proof that it obeys awave equation, i.e., a proof that, under certain conditions, a
randomdistribution of scatterers can, for this purpose, be represented by an effectivemedium [40].Most
calculations proceed by assuming the existence of such an effectivemedium equation.

The subject of the present work is themacroscopic dynamic behavior of the above compositemedium, i.e.,
randomdistribution of particles.More precisely, we shall describe a heuristic scheme for evaluating the effective
properties ofmetamaterials. The approach is based on the idea that a certain effective field acts on each particle,

1
Thisword comes fromLatin andmeans above or beyond the limits of .
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as a consequence of the presence of the other particles; hence, the name effective fieldmethod. The frameworkwe
develop is based on the Fikioris–Waterman [41, 42] andWaterman–Pedersen [43] formalism to evaluate the
coherent wavemotion on both sides of a semi-infinite array of particles2.More specifically, we consider an
averagedwavemotion, where all possible configurations of particles areweighted by appropriate pair-
correlation functions. In contrast to the effectivemediummethods, we derive a fully dynamicmodel for the
effective constitutive parameters, which retains all the relevant information (particle geometry and physical
parameters) provided by an expandedmultipole solution. As a result, the theory discussed in the following is
more complete and potentiallymore useful than previous approaches to derive effectivematerial parameters.

Results

Here, we consider two specific polarizations in electromagnetism, transverse electric (TE) and transverse
magnetic (TM). In addition, parallel to the electromagnetic example is themathematically identical case of
acoustics and anti-plane elasticity.

We then consider these as two-dimensional problems. Indeed, exploiting the physics common tomany
types of wave propagation, the idea ofmetamaterials has been implemented successfully for acoustic and elastic
waves.Many of the conclusions drawn fromphotonics research directly apply to acoustic waves and acoustic
metamaterials due to the essential similarity of the governing equations in the two cases. Realizing analogous
results for elasticmetamaterials is complicated by the fact that the governing equation for elasticity admits both
longitudinal and shearwave solutionswhich are capable of exchanging energy between each other. However,
anti-plane elasticity is a special state of deformationwith just a single non-zero displacement field, similar to
transverse electromagnetics. The governing equation common to electromagnetics, acoustics, and linear anti-
plane elasticity is detailed in appendix A.

Effective constitutive parameters depend onmany factors including the intrinsic properties of the particles
and the hostmatrix, their shape and topology. The latter determines how the particles are distributed in the
matrix. The system considered in our study is composed of two isotropic phases: cylindrical particles of arbitrary
shape randomly distributed in a hostmediumwith propagation constant k mdw= for some (possibly
complex) parameters ( ,m d) of themedium.Depending on the application, thesematerial parameters could be,
e.g., compliance ( G1 ) and density (ρ) for shear horizontal polarized elastic waves or permittivity (ε) and
permeability (μ) in electromagnetism; a number of useful relationships among these parameters are
summarized in table 1.

In appendix B, we briefly review the effective fieldmethod. Subject to the quasi-crystalline approximation,
two equations are obtained forwhich the effective wavenumber  of some coherent wavemotion (either
electromagnetic, acoustic, or elastic) and the effective impedance , are given in implicit form.Note that,
whereas the dispersion relation for  is polarization-independent, the effective impedance depends on the type
of the incident wave. These equations are the starting point of all further developments. Observe that the
particles have a size distribution and their relative positions are described by an arbitrary cross-pair distribution
function gij. Also, the size distribution is represented by a ;j jh h= ( ) here aj is the radius of the circular
surface circumscribing a particle, and η is the number of particles per unit area.

Without loss of generality, we next assume the particles are identical and have equal sizes a a.j º Here, we
refer only to thefinal explicit solutions for the effective parameters effm and ,effd which are expressed elegantly as

k k
1

2 2
, 1eff

1 2 2

2

2
3m

m
m m
 

+ + +~ ~ ( ) ( )

Table 1.Relationships among electromagnetic, acoustic and elasticmaterial parameters.

Electromagneticsa Acoustics Elasticity

m TMe TEm Pr G1

d TMm TEe 1 k SHr

a Observe that the permittivity and permeability for a specific polarization can be related to a

pair of acoustic and elastic constants. For instance, G, , 1 , 1 .TE TE SH Pe m r r k« «( ) ( ) ( )

2
The later reference, is the earliest work to our knowledge to predict explicit relations for the effective bulk parameters ,eff effe m( ) in the

dynamic range. The authors have also predicted negative frequency-dependent effm at single-particle resonances although the plots only
displayed the positive values. In fact, they only noted that ‘the effective parameters vanish or diverge at certain frequencies’without further
comment, which suggests that the results were considered curious at that time. Currently it is common to have negative effective parameters,
andmuch research onmetamaterials is focused on this area.
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k k
1

2 2
, 2eff

1 2 2

2

2
3d

d
d d
 

+ + +   ( ) ( )

where 4 . ph= The scalar coefficients ,1 2m m~ ~( ) and ,1 2d d ( ) are given inmatrix notation by

ae Qe e JQe, 3t t
1m = -~ ( )

k
be QRQe e JQRQe e Qe e JQe

1

4
3t t t t

2 2

2 2
m

⎡⎣ ⎤⎦= - - -~   ( ) ( ) ( )

and

ae Qe e JQe, 4t t
1d = + ( )

k
be QRQe e JQRQe e Qe e JQe

1

4
. 4t t t t

2 2

2 2
d

⎡⎣ ⎤⎦= + - -   ( ) ( ) ( )

One can easily check that these equations are compatible when .eff eff
2 2m d  w= Incidentally, we obtain

k e Qe e QRQe ,t t2 2 2 3   + + +  ( ) which is, as expected, the second order expansion in ò of the implicit
wavenumber equation (B1). Note that all notations appearing in equations (3a) and (4a) are introduced in the
appendix.

Results in classicalmultiple scattering theories are usually defined in terms of the angular shape function fq for
scattering of a planewave by a single particle. It is useful to render yet another formof the coefficients (3a) and
(4a) in terms of f .q This is done by considering the line-like approximation: in addition to a 1,2  we also
require kb 1. To render the resultsmore tractable, the spatial distribution of particles is assumed to be
isotropic and homogeneous, for which g r g r r bH .ij º = -( ) ( ) ( ) This describes a non-overlapping condition;

here, g denotes a pair-correlation function, H is theHeaviside unit function, and b a2= is the diameter of the
particles. Retaining only the leading order term in kb of themultiple scatteringmatrix R, and using the
definition (C2) for f ,q we obtain

k k
e QRQe e JQRQe

1

4
and

1

4
, 5t t

2 0 2
H H@ - @ - p  ( )

with

f f
2

d cot 2 and . 6
0

d

d
H G Gòp

q q= =a
p

q a
q

a
q

q a q-( ) ( )

Bymeans of these approximations, we can infer the following closed-form constitutive relations

k
f f

k
1

2 8
, 7eff

2 0

2

4 0 0
0

0G G H H
m

m
⎡⎣ ⎤⎦ 

+ - + - - -p
p

p ( ) ( ) ( ) ( )

k
f f

k
1

2 8
. 8eff

2 0

2

4 0 0
0

0G G H H
d

d
⎡⎣ ⎤⎦ 

+ + + - - +p
p

p ( ) ( ) ( ) ( )

Apart from their dependence on k and ò (or η), the effective dynamic parameters ( ,eff effm d ) given by
equations (7) and (8) are all completely determinedwhen the angular shape function fq for an isolated particle is
known. If this scattering amplitude can be determined either analytically, numerically, or experimentally, then
the effectivemedium equivalent to the artificial composite is fully described.

It is noteworthy that if onewants to study the behavior of effective parameters at high concentrations (where
such expansionsmay not be valid) the general implicit equations detailed in appendix B should be used and/or
more accurate pair correlation functions should be considered. Neither incident wave nor boundary conditions
have entered yet in the above description. Consequently, the results admit several solutions corresponding to
different polarization states. In the supplementarymaterial 3 (section S1), the expansions (1) and (2) (or (7) and
(8)) are specialized to electromagnetic, acoustic, and elastic scattering for longwavelengths (a L ). This
provides an additional check on the correctness of the results obtained in this paper. A further check on the
consistency of ourmethod is provided in the supplementarymaterial (section S2). It is shown that the quasi-
crystalline approximation is self-consistent and identical to coherent potential approximation [44] at least to
second order in concentration, provided the effective parameters are identified as those derived in this section.

Discussion

While the limiting cases considered in the supplementarymaterial (section S1) perform a check of the theorywe
have presented, they neglect some important features of the effective fieldmethod. Therefore, we address this
problemnumerically in order to illustrate the dynamic behavior of the effective parameters. In the following, the

3
See supplementary text for a check on the consistency of ourmethod, and an alternative self-consistent procedure.
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effective parameters ,eff effm d( ) are calculated by using equations (1) and (2), together with the Percus–Yevick
pair-correlation function for hard disks [45].

Example illustration
Weconsider afiber bundle (or circular cluster of dielectric fibers with 10m = ) of effective radius reff in vacuum.
A plane electromagnetic wave is incident on the fiber bundle. A sketch is shown infigure 1. There are 68 circular
fibers each of radius a randomly distributed in the cluster and their volume fraction is 10.88%.The refractive
index of the fibers is n0 ( 0e= ) 1.33 0.01i.= + Exactmultiple scattering simulations4 are comparedwith the
effectivemediummodel (i.e. equivalent homogeneousmagneto-dielectric inclusion5with effective parameters

,eff effe m( )). Themultiple scattering results are averaged over different realizations of the fibers locations.With
500 realizations, themaximumerror between the numericalmodel and the effectivemedium results is less that
0.5%, for the two cases illustrated.

Figures 2 and 3 show the spatialmaps of the near-field electric field amplitude Ez for two different incident
wavelengths, r a2 5 10effL = = and r a4 25 4 ,effL = = respectively. Figure 2 illustrates the response of the
coherent wave regarding the topology of thefiber-bundle. As expected, thewaves are insensitive to the relative
locations of thefibers for longwavelengths. This is not the same for shorter wavelengths. A comparison of the
results infigure 3 indicates the agreement is excellent even for the high frequency case considered ( a4L = ). It is
particularly encouraging that the agreement is excellent even inside the circular cluster. Observe that the a
regular arrangement offibers produces a result that is closer to the effective cluster for longwavelengths, than is
the result obtainedwith a random realization of the fibers locations.We should note that although the
comparison infigure 3 is excellent, itmay not always be so for other geometries of the fiber bundle. In a final
sectionwe detail various limitations and assumptions of ourmodel and discuss other similar problems obtained
previously.

Anisotropicmetamaterials
It is of considerable interest to discuss the possibility of realizing anisotropicmetamaterials, that is, the material
parameters are not scalars but tensors, with their principle components taking different values. Different from
the anisotropy property of thematerial itself, we shall examine anisotropy originating from geometric
asymmetry and consider a randomarray of elliptic cylinders ofmaterial parameters ( ,0 0m d ). The x- and y-axes
are set in the directions of the semi-minor and semi-major axes of the elliptic cylinders, with respective radii ax

Figure 1. Sketch of the scattering of an electromagnetic wave by a circular cluster of cylindrical particles.

4
The analytical solution toMaxwell equations for scattering bymultiple parallel cylinders has been described, e.g., in [48].

5
Note that, as expected, our results also predict an effectivemagnetic permeability effm atfinite frequencies (different from that in vacuum)

in a system inwhich both thematrix and the particles are non-magnetic.
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and ay. Due to the geometric arrangement of the elliptic cylinders and the symmetry of the scattered fields, the x-
and y-directions can therefore be seen as effective principal directions. Proceeding essentially as detailed in the
supplementarymaterial (section S1), we obtain, in the quasi-static limit

1 2 2 , 9x
x x

eff, 2 2m

m
 f f+ + ( )

1 2 2 , 10
y

y y
eff, 2 2m

m
 f f+ + ( )

1 , 11effd

d
f+ ( )

where a ax yf ph= is the volume fraction of the elliptical cylinders. The coefficients  and ( ,x y  ) are given
by

Figure 2. Spatialmaps of near-field electricfield Ez as a TEwave is incident from the left. Exactmultiple scattering simulations for a
single realization of fibers locations: left panels (A)–(C) random array; right panels (B)–(D) regular array. Top panels (A) and (B)
effective radius reff of the cluster is such that r a2 5 10 ;effL = = bottompanels (C)–(D) r a4 25 4 .effL = =

Figure 3. Spatialmaps of near-field electricfield Ez as a TEwave is incident from the left. Left panels (A)–(C) average over 500 different
realizations (of exactmultiple scattering simulations); right panels (B) and (D) equivalent homogeneous inclusion (single scattering
result)with dynamic effective parameters. Top panels (A) and (B) effective radius reff of the cluster is such that r a2 5 10 ;effL = =
bottompanels (C) and (D) r a4 25 4 .effL = =
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Observe that if a ax y= ( a,= i.e., circular cross section) then x y = ( ,= see supplementarymaterial,

section S1), and .x yeff, eff,m m= The results of equations (9)–(11) show that only the effective property effm
«

is a
tensorwith principal components xeff,m and ,yeff,m whereas effd is a scalar. This is consistent with results
obtained recently in [28], for electromagnetic waves in the quasi-static limit. However, these results should be

consumedwith prudence.We show that, in general, both effm
«

and effd
«

are tensors for arbitrary frequency and
wavelength. To see thismore clearly, let us consider the scattering of a TMwave by perfect electric conductive
elliptic cylinders in vacuum6. From table 1, we infer that ( ,m d) corresponds to ( ,e m), for TMwaves; appropriate

identifications the resulting effectivemedium are implied. Figure 4 shows the effective permittivity effe
«

and

permeability effm
«

tensors. Only the real part of these parameters is presented for brevity. The volume fractionf is
fixed and equal to 6 %.p It should be noted that the actual concentration a ax yf ph= cannot exceed a ax y in
order to be consistent with ourmodel, so that a 12 f ph= when a ax y= ( a= ). Thefigure is intended to

illustrate the variations of effe e
«

and effm m
«

as thewavelength aL  varies on the horizontal axis, for several
aspect ratios a a ;x y here, a a ax y= is the geometricmean of the semi-minor and semi-major axes, ax and ay.
Observe that in the quasi-static limit, for a10 ,L >  where currently availablemodel will be adequate, the

principal components of effm
«

are visibly equal, i.e., ,x yeff, eff,m m regardless of the ratio a a .x y This is as

expected, given equation (11). It is interesting that for shorter wavelengths ( a10L < ), xeff,m and yeff,m become

increasingly distinct as the ratio a ax y decreases from1 to 0.5, an effect not predicted by the existing literature.
This suggests a new route to the design ofmetamaterials with controllable anisotropic effective properties.

Conditions of applicability
The results infigures 2 and 3 support the reliability of the effectivematerial parameters resulting form the supra-
classical dynamic homogenization procedure reported here. Note however that, although not apparent in the
results, there is an approximation involved in replacing afinite-size heterogeneous composite with its
homogenized equivalent, in addition to the reliability of the homogenization procedure (which ignores
transition region complications at the interface x a∣ [41]). In practical terms, itmeans that for afinite sample
of the random composite the applicability of dynamic homogenization not only depends upon the frequency
under consideration but also upon the phase of the composite at the boundary of the sample. An effort to
quantify such an approximation is described in [46]. Here, the approximation results from truncating interfaces

Figure 4.Effective permittivity effe e
«

( ieff effe e= ¢ +   ) (top panels, (A)–(C)) and permeability effm m
«

( ieff effm m= ¢ +   ) (bottompanels,
(D)–(F)) versus thewavelength for a TM-polarizedfield incident upon a randomdistribution of elliptical perfect electrical conductive
cylinders, for various aspect ratios a a .x y Left panels (A)–(D) a a 1;x y = middle panels (B)–(E) a a 0.75;x y = and right panels (C)–
(F) a a 0.5.x y =

6
This is equivalent to solving theNeumann boundary condition. In anti-plane elasticity, this condition corresponds to a cylindrical cavity

with stress-free surface.
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of afinite (or semi-infinite) 1-Dperiodic composite, the later being replacedwithwhat are essentially its effective
dynamic properties in the infinite Bloch-wave domain.Other questionswill need to be answered relating to the
shape and size of the scattering boundary, the effect of increasing the number of particles, and howmany
realizations are required to determine both the near- and far-fields accurately. It is expected that as the bounded
area increases, so does the uncertainty of the calculated field. An investigation in this direction is beyond the
scope of the paper, however we refer the reader to the comprehensive numerical analysis (based on the quasi-
crystalline approximation) reported in [47, 52]. The later references should comewith awarning, as their
analysis contains the implicit (and incorrect [53]) assumption that the dielectric permittivity is the only quantity
of interest.

Finally, let us note that the effectivematerial parameters derived in here (which are tensor values for
anisotropicmedia) are not necessarily tied to the physicalmaterial parameters of any of the individual elements
of themetamaterial. A rather critical survey discussing the link and the difference between these two concepts
(i.e. effective versus characteristicmaterial parameters), particularly for the case ofMaxwell’s equations, is
presented in [54]. As evidenced in this survey and references therein, homogenization theories continue to
attract attention and even controversy. It appears, from considering exact reflection coefficients at oblique
incidence (if one assumes that Fresnel-like formulae are always valid), that any effectivematerial parameters that
can be introduced in any theorywould depend on the angle of incidence; broadly speaking, theywould depend
on the type of illumination. Thismeans that these effective properties do not necessarily relate solely to the bulk
properties of thematerial itself; they can involve thematerial and the type of illumination. Relevant
considerations in this direction are presented for periodic composites in [55, 56]. A retrievalmethod extended to
the arbitrary orientations of the principal axes of anisotropy and oblique incidence was presented in [57]. A
discussion regardingmodelling of the coherent wave propagation from the knowledge of thematerial properties
along the principal axes only is elaborated in [58].

To summarize, a self-consistentmultiple scattering approach, which enables the dynamic homogenization
ofmetamaterials in two-dimensions, is developed. The quasi-crystalline approximation is employed to break
the hierarchy of increasing conditional probability densities, but otherwise the treatment is exact. In particular,
the effective wavenumber and the effective impedance is obtained. These characteristics can then be used to
determine the effective constitutive parameters of the homogenisedmaterial.Whether the resulting effective
parameters represent a true bulk property of themetamaterial in the dynamic range is yet to be determined. The
two natural approximations—dilutemedia and low frequency approximations—show consistency, and,
moreover, the quasi-static limit gives results reminiscent of the laws ofMaxwell Garnett [49], Ament [50], and
Kuster andToksöz [51], respectively for electromagnetic, acoustic, and elasticmaterial parameters (see
supplementarymaterial, section S1, formore details). The entire analysis described in this work is germane for
alternative analytical procedures based on other scattering operators Q for an isolated particle. As shown in the
supplementarymaterial (section S2), a fully self-consistent proceduremay be based on a newkind of isolated
scatterer problem.Wehave shown that the coherent potential approximation, used inmany previous works, is
only an approximation of this procedure to the first order in the concentration of particles.

The theory provided here offers exciting opportunities for researchers in different communities, ranging
from seismic waves to the entirefield of ultrasound research, and spanning radio frequency and optical
engineering. In particular,metamaterialmodelling in optics, physical acoustics, and condensedmatter physics
may benefit from a rigorous, compactmodel for estimatingmore accurate and anisotropic effectivemedium
parameters that homogenize artificialmedia.
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AppendixA. Governing equation

There aremany examples of wave equations in the physical sciences, characterized by oscillating solutions that
propagate through space and timewhile, in losslessmedia, conserving energy. Examples include the scalar wave
equation (e.g., pressure waves in a gas),Maxwell’s equations (electromagnetism), Schrödinger’s equation
(quantummechanics), elastic vibrations, and so on. From amathematical viewpoint, all of these share certain
common features. In the following, we shall briefly identify the similarities between three types of suchwaves, in
two-dimensions: electromagnetic waves, anti-plane elastic waves, and acoustic waves. Electromagnetic waves
are quite different from acoustic and elastic waves in that they can travel through vacuum.However, from an
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algebraic perspective, all three types of waves can be described by a unique scalar equation and hence these
disparate phenomena can be studied simultaneously. The prototype problem consists of thewave equation at
fixed angular frequencyω

r r r r 0, A11 2m dy w y  + =-( )· ( ) ( ) ( ) ( ) ( )

where c 1 md= is the phase velocity of thewave for some parameters rm( ) and rd( ) of themedium. In the
above, the scalar wavefunction r e tiy w-( ) corresponds to some physical field.

The problem considered here is reduced to points in the x-y plane (i.e. the cross section plane of our
scattering geometry), which in polar coordinates are rr , ;q= ( ) here, θ ismeasured from the positive x-axis. Let
usfirst consider the two importantmodes for electromagnetic wave propagation: the transverse electricfield and
the transversemagnetic field. Thesemodes are closely analogous to anti-plane shear in elastodynamics and to
acoustic waves. Let us assume themedium is isotropic and has dielectric permittivity ε andmagnetic
permeabilityμ that are independent of z.A transversemagnetic (TM)field is a special solution of theMaxwell’s

equations that has the form x yH i, ,zy= ( ) and the electrical field E H i ii .
y x x ywe = - ´ = -y y¶

¶
¶
¶

A

transverse electric (TE)field is another special solution of theMaxwell’s equations that has the form

x yE i, ,zy= ( ) whereby themagnetic field is given by H E i ii .
x y y xwm = ´ = -y y¶

¶
¶
¶

Observe that simple

knowledge of the scalar wavefunctionψ suffices for the determination of the x and y components of the electric
andmagnetic fields, for the two polarizations.Hence, equation (A1) is the governingwave equation for
electromagnetic waves provided that H, , , , zm d y e m«( ) ( ) for TMwaves, and E, , , , zm d y m e«( ) ( ) for TE
waves. The general solution independent of z is a superposition of the TE and TM solutions. This can be seen by
observing that theMaxwell’s equations decouple under this condition and a general solution can bewritten as
H H H H H H, , , , 0 0, 0, ,x y z x y z= +( ) ( ) ( ) where the second term represents the TM solution. Thefirst term is of

course the TE solution because H H H H, , 0 0, 0, ,x y y x x y ´ = -¶
¶

¶
¶( ) ( ) which implies E E 0x y= = as

expected. Let us now consider the case of anti-plane shear strainwhich is a special state of deformationwhere the
displacementfield is given by x yu i, .zy= ( ) This is an out-of-planemode of deformation and is analogous to
transverse electromagnetic wave propagation. In the linear regime, an isotropic elasticmedium is characterized
by its density ρ and the Lamé elastic constants G mº andλ:G is the shearmodulus (notation used to distinguish
from the permeabilityμ employed in electromagnetics) and l = Gk - whereκ is the two-dimensional bulk
modulus. Hence, equation (A1) is thewave equation for anti-plane shear provided that

G u, , 1 , , .zm d y r«( ) ( ) Shearwaves that satisfy this equation are also called SH (shear horizontal)waves,
particularly in seismology. Finally, let us consider the acoustic wave propagation in an isotropicmedium. For an
inviscid fluid or gas, the shearmodulusG is zero—andλ is just the bulkmodulus. In this case, replacingψwith
the pressure p u,k= - · we obtain precisely the acoustic wave equation (A1) for P (or compressional)waves
if , , 1 .m d r k«( ) ( )

In essence, the solutions of the three problems consideredwill lead to similar conclusions if wemake the
appropriate interpretation of the quantities involved.

Appendix B. Effectivefieldmethod

Suppose that discrete particles of cylindrical geometry are randomly and uniformly distributed in a half-space
defined by x 0 .>{ } The particles need not be circular, provided that each of them can be contained in a
circumscribing circular surface of radius aj (with an axis of revolution parallel to the z-axis); their number
density is .jh Both the particles and thematrix aremade of isotropicmaterials. Let a planewave

kx texp iy w= -[ ( )]of unit amplitude propagate withwavenumber k in thematrix along the x-direction.
When this wave propagates in the compositematerial,multiple scattering occurs. Either propagation or
diffusion, or a combination of the two phenomena is observed, depending on the frequency aswell as on the
geometrical andmaterial properties of the composite. Assuming that propagation occurs, one can describe the
coherent wavemotion in the composite by a complex-valuedwavenumber . The fundamental equation for
configurational averages of the exciting and totalfields for scalar wavefunctions has been derived in detail in
[40, 41, 52, 59]. The quasi-crystalline approximation [60] is used to truncate the hierarchy of equations (Foldy-
Lax hierarchy) so that only the correlation between every two particles is considered.We obtain the implicit
dispersion equation for the effective wavenumber  of the coherent wave x texp i  w-[ ( )]

k a , B1
j j j

2 2  å= + ( ) ( )
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where 4 ,j j ph= and the effective scattering amplitude  is given by

a e Q R e, B2j
t

j i i ij
1 1

 å= -- -( ) ( ) ( )

e 1, 1, t= ¼( ) is a constant unit vector. The shorthand notation bR Rij ijº ( ) and aQ Qj jº ( ) has been used.
The infinite squarematrices bR ij( ) and aQ ,j( ) have elements

b
b

k
b

1
, B3n ij

n ij

n ij2 2


 


 =

-

-
+n

n
n

-
-( ) ( ) ( ) ( )

where b a a ,ij i j + and

Q a T a
1

i
. B4n j n n j

p
d=n n( ) ( ) ( )

Here, ijd denotes theKronecker delta, and ℓ and ℓ are given by

z zH x J z xJ z H x
i

2
,

z x
1 d

d

d

d
1⎡⎣ ⎤⎦

p
= -( ) ( ) ( ) ( ) ( )ℓ ℓ ℓ ℓ ℓ

( ) ( )

z r g r rH kr J zr b
i

2
d 1 ,

b
ij ij

1

ij

⎡⎣ ⎤⎦ ò
p

= -
¥ ( )( ) ( ) ( )ℓ ℓ ℓ

( )

where Jℓ and H 1
ℓ
( ) are the cylindrical Bessel andHankel functions, respectively, and x kb .ij= The function gij is

the cross-pair distribution function of two particle species (with sizes ai and aj), and satisfies the non-overlapping
condition: g r 0ij =( ) for r b ;ij< also, if the distance between particles tends to infinity, then the correlation
between their locations disappears, i.e., g rlim 1.

r
ij =

¥
( )

The scattering coefficientsT an j( ) in equation (B4) depend on frequency, size aj, as well as on the properties of
the particle and those of thematrixmaterial; they are evaluated by imposing appropriate boundary conditions
at r a .j=

Equation (B1) follows directly from a Lorentz–Lorenz-type law, and is an exact expression for the effective
wavenumber, subject to the quasi-crystalline approximation. It is of interest to note how various physical aspects
are embedded in this equation. The scatteringmatrix Q describes the response of a single particle to a plane
incident harmonic wavewithwavenumber k, and contains all the scattering behavior in terms of particle
geometry and physical parameters. The effective wavenumber  only appears in thematrix R,which is defined
by the spatial arrangements of particles, and accounts formultiple scattering. Should the distribution of particles
be regular, the quasi-crystalline approximation is exact, inwhich case themultiple-scatteringmatrix R can be
reduced to awell known lattice sum.

The theory described above is now complete insofar as behavior within themedium is concerned. It is also of
interest, however, to calculate the effective impedance , which defines the reflectivity of the half-space
x 0>{ }—a quantity whichmay bemeasured directly. Following the derivations in [37, 41], the coherent
reflected field kxexp iRyá = -( ) at the half-space boundary can be obtained explicitly, with the reflection
coefficient defined as

a

k a4
. B5

j j j

j j j
2

0

R








å
å

= -
+

p( )
( ) ( )

Here,R represents the average (coherent) back-scattered amplitude at normal incidence in the domain
x 0 .<{ } The effective scattering amplitudes, 0 and ,p correspond to coherent waves scattered in the forward
and backward directions, respectively, and are given by

a ae Q v e JQ vand , B6j
t

j j j
t

j j0 = =p( ) ( ) ( )

where nJ cosnd p= n{ } is a diagonal infinitematrix. The infinite eigenvector v ,j associatedwith the
wavenumber equation, follows from anEwald–Oseen-type extinction theorem,with the result

k

k
v I Q R e

2
, B7j i i j ij

1



å=

+
-

-( ) ( )

where I is a unit infinitematrix.Martin [61] has obtained a formula forR for obliquely incident waves on a half-
space of circular scatterers; it can be shown that at normal incidence the result in his equation (39) gives
agreementwith equation (B5). The behavior of thefields across interfaces was also examined in [61–63]; it was
found that thefields themselves are continuous but the slopes are discontinuous. Using the estimate for the slope
discontinuity, effective constitutive parameters can be derived, as shown in [61, 63]. Equation (B5) is an exact
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formula for the reflection coefficient7; it can be used to determine effective parameters ( ,eff effm d ) uniquely. It is
often assumed that the effectivemedium corresponding to the distribution of particlesmay be described as a
homogeneousmedium from the standpoint of coherent wave propagation—the homogenized equivalent
having the effective dynamic properties of the composite. In the following, we shall use this analogy, whereby the
reflection coefficientR at the interface between the homogeneousmedium and the homogenized equivalent,
may bewritten (as is standard) in terms of impedances (resulting in a Fresnel-like formula)8.Then, equating the
result with equation (B5), the effective impedance  can be explicitly calculated. As expected, the effective
impedance is different for different polarizations. Two cases are possible, with the following results:

z zand , B8m d   = = ( )

where

z
k a a

k a a

4

4
. B9

j j j j

j j j j

2
0

2
0

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦





 

 

å

å
=

+ -

+ +

p

p

( ) ( )
( ) ( )

( )

Here, z m d= is the impedance of thematrix; the superscripts ‘m’ and ‘d’ correspond to different physical
situations, as we shall see below.We can now state ourmost general expressions for the effective dynamic
constitutive parameters ( ,eff effm d ),

k k
and B10eff effm

m

d

d
m d



= = ( )

where ( ,m d  ) are defined in equations (B8)–(B9). Observe that, by using the definition,

k
k

a
1

2
B11

j j j0 å= + ( ) ( )

in equation (B10), the resulting parameters ( ,eff effm d ) can be expressed explicitly in terms of the effective
forward and back-scattering shape functions, 0 and .p

To conclude this section, we consider the line-like approximation of the constitutive parameters (B10). For
this, the size of the particles is assumed small compared to the incident wavelength (aj L ). At leading order,
the single-scattering operator Q is compact and has only three eigenvalues offinite size (related to termswith
n 0, 1=  ). Furthermore, the infinitemultiple-scattering operator R is reduced to a rank 3matrix. Omitting
the details, wefind for circular cylinders (withT T1 1= - ),

k T a

k T a

1

i
1

i

, B12
j j j

j j j

eff

2
1

2
1

m

m





å

å
p

p

+

-


( )
( )

( )

k
T a1

1

i
. B13

j j j
eff

2 0
d

d
åp

+ ( ) ( )

It can be shown that in the quasi-static limit (aj 0L ) the effective property effm is reminiscent of the laws
ofMaxwell Garnett [64], Ament [50], andKuster andToksöz [51], in two-dimensions, respectively for
electromagnetic, acoustic, and elasticmaterial parameters. (This is further described in the supplementary
material, section S1.)On the other hand, the effective property effd reduces to the simple and inverse rules of
mixtures, depending on the physicalmodel under consideration, and as seen from equation (B13) is linear in .j

AppendixC. Explicit second order approximations

At low concentrations ( a 1j j
2  ), the dispersion equation is explicit, and reduces to thewell-known formula

[40]

k f a , C1
j j j

2 2
0 å+ ( ) ( )

where the forward-scattering amplitude f0 is given by f a e Q e.j
t

j0 =( ) More generally, the angular shape
function fq for each particle is defined, in terms of Fourier series, as9

7
Note however that during the derivation, complications in the transition region a x a - near and on both sides of the interface have

been ignored [41] .
8
For instance, for acoustic waves, z z :R  = - +( ) ( ) this result implies the continuity of pressure and normal velocity at the

interface; for anti-plane elastic waves, z z :R  = - - +( ) ( ) here, the continuity of the out-of-plane displacement and the
corresponding stress are implicit. Similar results in electromagnetics are known as Fresnel relations (for TE and TMwaves).
9
Note the shorthand notation

n nå å=
=-¥

¥
is used throughout.
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f a T a
1

i
e . C2j

n
n j

niåp=q
q( ) ( ) ( )

An expansion of the dispersion equation (B1) to the second order in concentration results in

k e Q e e Q R Q e , C3
j j

t
j i j i j

t
i ij i i j k

2 2
,

      å å+ + +  ( ) ( )

where thematrix bR R Rlimij ij
k

ij


º =


 ( ) and has elements

b x
k

x J x H x x J x H x
i

4
, C4n ij x x2

2 2 1 2 d

d

d

d
1⎡⎣ ⎤⎦ 

p
= + - -

~
n( ) ( )ℓ( ) ( ) ( ) ( ) ( ) ( )ℓ ℓ ℓ ℓ ℓ

( ) ( )

with n ,n= -ℓ and x kb .ij= Note that for spatially uncorrelated particles, x 0. =( )ℓ
For the effective impedance of equation (B9), atfirst order in concentration, we have

z
k

f a
1

2
, C5

j j j2
 å= - p ( ) ( )

where the back-scattering amplitude fp is given by f a e JQ e.j
t

j=p ( ) The second order approximation is too
long towarrant including here. For completeness, we also give the following results, in terms of Fourier series,

b T a T ae Q R Q e
i

, C6t
i ij j

n
n ij n i j2

,

åp
=

~

u
n n ( ) ( ) ( ) ( )

b T a T ae JQ R Q e
i

1 . C7t
i ij j

n

n
n ij n i j2

,

åp
= -

~

u
n n ( ) ( ) ( )( ) ( )

These expressions can be easily approximated in the low frequency limit by observing that, to leading order

in (kbij), and for uncorrelated particles, n k2 .n
2 n@ -

~
n ∣ The results obtained here have been used to derive

the analytic formulae presented in themain text.
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