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Graphical Abstract

It is a given that ECM proteins function outside cells. We evaluate emerging data that implicate non-
canonical roles in the cytoplasm or nucleus. We discuss the conceptual and experimental challenges
that will need to be met to investigate this under-studied area of ECM biology more rigorously.
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Summary

In metazoans, the extracellular matrix (ECM) provides a dynamic, heterogeneous
microenvironment that has important supportive and instructive roles. Although the
primary site of action of ECM proteins is extracellular, evidence is emerging for non-
canonical intracellular roles. Examples include osteopontin, thrombospondins, IGF-binding
protein 3 and biglycan, and relate to roles in transcription, cell-stress responses, autophagy
and cancer. These findings pose conceptual problems on how proteins signalled for
secretion can be routed to the cytosol or nucleus, or can function in environments with
diverse redox, pH and ionic conditions. We review evidence for intracellular locations and
functions of ECM proteins, and current knowledge of the mechanisms by which they may
enter intracellular compartments. We evaluate the experimental methods that are
appropriate to obtain rigorous evidence for intracellular localisation and function. Better
insight into this under-researched topic is needed to decipher the complete spectrum of
physiological and pathological roles of ECM proteins.



Introduction

The extracellular matrix (ECM) of animals is a complex, structured, proteinaceous network
that has vital roles in supporting multi-cellularity and the organisation of tissues. Over the
last decades, our understanding of the ECM has expanded significantly such that the
metazoan ECM is now recognised as a dynamic, heterogeneous environment that mediates
complex interactions between constitutive ECM components, cell surfaces, growth factors,
morphogens, cytokines and other signalling molecules [1]. From their extracellular locations,
ECM proteins also have profound effects on intracellular signalling pathways — the so-called
‘outside-in’ signalling [2]. Whilst many diverse and tissue-specific roles exist for the ECM and
its components, the primary site of function of ECM proteins is firmly established to be
extracellular.

Papers in the recent literature challenge this paradigm by pointing to an intriguing and
paradoxical phenomenon, that of intracellular locations and functions for ECM
proteins themselves. Exciting new data propose functions within different intracellular
compartments, including active roles within the secretory pathway, as well as
localisation and specific functions in the cytoplasm or nucleus. Collectively, these
studies implicate intracellular roles in transcription, ER stress, autophagy and cancer.
These data are problematic in view of the fact that ECM proteins contain secretory
signal peptides: the growing evidence for intracellular roles raises many basic
guestions about how ECM proteins can be routed to the cytosol or nucleus, either
from the secretory pathway or by escape from the endo/lysosomal degradation
pathway. The data also imply that ECM proteins must maintain protein folding and
function in milieu with differing redox, pH and ionic conditions [3,4].

The data are also surprising with regard to current knowledge of the evolutionary
origin of metazoan ECM proteins. The dogma is that ECM proteins evolved for
extracellular roles; indeed, all the indications from molecular phylogeny are that these
proteins evolved as secreted protein innovations and are specific to metazoans [5,6].
It appears unlikely that intracellular forms represent an ancestral state. Indeed, the
examples of intracellular localisations and functions that we will discuss pertain to
examples of ECM proteins that evolved either early or late in the metazoan
phylogenetic tree.

In reviewing the literature on non-canonical intracellular locations and functions for
ECM proteins, it was necessary to first establish our working definition of an ECM
protein. Preparing a comprehensive list of ECM proteins is not straightforward.
Because ECM proteins are typically large, multi-domain proteins with many repeated
domains, database annotations can be inaccurate and current Gene Ontology
categories under-represent ECM proteins. We began with Richard Hynes’ definition of
the ‘Core Matrisome’, which includes the proteins that are considered to have a
central role in the ECM, and is based on analysis of domain architectures [7]. Whilst
there is strong experimental evidence for the majority of these proteins as bon fide
ECM proteins, some are included on the basis of their domain structure and have not
been rigorously proven to enter the ECM. The scope of the examples we will discuss
excludes ‘matrisome affiliated’ proteins that only share limited architectural or
biochemical similarities with core ECM proteins, and non-ECM ‘adhesome’ proteins



(this term considers the complete biological system of the ECM, which depends on
post-translational processing, cell surface receptors, extracellular proteases and cross-
linking enzymes, as well as the ECM resident proteins [8]). We note that the
‘matrisome affiliated’ and ‘adhesome’ categories do include secreted proteins, such as
lysyl oxidase (LOX) and matrix metalloproteinases (MMPs), that have also been
reported to have intracellular roles [9,10].

The paradigmatic lifecycle of an ECM protein: A Summary

Before considering the evidence for intracellular localisations and functions, we will outline
the canonical synthesis and trafficking of ECM proteins (Figure 1, green arrows). ECM
proteins contain secretory signal peptides and enter the secretory pathway co-
translationally via the translocon of the rough endoplasmic reticulum (rER). Within the ER
lumen, protein folding proceeds with the assistance of chaperones. Many ECM protein
molecules are oligomeric: these oligomers assemble upon translation and prior to secretion.
As examples, members of the thrombospondin (TSP) family undergo oligomerisation into
trimers or pentamers via coiled-coil domains [11]. Tenascin-C assembles into a 6-armed
hexabrachion structure, composed of two trimers that each assemble as an a-helical coiled-
coil by heptad repeats within the N-terminal region and then associate into a hexamer by N-
terminal assembly domains and adjacent stabilizing disulphide bonds [12]. In the case of
collagens, hydroxylation of lysine and proline residues is essential for thermal stability of
triple helix assembly [13]. Many ECM proteins also undergo extensive post-translational
carbohydrate modifications involving both N- and O-linked sugars [11,12]. Because a major
role of ECM proteins is to form extracellular structural networks and fibrils, an important
aspect of transit through the secretory pathway is the shielding of matrix assembly sites that
would otherwise promote intermolecular interactions. For example, fibronectin is secreted
as a globular dimer that only becomes extended and competent to assemble fibrils upon
binding to cell-surface integrins [14]. The triple helices of procollagen molecules are
assembled in the ER/Golgi, but globular N- and C-terminal domains inhibit the onset of fibril
assembly; these domains are cleaved by specific proteases in coordination with secretion to
enable higher order assembly [13]. For other ECM proteins, associated ER-resident
chaperones may contribute to blockade of matrix assembly sites. As we will cover in the
main part of this article, some ECM proteins co-traffic with extracellular interaction partners
and thereby modulate their activity. In common with other secreted proteins, export of
ECM proteins from the ER requires the general export factor COPII (coat protein Il complex)
[15-17]. Whilst many ECM proteins are secreted constitutively, for others secretion is
regulated according to physiological conditions. Thus, von Willebrand Factor resides in
cytoplasmic storage granules of endothelial cells until its release is activated by hypoxia or
damage to the endothelium [18].

Once in the extracellular milieu, incorporation of ECM proteins into the ECM is ensured by
specific protein-protein or carbohydrate-based interactions. At the external face of the
plasma membrane, binding to receptors such as integrins activates intracellular signalling
[2]. Dynamic turnover of the ECM is effected by extracellular proteases including the MMPs
and A Disintegrin And Metalloproteinase with Thrombospondin Motifs (ADAMTS)
proteinases and/or by cellular uptake of ECM proteins, or their proteolysed fragments, for
intracellular degradation [19,20]. Endocytosis of ECM proteins often occurs by interaction



with heparin and low density lipoprotein-receptor-related proteins (LRP-1) [20,21], and is
followed by trafficking to endocytic vesicles and subsequent intracellular degradation in
lysosomes (Figure 1). As this summary of the canonical lifecycle of an ECM protein makes
clear, intracellular residency is limited to membrane-bound compartments of the secretory
and endo/lysosomal systems.

How Can ECM Proteins Reside Intracellularly?

How might an ECM protein circumvent the above processes to function from within a cell? A
number of possibilities are outlined here and in Figure 1 (blue arrows).

1. Alternative splicing of mRNA, that results in omission of the region encoding the
N-terminal secretory signal peptide, is a well-defined mechanism that can
directly determine an intracellular localisation/function for an ECM protein. We
will discuss the examples of adipocyte enhancer binding protein 1 (Aebp1) [22]
and fibulin 1D’ [23].

2. Alternative translation initiation within an mRNA transcript can also result in
omission of the secretory signal peptide. We will discuss the example of
osteopontin [24].

3. For a number of ECM proteins, distinctive intracellular roles have been identified
that are enacted within the endoplasmic reticulum or subsequent compartments
of the secretory pathway. We will discuss examples of chaperone-like activities
and the modulation of ER stress.

4. Some ECM proteins can escape the endo/lysosomal system and enter the
cytoplasm or nucleus. We will discuss the example of insulin-like growth factor
binding protein-3 (IGFBP3) [25].

5. A number of ECM proteins contain a nuclear localisation sequence and, despite
the presence of a secretory signal peptide, localise to the nucleus. The best
evidence for this mechanism is for members of the small leucine-rich
proteoglycan (SLRP) family, biglycan [26] and prolargin [27].

6. Conceptually, ECM proteins might enter the cytosol by delocalisation from the ER
or other compartments of the secretory pathway, via the ER-associated
degradation (ERAD) pathway [28,29]. Certain bacterial toxins exploit this
pathway to dislocate from the ER and enter the cytosol [30,31], thus a
mechanism of protection from ERAD is not inconceivable. There is no definite
example of this pathway for ECM proteins at present.

Intracellular Localisation and Roles — Evidence of Mechanisms
Alternative Splicing

Alternative splicing of mRNA, that results in omission of the region encoding the N-terminal
secretory signal peptide, will lead to protein translation within the cytosol and thus
intracellular retention (Figure 1). This form of regulation has been established for a few ECM
proteins and there is evidence of distinctive roles of the intracellular variants (Table 1).
Adipocyte enhancer binding protein 1 (Aebp1) exists as two isoforms because of alternative
splicing of its mRNA (Figure 2A) [22]. The smaller isoform, Aebp-1, encodes an intracellular,
nuclear protein of 82 kDa that is expressed ubiquitously and influences adipogenesis and



cholesterol homeostasis by binding to DNA as a transcriptional repressor [32,33]. The longer
protein, aortic carboxypeptidase-like protein (Aclp; 172 kDa), is targeted for secretion by
inclusion of an N-terminal signal peptide [34]. The extra 380 bp in the Aclp open reading
frame also encode an 11 amino acid lysine and proline rich repeat motif and a discoidin
domain: the latter is thought to function in cell aggregation, cell adhesion or cell-cell
recognition [34-36]. Aclp localises predominantly to the ECM of collagen-rich tissues in
developing mouse embryos, notably the dermis, vasculature and skeleton [37]. Aclp-/Aclp-
mice, generated by a strategy to knock-out expression of both variants, die early during
development; those that survive to adulthood display non-healing skin wounds [38]. At least
some of the actions of Aclp within the ECM are mediated by transforming growth factor-
(TGF-B)-dependent pathways, for example by binding to TGF-B receptor Il [36].

A second example of alternative splicing that affects inclusion of the signal peptide occurs in
Fibulin 1D [23]. Fibulins are ECM proteins with roles in elastic matrix fibre assembly and
function [39]. Fibulin 1 is a major ECM glycoprotein, expressed predominantly in blood
vessels [40], where it interacts with many ECM components, including fibronectin and
laminin [41]. However, fibulin 1 was first isolated from placental extracts as a binding
partner of a synthetic peptide corresponding to the cytoplasmic domain of integrin 1
subunit [42]. More recently, Twal et al. investigated the splice variants of fibulin 1 and
identified a new variant, fibulin 1D’, expressed by the A431 cell line. This new variant does
not encode the N-terminal signal sequence or the anaphlatoxin region and is not detected in
conditioned media of transfected CHO cells. Instead, fibulin 1D’ was found to be located
intracellularly in CHO cells and in vivo in human placenta tissue (Table 1) [23]. A role for this
new splice variant in cell adhesion and motility through binding to integrin 1 subunit has
been proposed, but these functions remain to be investigated [23].

Alternative Translation

A second mechanism for omission of a secretory signal peptide from a polypeptide is
alternative translation (Table 1): this often involves translational start from non-AUG
codons, in particular CUG, UUG, GUG, ACG, AUA or AUU [43]. This form of regulation applies
to a limited number of human genes, including osteopontin, a phosphorylated ECM
glycoprotein which has multiple roles in tissue homeostasis and inflammation [44].
Osteopontin mRNA includes two translation initiation sites that allow for the production of
osteopontin either with, or without, the N-terminal signal sequence (Figure 2B). The
initiation of translation of intracellular osteopontin is predicted to occur because of leaky
ribosome scanning or stable secondary structures that stall the ribosome and allow
recognition of an alternative translation initiation site [24]. The first evidence for
intracellular osteopontin was obtained by confocal microscopy of cultured rat calvarial
(cranial bone) cells. Intracellular staining was identified in perinuclear regions, consistent
with Golgi localisation, yet also in distinct intracellular patches adjacent to the plasma
membrane of migratory cells [45]. Subsequently, a role for membrane-proximal osteopontin
in cell motility of fibroblasts, dependent on co-localised CD44-ERM (ezrin-radixin-moesin)
complex at the plasma membrane was identified [46,47]. Osteopontin has also been
identified in the cytoplasm associated with Toll-like receptor 9 (TLR9), a transmembrane
protein which recognises unmethylated CpG sequences in DNA common to bacterial and
viral DNA [48] and in nuclear extracts in association with the transcription factor polo-like-
kinase-1 (Plk-1). A role in mitosis was identified [49]. Intracellular osteopontin is also



implicated in suppression of TLR-mediated immune responses [50] and regulation of
homeostasis and function of natural killer cells [51]. The diversity of cellular sites of action is
especially intriguing given that osteopontin is present only in amniote vertebrates. Whether
the occurrence of alternative splicing or translation is widespread in ECM proteins is an
intriguing question for future research.

Modulation of ER Stress

Evidence is accumulating that numerous ECM proteins do not traverse the ER lumen and
secretory pathway as simple cargoes (Figure 1), but undergo functionally significant
interactions. For example, latent TGF-B-binding protein-2 and -3 (LTBP-2, -3) bind
proprotein convertase 5/6A (PC5/6A) in the ER before being co-secreted and sequestered in
the ECM as a complex in which PC5 activity is blocked [52].

In other cases, ER-localisation is associated with functions distinct from those within the
ECM. Insulin-like growth factor binding proteins (IGFBPs) are important regulators and
carrier molecules for insulin-like growth factor (IGF) [53]. The family member IGFBP3 binds
and regulates the activity of IGF through heparin-binding motifs, which anchor IGFBP3 to
the ECM [53]. IGFBP3 influences ER function by binding the ER luminal resident protein, 78
kDa glucose-regulated protein/binding immunoglobulin protein (Grp78/BiP), a master
regulator of the unfolded protein response. This was demonstrated by multiple methods
(Table 1). In breast cancer cells experiencing nutrient starvation and hypoxia, this
interaction promotes the autophagic recycling of cytoplasmic components to increase cell
survival [54].

Thrombospondins (TSPs) are a large family of evolutionarily ancient, calcium-binding
glycoproteins that are classed as matricellular or adhesion-modulating ECM proteins
because they interact extracellularly with both cells and the ECM, and do not form
structural fibrils [11]. The complex extracellular roles of TSPs involve binding to ECM
components, cell surface receptors or growth factors [11]. There are five TSP genes in
mammals and several family members have been implicated in ER-located, stress-related, or
chaperone-like activities. The best studied is the pentameric family member, TSP4. TSP4 is
present in the myocardium, blood vessel walls, skeletal muscle and tendons, and its gene
knockout in mice results in altered ECM deposition and composition in the heart, tendon
and muscle, and reduced grip muscle strength [55-58].

In-depth study in a transgenic mouse engineered to over-express TSP4 specifically in the
heart, established that TSP4 over-expression correlated with elevation of TSP4 within the
ER, and with upregulation of the ER chaperone proteins BiP, Sdf211, Creld2, Calreticulin,
Armet, Hyoul, Mthfd2 and Pdi [59]. ER stress response proteins, including the PKR-like ER
kinase (PERK) pathway component eukaryotic translation initiation factor 2 a (elF2a),
activating transcription factor-4 (Atf4), and Atféa transcription factors, become activated.
The ER and secretory vesicles become enlarged, consistent with the activation of Atféa,
which acts to increase the secretory capacity of cells during injury [59]. A similar, but
weaker, response was apparent in mice with cardiac over-expression of TSP1 [59]. Atféa is a
transmembrane protein of the ER from which a cytosolic fragment is cleaved by proteolysis
in response to initial ER stress and enters the nucleus to function as a transcription factor. In
vitro, in mouse cardiac extracts, recombinant TSP4 was identified to bind, through its TSP



type 3 repeats, to the ER luminal domain of Atf6a, and overexpression of TSP4 in cells
correlated with protease-dependent nuclear accumulation of Atféa. The Atf6éa response
was lost in Thbs4-/- mice, and expression of Atféa could not be induced by addition of
exogenous TSP-4 protein to cultured neonatal cardiomyocytes [59]. Therefore, the authors
proposed that the conserved type 3 repeats of TSPs have a critical intracellular role in ER
stress response by driving Atféa-dependent enhancement of protein secretion, thereby
promoting reconstruction of the ECM after injury. More recently, correlated upregulated
expression of Thbs4 and Atf6-target genes has been identified in vivo, in mesenteric arteries
of the spontaneously hypertensive rat [60].

The most widely-studied activity of a thrombospondin within the ER relates to a
pathological context. TSP5, also known as cartilage oligomeric matrix protein, (COMP), is
expressed highly in cartilage and tendon. Point or deletion mutations in the type 3 repeats
or L-lectin-like domain of TSP5 are causal for the skeletal dysplasia, pseudoachondroplasia
(PSACH), and certain forms of multiple epiphyseal dysplasia (MED/EDM1) [61-63]. The
mutations cause misfolding and thereby disrupt secretion of TSP5 by chondrocytes. Because
this is a constitutive effect, degradation of mis-folded protein via ERAD cannot clear the ER
to maintain normal ER function, and the chondrocytes develop swollen, giant ER that are full
of TSP5 [64]. An important feature of the pathology is that the accumulation of TSP5 within
ER is accompanied by the co-retention of other ECM proteins that are extracellular binding
partners of TSP5, notably type IX collagen and matrilin-3, and the onset of chronic ER stress
[65,66]. It has not been explored whether this stress response depends on Atféa. Overall,
TSP5 retention leads to aberrant ‘intracellular matrix assembly’ and compromised cellular
function, leading to premature chondrocyte death, impaired secretion of multiple ECM
proteins and compromised quantity and stability of cartilage ECM [64,66]. Overall, the ER is
emerging as an organelle of importance for specific intracellular roles of ECM proteins.

Functions Subsequent to Endocytosis

It is recognised that endocytosis and entry into the endo/lysosomal system is a normal stage
in the lifecycle of an ECM protein (Figure 1 green arrows), and is a step that can also involve
specific functions. For example, TSP1 inhibits vascular endothelial growth factor (VEGF)
signalling by binding VEGF for co-internalisation via LRP1 that leads to lysosomal
degradation [67]. Some evidence supports the concept that endocytosis can be the prelude
to distinct intracellular roles. Micutkova et al. demonstrated by multiple methods that
IGFBP3 can undergo dynamin-dependent endocytosis, followed by association with the
nuclear envelope and entry of IGFBP3 into the nucleus [25] (Table 1). A nuclear localisation
sequence (NLS) was identified in the basic C-terminal region of IGFBP3 (amino acids 215-
232) (Figure 3A) and nuclear import was found to depend on importin-p [68,69]. A similar
NLS motif is present in IGFBP5 and is conserved across vertebrate species (Figure 3A, 3B)
[68]. However, nuclear import of IGFBP5 depends on the nucleolar protein, nucleolin [70].
The active NLS may explain why several nuclear interaction partners have been reported for
IGFBP3. These include the transcription factor, retinoid X receptor and the epidermal
growth factor (EGFR)-DNA-dependent kinase (DNA-PKcs) complex. Through these
interactions, IGFBP3 influences apoptosis and is implicated in the DNA damage response
[71,72]. For example, in oestrogen receptor-negative breast cancer cell lines, responses to
DNA-damaging drugs include increased association between IGFBP3 and EGFR-DNA-PKcs
(Table 1) [71].



In other cases, it is not yet clear whether a cytoplasmic location of an ECM protein is
achieved after endocytosis or by another route, and the mechanisms by which an ECM
protein might escape from lysosomes or autophagosomes without degradation remains
perplexing. An interaction of TSP1 and phosphorylated extracellular-signal-regulated kinase
(PERK) in the cytosol has been demonstrated by co-Immunoprecipitation (co-IP) and the
Duolink antibody method; the latter produces a signal only for epitopes within 40 nm of
each other [73]. The interaction promoted a level of mitogen-activated protein kinase
(MAPK) signalling that resulted in stabilised p53 and subsequent cell senescence. Addition of
TSP1 antibody to cell cultures failed to prevent the co-IP of TSP1 and pERK, favouring the
notion that only intracellular TSP1 might be needed for this function [74]. The mechanism
by which TSP1 enters the cytosol to interact with pERK is unknown. Given the mechanism
implicated for IGFB3, the escape of endocytosed ECM proteins into the cytosol and nucleus
warrants more general investigation.

SLRPs: Nuclear Localisation and Interactions with Transcription Factors

A prominent group of ECM proteins that undergo nuclear localisation are the SLRPs (small
leucine-rich proteoglycans). SLRPs are matricellular proteoglycans that consist of a protein
core of leucine-rich repeat motifs modified post-translationally by addition of
glycosaminoglycan (GAG) chains [75-77]. SLRPs undergo an astonishing range of protein-
protein interactions, including binding to growth factors, cell surface receptors and
collagens [75,76]. They influence innate immunity, inflammation, cell proliferation and cell
differentiation [77]. Several reports describe nuclear localisation and NLSs in SLRPs
[27,78,79]. For example, a bipartite NLS is predicted in the C-terminal region of decorin
(Figure 3A). Decorin was localised to the nucleus in dysplastic and malignant oral epithelial
cells by multiple methods (Table 1). Decorin knockdown by siRNA in these cells resulted in
significantly reduced cell migration and invasion [79].

Another SLRP, prolargin, has been proposed to act as an inhibitor of osteoclastogenesis
through interaction with the transcription factor, nuclear factor kappa- B (NF-kB) [27]. A
bipartite NLS is predicted within the N-terminal heparin-binding region of prolargin
(hdeRELP) (Figure 3A) and active NF-kB is a potential interaction partner for "YPRELP in the
nucleus. Indeed, upon incubation with primary osteoclasts, a synthetic peptide
corresponding to "bdpRELP became internalised and associated with endosomes and, after
20 minutes, accumulated in the nucleus. Introduction of "bdpRELP into RAW 264.7 cells
significantly reduced NF-kB transcriptional activity [27]. It is important to note that these
results are based on a synthetic fragment of prolargin: whether this fragment is generated
in vivo or whether full length prolargin has intracellular roles requires further investigation.

Suspected Intracellular Localisations of Additional ECM Proteins

Further examples of ECM proteins with suspected intracellular localisations are outlined in
Table 2. These studies rely, for the most part, on immunohistochemistry, which is
insufficient alone for reliable determination of a specific intracellular localisation. One
example is laminin, a molecule composed of heterotrimers of a, B and y chains that is
essential for basement membrane assembly [80]. Immunohistochemistry for laminin-332 in
gastric cancer cell lines revealed an unusual intracellular accumulation of 3 and y2 laminin
chains, which correlated with altered cell motility and cancer cell invasiveness [81]. The
accumulation of B3 and y2 laminin chains may result from suppression of a3 chain
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translation and thereby inhibition of laminin-332 heterotrimer assembly. However, it is not
yet defined whether B3 and y2 subunits accumulate within the ER or in other intracellular
locations, or whether there is a causal link between their accumulation and effects on cell
motility.

Lactadherin/MfgeS8 is a secreted glycoprotein of milk now known to have roles in cell-ECM
interactions in multiple tissues [82]. By immunohistochemistry of cells from breast cancer
biopsies, lactadherin is located in the cytoplasm or nucleus of tumour cells, in contrast with
its association with ductal lumens in normal mammary glands (Figure 4) [83]. Intracellular
lactadherin is proposed to enhance the tumorigenic potential of mammary epithelial cells
through regulation of cyclins D1 and D3, but the mechanism for intracellular localisation is
unknown, and experimental investigations are needed [83].

Other cases in Table 2 include SPARC (secreted protein acidic and rich in cysteine) and
lumican. SPARC, also known as osteonectin, is a matricellular and collagen-binding protein
with multiple roles in the modulation of cell-matrix interactions [84,85]. Several studies
have reported intracellular SPARC [86-90] and an interaction with axonemal tubulin in
ciliated epithelial cells has been identified [91]. Emerging evidence suggests the possibility
of further intracellular roles for SPARC, some of which implicate it in tumor progression. For
example, upregulation of intracellular SPARC protein has been reported in chronic
myelogenous leukemia cells, resulting in resistance to the tumor inhibitor, Imatinib [87]. In
lung cancers, the SLRP lumican is expressed aberrantly intracellularly [92], and its
cytoplasmic localisation has been correlated with the aggressiveness of lung squamous cell
carcinomas and adenocarcinomas [93]. In both cases the functions of the intracellular
proteins remain to be identified.

Several ECM proteins have NLSs proven to target them to the nucleus, and nuclear
localisation by unknown mechanisms has been demonstrated for others. Examples include
biglycan, opticin, dentin matrix protein-1 (DMP-1) and CYR61/CTGF/NOV (CCN) proteins
(Table 2). In most cases, their functions in the nucleus remain unclear. The SLRP biglycan
and DMP-1, an acidic ECM protein from teeth, both contain functional nuclear localisation
signals and localise to the nuclei of cultured cells [26,94,95]. Opticin, another SLRP, is
present in the nucleus and ER of patient-derived chronic lymphocytic leukaemia cells [96].
CCN proteins are matricellular proteins which, extracellularly, bind to integrins and various
growth factors to influence wound repair, cancer and skeletal development. Nuclear
locations have been reported for multiple family members, but the mechanisms are
unknown [97-102].

Many of these indications of unusual intracellular locations of ECM proteins relate to cancer
cells. Multiple aspects of normal cell physiology are altered in cancer cells as a consequence
of genetic or epigenetic changes and these might favour the aberrant localisation of
proteins. For example, in oral squamous cell carcinomas, desmosomal and
hemidesmosomal proteins localise to the cytoplasm, instead of the plasma membrane
[103]. Cancer cells can undergo cell-cell-fusion events or cell-in-cell invasion (entosis) which
might also result in cytoplasmic mislocalisation of ECM proteins [104-106]. More research
will be needed to determine whether ECM proteins in the cytoplasm of cancer cells have
functional roles.
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Identifying Intracellular Localisation of ECM Proteins: The Need for Appropriate
Methodology

The indication that there are intracellular-located roles for ECM proteins is counter-intuitive:
therefore it is vital that the experimental evidence presented to justify these activities is
robust. In reporting an intracellular localisation of an ECM protein that is beyond the
expected ER/Golgi pattern, the use of multiple, well-validated, antibodies is an essential first
step. Antibodies need to have been robustly validated for specificity, both by immunoblot
and also by immunohistochemistry in gene knockout or knockdown models, to ensure that
any intracellular-detected staining is credible. Other controls to consider are the use of
class-matched, non-immune immunoglobulins, or blocking peptides for antibody
preabsorption. Independent antibody quality report websites can provide helpful
indications of the properties of individual antibodies [107]. Immunohistochemistry and
immunofluorescence of cultured cells are used frequently to identify locations of ECM
proteins (Table 2) [81,83,87], however, these methods alone are insufficient to define a
specific intracellular localisation. In this article, we have focussed, to the extent possible, on
research that included multiple experimental approaches to establish intracellular
localisation (Table 1). The value of imaging studies can be increased if immunofluorescence
based on confocal microscopy is complemented by examination of co-localisation with well-
established markers for intracellular compartments. More convincing evidence for
intracellular localisation can be obtained if subcellular fractionation methods are used in
combination with imaging techniques. Any cell or organelle fractionation methods also need
to include appropriate controls in the form of established markers for specific intracellular
fractions. Ideally, cell culture studies that identify intracellular roles would include analysis
in a 3-dimensional ECM environment, such as that observed in tissues, to more closely
mimic the physiological conditions.

If potential intracellular interaction partners are known, these should also be investigated in
microscopy-based co-localisation studies. The Duolink antibody method is of value for
identification of intracellular interactions between ECM proteins and constitutive
intracellular proteins [73]. Forster resonance energy transfer (FRET), which determines the
efficiency of energy transfer between two chromophores within 10nm of each other, is
another definitive method to demonstrate proximity of a tagged ECM protein with a tagged
intracellular resident protein. Again, co-localisation evidence needs to be supplemented
with biochemical or biophysical evidence for a physical association between an ECM protein
and a constitutive intracellular protein. In vitro assays to test direct binding of purified
molecules and demonstrations of co-fractionation or association in cell extracts are all of
value. Identification of interactions via proximity ligation with a biotin ligase-tagged ECM
protein can be used to validate protein partners, or as an unbiased method to search for
novel intracellular associated proteins [108].

The use of mouse gene knockout, transgenic, or clustered regularly interspaced short
palindromic repeats (CRISPR) models to investigate specific roles of intracellular ECM
proteins has to date been relatively limited, yet these are all important approaches that
enable manipulation of either intracellular or extracellular isoforms in the in vivo context.
With the exception of tissue immunohistochemistry, the majority of data on intracellular
localisations and functions of ECM proteins to date have come from cell culture
experiments. Progress to 3-dimensional cultures and in vivo models is needed to gain a
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better understanding of the physiological occurrence, regulation, relevance and roles of the
intracellular forms discussed in this article.

Conclusion and Future Perspectives

Whilst there are robust, convincing data for the intracellular localisation of certain ECM
proteins, much remains unknown and speculative. Clear evidence for mechanisms and
intracellular roles is lacking in many cases. The wider use of RNA interference, CRISPR, or
gene knockout models, alongside thorough, well-designed controls, would help to uncover
intracellular roles and place them in a physiological context. In many cases, the mechanisms
by which an ECM protein becomes localised and functional inside the cell remain unknown
or poorly characterised. A new research area would be the clear identification of pathways
that lead to cytoplasmic or nuclear localisation. A good example is the study of Micutkova
and colleagues in which the endocytic mechanisms involved in IGFBP3 uptake and
penetration of the nuclear envelope were analysed systematically [25]. Two other
fascinating mechanisms are alternative splicing [22,23] and alternative translation [24],
which provide demonstrated routes by which intracellular forms of ECM proteins can be
generated. The question of whether these levels of regulation occur for a wider repertoire
of ECM proteins than the examples discussed here warrants investigation. How these
mechanisms might be regulated in cells to adjust the balance between extracellular and
intracellular location of an ECM protein is an open question. With regard to the perplexing
guestion of cytoplasmic sites of function of ECM proteins with signal peptides, the
possibility of interactions between ECM proteins and components of the ER dislocation
process, Sec61 and Derlins, is of interest [29]. Whilst an enormous amount of research has
furthered the consideration of the ECM as a multifaceted environment capable of complex
signalling and regulation of cellular behavior, the emerging topic of intracellular roles for
ECM proteins presents a paradigmatic challenge with potential to open up exciting new
avenues of research in the future.
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Figure Legends

Figure 1. Schematic diagram of the conventional trafficking of ECM proteins and possible
routes to intracellular localisation. Green arrows indicate conventional secretion and
endocytosis pathways for ECM proteins. Solid blue arrows indicate routes for intracellular
localisation for which there is experimental evidence. Dotted blue arrows show potential
routes for intracellular localisation with limited or no supporting evidence.

Figure 2. Mechanisms of intracellular localisation. A) Alternative splicing of AEBP1
transcripts results in a shorter mRNA which does not encode the signal peptide. Mouse
Aebpl was drawn in FancyGene [115]. The figure is adapted from [22]. B) Alternative
translation initiation within osteopontin mRNA results in an intracellular protein which lacks
the signal peptide. Opn-FL refers to the sequence that includes the signal peptide. Opn-i
refers to the intracellular isoform of osteopontin. A1-39 and A1-48 were constructs
engineered to identify the sequence important for alternative translation initiation between
nucleotides 39 and 48 of the mRNA [24]. The figure is adapted from [24] and osteopontin
MRNA has been shortened for illustrative purposes.

Figure 3. Nuclear localisation sequences in ECM proteins. A) Published and predicted
examples of bipartite NLSs in SLRPS and IGFBPs. NLS in decorin and prolargin were predicted
with cNLS mapper [116]. A cNLS Mapper score of 3, 4 or 5 indicates predicted localisation to
both the nucleus and cytoplasm. NLSs in IGFBP3 and -5 are as published [69]. B) The
bipartite NLS of IGFBP3 is highly conserved between vertebrate species. The sequence
alignment was prepared in Muscle 3.8 [117] and is presented in Boxshade. Black shading
indicates conserved residues and grey shading indicates related residues.

Figure 4. Immunohistochemical demonstration of intracellular lactadherin. Lactadherin is
present in the cytoplasm (A) (arrow) and nucleus (B) (arrowhead) of invasive breast
carcinoma specimens. C) negative control without primary antibody. D) distribution of
lactadherin in normal mammary gland (asterisk indicates mammary duct lumen). Scale bar:
50 um. Reprinted by permission from Macmillan Publishers Ltd: [Oncogene] [83], copyright
(2011).

Table 1. ECM proteins identified to have intracellular localisation and function.

Key. EM, Electron microscopy; GST, Glutathione-S-Transferase; IF, Immunofluorescence;
IHC, Immunohistochemistry; IP, Immunoprecipitation.
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A)

Protein Position Sequence cNLS Mapper Score
Decorin 138 NTKKASYSGVSLFSNPVQYWEIQPSTFRCVY | 4.5
Prolargin 2 RSPLCWLLPLLILASVAQGQPTRRPRP 4.5
IGFBP3 215 KKGFYKKKQCRPSKGRKR Published [69]
IGFBP5 201 RKGFYKRKQCKPSRGRKR Published [69]

B)
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Figure 3
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