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Abstract—Shadowing losses on proximate wireless links have 
been experimentally proven to be highly correlated in various 
scenarios. However, most of the existing works on the reliability 
modeling of Wireless Multi-Hop Networks (WMHNs) assume 
independent link shadowing. Neglecting shadowing correlations 
could lead to inaccurate network simulation results and 
unreliable wireless system design. In this paper, we present a 
more realistic reliability model of WMHN that incorporates 
correlated link shadowing. In particular, we use the correlated 
shadowing model that was developed in our previous work.  This 
model enables the efficient generation of spatially correlated 
shadowing. It has been proved to agree well with the literature in 
terms of statistical properties. The proposed network model 
allows us to predict the reliability metrics of WMHNs and study 
network designs that can lessen the effect of correlated 
shadowing. Numerical results indicate that it is important to use 
the correlated shadowing model when evaluating the reliability of 
densely deployed large-scale multi-hop networks. We also present 
some numerical results to show the influence of shadowing 
correlation on redundant node deployment. This paper makes a 
small but fundamental step towards reliable wireless multi-hop 
network design in the context of correlated link shadowing. 

Keywords—wireless multi-hop networks; shadowing; spatial 
correlation; reliability modeling and prediction 

I.  INTRODUCTION  
Recently, there has been increasing interest in wireless 

networks for industrial and medical applications [1], [2]. In 
these applications, data packets that fail to be received 
correctly may result in commercially significant damage, and 
even loss of life. Reliable transmissions assume special 
importance in these critical applications.  

The reliability of a single wireless link may be inadequate 
due to attenuation, shadowing, fading, interference, noise and 
other inherent characteristics of the wireless channel. One 
common way to attain the high reliability levels demanded by 
emerging wireless applications is to employ a Wireless Multi-
Hop Network (WMHN) to provide multiple redundant paths. 
In wireless multi-hop networks, including mesh and sensor 
networks, devices assist each other in transmitting packets 
through the network. A node can send and receive messages, as 
well as relay messages for its neighbors. Before the 
deployment of a WMHN, reliability modeling may be used to 
predict the performance of the network. These predictions can 

then be used to evaluate design feasibility, compare alternatives, 
trade off system parameters and track reliability improvement.  

 In recent decades, network reliability has been studied 
extensively in the context of wired networks [3]-[5]. Most of 
these papers model the network as a random graph and study 
the k-terminal reliability of the graph. The k-terminal 
reliability, defined as the probability that there exists a path that 
connects k nodes in the network, is the most general network 
reliability problem. Because determining k-terminal reliability 
is very time-consuming, most existing works focus on speeding 
up the calculations. Many algorithms, including path/cut-based 
[3], factoring theorem-based [4] and ordered binary decision 
diagram-based (OBDD-based) algorithms [5], have been 
presented to solve network reliability problems. Nevertheless, 
these evaluation methods are not generally applicable to 
wireless networks. The main reason for this is that these papers 
are based on the assumption that all failure events are mutually 
s-independent. However, in a wireless multi-hop network, 
proximate links may have correlated failures. 

The connectivity problem of wireless multi-hop networks 
has attracted increasing attention [6]-[8], [10], [11]. Gupta and 
Kumar [6] presented a detailed analysis of wireless network 
connectivity based on the disk model. This model assumes that 
nodes that are within a certain distance of each other have a 
reception probability of one. Outside range, the successful 
transmission probability is zero. However, the disk model is 
idealistic and ignores the stochastic nature of the wireless 
channel. Bettstetter and Hartmann [7], and Hekmat and 
Mieghem [8], studied the connectivity of wireless ad hoc 
networks using a radio model that incorporates shadowing. The 
log-normal shadowing model considers link shadowing losses 
in dB to be independent and identically distributed (i.i.d.) 
Gaussian random variables with zero mean. Their results show 
that a higher variance of shadowing improves the network 
connectivity. Nevertheless, these papers do not consider the 
effect of shadowing correlations. Several empirical studies 
have shown that shadowing losses on proximate links are 
significantly correlated in various scenarios [9], [10]. Recently, 
Agrawal and Patwari [10] investigated spatially correlated link 
shadowing in multi-hop networks and developed the correlated 
network shadowing (NeSh) model. The same authors then 
applied the NeSh model to the connectivity analysis of some 
small multi-hop networks, e.g., 3 or 4 nodes arranged in a line 
[10], and 16 nodes arranged in grid structures [11]. Their 



 

 

results show that the correlated shadowing suggests a 
significant negative effect on the connectivity of WMHNs.  

In our previous work [12], we improved the NeSh model in 
terms of both accuracy and efficiency. Our model enables the 
generation of spatially correlated shadowing for meshed links 
in multi-hop networks without a large computational overhead. 
It has been shown to agree well with the literature in terms of 
the statistical properties, i.e., for a single link, the resulting 
shadowing loss is a zero-mean Gaussian random variable with 
distance-dependent variance. Moreover, the correlation 
between link shadowing can be adjusted to match empirical 
results by properly setting some model parameters, e.g., de-
correlation distance, and near field of a node. 

In this paper, we apply for the first time the enhanced 
correlated shadowing model [12] to the reliability analysis of 
wireless multi-hop networks. In particular, we first model the 
WMHN as the combination of an undirected graph and the 
correlated channel model. We then define reliability metrics 
and propose corresponding evaluation methods for WMHNs 
with and without redundant relay nodes. The main contribution 
of this work is a method to evaluate the reliability metrics of 
wireless multi-hop networks considering spatially correlated 
shadowing. This, in turn, allows us to study network designs 
that can lessen the effect of correlated link shadowing.  

The paper is organized as follows: in Section II, we 
describe the system models and assumptions made in this 
study. Section III describes the network reliability metric 
together with the corresponding evaluation method. In Section 
IV, we address the effect of the correlated shadowing model on 
network reliability prediction. We also present some numerical 
results to show the significance of redundant relay node 
deployment on the reliability improvement, and discuss 
wireless multi-hop network designs in the context of correlated 
shadowing. Finally, we conclude and discuss future research 
directions in Section V. 

II. SYSTEM MODELS AND ASSUMPTIONS 

A. Network Model 
In wireless systems, link quality is affected by transmission 

and reception capabilities, and the characteristics of the 
wireless channel. When the transmitted signal propagates 
through the channel, part of the energy may be lost through 
absorption, reflection, diffraction and scattering. Link failure 
occurs when the received signal power drops below a certain 
threshold. In this work, we assume that all nodes have the same 
transmit power Pt and the same receiver sensitivity Pthr. We 
also assume a symmetrical wireless channel, i.e., for a 
particular wireless link Li,j, the received power Pi,j will be the 
same no matter the direction of transmission. We further define 
that the link Li,j fails if Pi,j < Pthr. Therefore a wireless multi-
hop network with a number of nodes spread over a certain area 
can be described as an undirected graph G = (V, E), where V 
indicates the set of all nodes, and E stands for the set of all 
successfully communicating wireless links.  

B. Channel Model 
A wireless channel is typically modeled as a combination 

of three components: path loss, shadowing and fading. The 
mean path loss is mostly determined by the distance between 
the transmitter and the receiver. Shadowing is caused by 
obstacles in the communication path and is defined as the 
fluctuation in the received power averaged over a few tens of 
wavelengths. Fading is caused by multi-path propagation and 
its statistical properties have been studied extensively in the 
literature [13]. Many methods, ranging from wideband systems 
to multi-antenna systems, have been developed for combating 
fading. Therefore, we assume that fading is managed through 
clever transceiver design. In this section, we describe the 
channel model as combination of two components: path loss 
and shadowing. 

To describe the channel, we consider two nodes A and B 
that are located at a relative distance of dAB. Node A transmits a 
signal with power Pt dBm. The mean received power at node B 
is given by an empirical formula as 
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where ( )0dPL  is the path loss at a short reference distance 0d  
from the transmitter antenna, and α  is the path loss exponent. 
The path loss exponent depends on the environment. The value 
of α  is 2 for free space, less than 2 for waveguide-like 
environment and larger when obstructions are present [13].  

Because of the shadowing effect, the received power will 
vary from its mean. Shadowing on a dB scale is commonly 
modeled by a zero-mean Gaussian random variable. Thus 
augmenting (1) to include contributions from shadowing gives 
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where σX is a zero-mean Gaussian random variable with 
standard deviation σ .  

 In reality, link shadowing losses are spatially correlated and 
(2) fails to capture this. In this paper, we use a correlated 
shadowing model, adding an important element of realism to 
modeling capabilities. The correlated shadowing model is 
described in detail in our previous work [12]. It has been 
shown to agree with the empirically-observed link shadowing 
properties in WMHNs. In this section, we outline briefly its 
main components and properties for the sake of completeness.  

The main assumption of this model is that the shadowing 
losses experienced on links in a wireless multi-hop network are 
a result of signals passing through an underlying shadowing 
map. We propose the correlated shadowing model as 
combination of the shadowing map and the link shadowing 
function. The map models the shadowing environment in 
which the wireless network operates. The function allows 
correlated link shadowing losses to be calculated from the 
underlying map. By connecting the link shadowing losses with 
the environment, we preserve the correlations that exist 
between wireless links in the real world. 



 

 

 
Fig. 1. A wireless multi-hop network in an underlying environment. 

As in prior literature [10], we assume that the underlying 
shadowing map is a stationary and isotropic Gaussian random 
field with zero-mean and exponentially-decaying spatial 
correlation. In this paper, we simulate a Gaussian random field 

( )xf  on a rectangular grid of size mn ×  as the shadowing 
map. Let dΔ  denote the spacing along the grid. The 
shadowing map will cover a simulation area of size 

dmdnWL Δ×Δ=× . In particular, we will generate a zero-
mean Gaussian random process on each of the grid points 
{ ( )djdi ΔΔ , , 1,,0 −= ni … , 1,,0 −= mj … } corresponding to 
a covariance function given by 
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where s
2σ  is the variance of the shadowing map, δ  is the de-

correlation distance, and ts −  is the Euclidian distance 
between s and t.  

 Although it is intuitively correct to approximate the link 
shadowing loss as the weighted sum of individual shadowing 
values along the communication path, the weighting 
coefficients need to be determined carefully. In the real world, 
obstacles that are close to the antenna have higher impacts on 
link shadowing. This is because the relative loss of diffracting 
or scattering over or around the object is more for the obstacles 
near the antenna. Therefore, the weighting coefficients must be 
distance-dependent to reduce the impact of obstacles in the 
middle of a link on the shadowing loss. We further abstract this 
empirical observation by assuming that the link shadowing is 
dominated by the shadowing values in the near field at both 
ends of the link. The following function is proposed for the 
shadowing loss ABX  of the link ABL as  
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where ABd  is the Euclidian distance between nodes A and B, 
and ( )Af  and ( )Bf  represent the shadowing values in the near 
field of nodes A and B respectively. 

Finally, the total received power at node B considering both 
path loss and correlated shadowing becomes  
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0
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where ABX  is calculated by (4). 

III. NETWORK RELIABILITY 
In this paper, we use simulations to generate graphs that 

represent different deployments of a wireless multi-hop 
network. The reliability of the network can then be studied 
through properties of the graphs. In this section, we first 
describe the simulation process of the graph. We then introduce 

the network reliability metric together with the evaluation 
method.  

A. Generating A Graph  
Our simulator takes the following steps to generate a graph: 

1. Specify transmit power Pt, receiver sensitivity Pthr, and 
path loss exponent α ; 

2. Set the parameters of the underlying shadowing map, 
which include: dimensions of the simulated region L 
and W, spatial resolution Δd , shadowing standard 
deviation sσ , and de-correlation distance δ; 

3. Generate a shadowing map with the covariance given 
in (3) using the Circulant Embedding method [14]; 

4. Set node locations, establish links and calculate the 
path loss on each link using (1); 

5. Calculate the link shadowing losses from the pre-
generated shadowing map using (4); 

6. Calculate the total received power in (5) and determine 
whether a link has failed by checking if Pr < Pthr; 

7. Delete the failed links from the original set of links. 

Some guidelines on parameter settings are given in [12].  

B. K-Terminal Reliability 
Consider the multi-hop network illustrated in Fig. 1. This 

network can be described as an undirected graph G that 
includes 3 source nodes (N2, N3, N4), one sink node (N1), and 
one redundant relay node (R). Under regular network 
operation, packets are generated by each source node and 
transferred to the sink node. However, the redundant node only 
relays messages for its neighbors, and does not provide any 
useful information itself. If any source node is disconnected 
from the sink node, the network has failed. In other words, the 
network is only considered reliable (i.e., operating 
successfully) if all the source nodes and the sink node are 
connected, i.e., all source and sink nodes are critical, and can 
successfully exchange information when required. Redundant 
nodes are not considered critical. 

This is related to application scenarios in industrial 
monitoring and control, where wireless sensors (source nodes) 
monitor some critical physical parameters of the system (e.g., 
temperature, pressure) and periodically send the data back to 
the central control room (sink node). The control system then 
makes decisions according to the received data, e.g., the 
emergency shutdown of a machine or plant to avoid explosion.  



 

 

 

Fig. 2. Effects of de-correlation distance on all-terminal reliability.

 

Fig. 4. Effects of inter-node distance on all-terminal reliability.

 

Fig. 3. Effects of shadowing variance on all-terminal reliability. 

In this case, the reliability measure of interest is the 
probability that there exists at least one operational path that 
connects all the critical nodes in the network. This can be seen 
as the k-terminal reliability, where k is equal to the number of 
critical nodes. When there is no redundant relay node in the 
network, it becomes the all-terminal reliability. 

C. Evaluation Methods 
We evaluate the network reliability metric by simulation, as 

in [11]. In particular, we generate N graphs to represent 
different deployments of a wireless multi-hop network by 
following the simulation process described in Section III-A. 
Each graph is then checked for connectedness between the k 
critical nodes. Finally we count the number of graphs where 
the k critical nodes are connected. The k-terminal reliability, 
which is a success probability for operation in a random 
environment, can be estimated by [15] 

  Psuccess = 1
N

graph _ count( )                   (6) 

As N approaches infinity, Psuccess approaches true reliability. 

IV. NUMERICAL RESULTS AND DISCUSSION 
In this section, a range of numerical results are presented 

using the proposed network model. k-terminal reliability is 
studied with different parameter settings relevant to correlated 
shadowing. We include the result of using the independent 
shadowing model for comparison. We also present some 
results to show the influence of shadowing correlation on 
redundant node deployment. 

For each data point on the graph, we take the mean value 
for the reliability of 10 independently performed experiments. 
The error bars indicate the 95% confidence interval. The size of 
each experiment is N=1000, and the reliability is calculated 
using (6). In each experiment, we vary the transmit power of 
the node. This allows us to study the effects of increasing link 
reliability. We have chosen some node parameters according to 
the datasheet of TelosB [16], where the radio operates at 
2.4GHz, the transmit power Pt can range from -24dBm to 
0dBm, and the receiver sensitivity Pthr is -90dBm. For the 
underlying environment, we set the path loss exponent 3=α , 
and the de-correlation distance m2=δ . These are valid 
assumptions for an indoor environment, where an obstruction 
may have the size of 2m×2m. Because we approximate the 
shadowing value by returning the value of the nearest grid 
point, the spatial resolution must be much less than the distance 
up to which the shadowing value remains approximately 
constant. The empirically accepted bound is a few tens of 
wavelengths. Therefore we set spatial resolution md 1=Δ . For 
the near field of node, defined as aδ from the node location in 
[12], a is chosen to be 0.5, 1, and 1.5 corresponding to link 
distance of 10, 16, and 30m to match the empirically observed 
link correlation coefficients [12]. 

A. Effects of the Correlated Shadowing Model 
We first consider a WMHN of 25 nodes deployed regularly 

in a 5 by 5 grid. The nodes are spaced at 10m. Fig. 2 plots the 

network reliability against varying transmit power for different 
de-correlation distances. As δ goes to zero, i.e., no correlation 
in the shadowing environment, the correlated model is 
equivalent to the independent model. We also observe that for 
the same transmit power, the all-terminal reliability decreases 
as δ increases. This is because a larger obstruction in the 
environment is likely to cause more links to fail 
simultaneously, resulting in lower network reliability. Fig. 3 
shows the all-terminal reliability of the network in 
environments of the same path loss exponent but different level 
of shadowing. For the same transmit power, the network 
reliability decreases with increasing shadowing variance. This 
is because larger link shadowing increases the failure 
probability of the link, and thus the overall failure probability 
of the network.  

We then fix the shadowing environment, and vary the 
distance between two nodes. Fig. 4 illustrates the all-terminal 
reliability of network of varying link distances. For the same 



 

 

 

Fig. 7. K-terminal reliability after introducing the redundant node. 

 

Fig. 5. Effects of network size on all-terminal reliability. 

 

Fig. 6. Networks with two different redundant node deployments. 

 

Fig. 8. Percentage overestimation of k-terminal reliability improvement. 

transmit power, the network reliability decreases as the inter-
node distance increases. Also when links are closer, their 
shadowing correlations become stronger. The negative effect of 
correlated shadowing on network reliability is magnified.  

Finally, we study the effect of different network sizes on 
all-terminal reliability. Because of the efficient modelling 
technique, we are able to extend the reliability analysis to a 
network size of 100 nodes or more. As shown in Fig. 5, it is 
harder to achieve all-terminal reliability for a larger sized 
network even if all other parameters are kept the same.  

A common observation in all these results is that the 
difference between reliability using the independent model and 
the correlated model is not constant. For the higher transmit 
power, the absolute difference becomes smaller. This is 
because when the link has been designed with a large margin, it 
is more robust to shadowing. The probability of link failures 
due to shadowing, either correlated or independent, is small. 
Therefore, in this case, the correlated and independent model 
will produce similar results.   

However, in practice, the nodes do not transmit at 
maximum power in order to minimize interference to other 
nodes, and to conserve energy to prolong network life. 
Therefore it is of critical importance to use the correlated 
shadowing model to ensure an accurate prediction of the 
network reliability, especially in densely deployed networks 
with a large number of nodes. 

B.  Influence on Redundant Node Deployment 
 In this section, we consider a simple 4-node multi-hop 
network with a redundant relay node. As shown in Fig. 6, the 
redundant node can be deployed at two different locations: one 
in the center of the network; the other next to the source node. 
The 4-terminal reliability results for networks without a 

redundant node, with redundant node R1, and with redundant 
node R2 are given in Fig. 7. It can be seen that the deployment 
of R1 results in a larger improvement in network reliability. R1 
introduces more “effective” redundant paths. Because R2 is too 
close to one of the original nodes, if that node is shadowed, 
there is a large chance that R2 is also shadowed. Nevertheless, 
an independent model fails to capture this. Fig. 8 illustrates the 
percentage-overestimation of reliability improvement after the 
placement of R2. The result indicates that not considering 
shadowing correlations the deployment of a network may not 
have the desired level of reliability.  

 For a more complex network, finding a good position for 
relay node in the context of correlated shadowing might 
become quite an interesting problem for future research.  

V. CONCLUSIONS 
This paper presents a mathematical model of the wireless 

multi-hop network, specifically, the combination of an 
undirected graph and the correlated channel model. The 
proposed network model allows us to predict the reliability 
metrics of WMHNs and study network designs that can lessen 
the effect of the correlated shadowing. Numerical results 
indicate that it is important to use the correlated shadowing 
model when evaluating the reliability of densely deployed 
large-scale multi-hop networks. We also present some 
numerical results to show the influence of correlated 
shadowing on redundant node deployment. Future work will 
incorporate higher layer protocols into the existing model and 
evaluate the protocol performance. Another interesting 
direction to take the research further is to study optimal relay 
node placement in a more complex network. 
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