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The neuropeptide galanin has diverse roles in the central and peripheral nervous systems, by activating the G
protein-coupled receptors Gal1, Gal2 and the less studied Gal3 (GalR1–3 gene products). There is a wealth of
data on expression of Gal1–3 at the mRNA level, but not at the protein level due to the lack of specificity of
currently available antibodies. Here we report the generation of knock-in mice expressing Gal1 or Gal2 receptor
fluorescently tagged at the C-terminus with, respectively, mCherry or hrGFP (humanized Renilla green fluores-
cent protein). In dorsal root ganglia (DRG) neurons expressing the highest levels of Gal1-mCherry, localization
to the somatic cell membrane was detected by live-cell fluorescence and immunohistochemistry, and that fluo-
rescence decreased upon addition of galanin. In spinal cord, abundant Gal1-mCherry immunoreactive processes
were detected in the superficial layers of the dorsal horn, and highly expressing intrinsic neurons of the lamina
III/IV border showed both somatic cell membrane localization and outward transport of receptor from the cell
body, detected as puncta within cell processes. In brain, high levels of Gal1-mCherry immunofluorescence
were detected within thalamus, hypothalamus and amygdala, with a high density of nerve endings in the
external zone of the median eminence, and regions with lesser immunoreactivity included the dorsal raphe
nucleus. Gal2-hrGFPmRNAwas detected inDRG, but live-cellfluorescencewas at the limits of detection, drawing
attention to both the much lower mRNA expression than to Gal1 in mice and the previously unrecognized
potential for translational control by upstream open reading frames (uORFs).

© 2015 university of bristol. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Galanin is a 29–30 amino acid neuropeptide that is dramatically
induced after peripheral or central nervous system injury, and plays
physiological roles in nociception, memory and cognition, anxiety-
related behaviours, feeding, reproduction, neurite outgrowth and as a

neuronal trophic factor (Cortes et al., 1990; Lang et al., 2015; Villar
et al., 1989;Webling et al., 2012). The N-terminal 15 residues of galanin
are strictly conserved between species and the N-terminal end is
essential for biological activity (Lang et al., 2015; Webling et al., 2012),
binding to the three galanin receptor subtypes Gal1, Gal2 and Gal3
(GalR1–3 gene products), which are each Class A rhodopsin-like G
protein-coupled receptors (GPCRs) that differ in sites of expression,
functional coupling and signalling activities (Webling et al., 2012). The
phenotypes of mice deficient in each of the galanin receptors have
recently been reviewed (Brunner et al., 2014; Lang et al., 2015;
Webling et al., 2012). Gal1–3 are also bound by galanin-like peptide
(GALP), but not by the GALP alternatively spliced product alarin
(Webling et al., 2012), and recently the neuropeptide spexin/NPQ
(neuropeptide Q) was also reported to bind to Gal2 and Gal3 , but not
to Gal1 (Kim et al., 2014).

In adult rat the expression of Gal1mRNA is largely restricted to brain,
spinal cord and dorsal root ganglia (DRG), whereas Gal2 mRNA is also
detected in several peripheral tissues such as large intestine and uterus.
In contrast, Gal3 mRNA has a more restricted distribution within brain,
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is rare in spinal cord and rare or not present in DRG, and expression in
peripheral tissues is controversial (Burazin et al., 2000; Howard et al.,
1997; O'Donnell et al., 1999; Shi et al., 2006; Waters and Krause,
2000; Webling et al., 2012). By in situ hybridization (ISH), Gal1 mRNA
is more highly expressed than Gal2 overall in brain (Burazin et al.,
2000) and by far the highest levels of Gal2 detected in the nervous sys-
tem are in the DRG (O'Donnell et al., 1999).

In adult mouse brain the distribution of Gal1 mRNA by ISH is largely
similar to rat (Hohmann et al., 2003), whereas the absence of specific
[125I]-galanin binding sites in any region of adult Gal1-deficient brain
(Jungnickel and Gundlach, 2005) suggests a species-specific, greatly
reduced expression of Gal2 mRNA. However, it is still detectable
by the more sensitive RT-PCR method in both mouse whole brain
(Hobson et al., 2006; Jacoby et al., 2002) and subregions including
the amygdala, hippocampus and hypothalamus (Brunner et al.,
2014; Hawes et al., 2005; He et al., 2005; Shi et al., 2006; Zhao et al.,
2013), as well as in spinal cord (Jacoby et al., 2002), DRG, trigeminal
and nodose sensory ganglia (Hobson et al., 2006; Page et al., 2007)
and several peripheral tissues (Barreto et al., 2011; Hobson et al.,
2006; Jacoby et al., 2002; Kim and Park, 2010; Pang et al., 1998).
Less work has been reported on Gal3 mRNA expression, but by RT-
PCR it is detected in mouse whole brain and some subregions
(Brunner et al., 2014; Hawes et al., 2005; Zhao et al., 2013), nodose
ganglion (Page et al., 2007) and several peripheral tissues (Barreto
et al., 2011; Brunner et al., 2014; Kim and Park, 2010), but is at the limits
of detection in both spinal cord and DRG (Hobson et al., 2006; Jacoby
et al., 2002).

Current antibodies against Gal1 or Gal2 are non-selective under stan-
dard immunodetection conditions, with identical immunoreactivity
patterns in wild-type and receptor knockout mice (Hawes and
Picciotto, 2005; Lang et al., 2015; Lu and Bartfai, 2009; F.E.H., P.V. and
D.W., unpublished). To delineate the expression of Gal1 and Gal2 at
the protein level we wished to tag each receptor with fluorochromes.
The C-terminal tagging of GPCRs with green fluorescent protein (GFP)
is generally thought to have no significant effect on GPCR properties
e.g. ligand binding, signal transduction and intracellular trafficking
(Ceredig and Massotte, 2014), and both Gal1 and Gal2 have been
shown to be functional when C-terminally tagged with enhanced GFP
(EGFP) or its variants and expressed in cell lines (Wirz et al., 2005; Xia
et al., 2004, 2008). The GPCR superfamily is the largest group of cell sur-
face receptors and are the targets of around one third of marketed
drugs, yet to date the only knock-in mice that express a fluorescently-
tagged GPCR are Rhodopsin-EGFP and two rhodopsin mutant variants,
δ-opioid receptor (DOR)-EGFP and the recently reported μ-opioid re-
ceptor (MOR)-mCherry (Ceredig and Massotte, 2014; Erbs et al., 2015;
Scherrer et al., 2006). Transgenicmice have been successfully generated
expressing either humanized Renilla GFP (hrGFP; Stratagene-Agilent;
Zeng et al., 2003) under the control of various endogenous promoters
(Sakata et al., 2009; van den Pol et al., 2009; Voigt et al., 2012), or
with widespread expression of the monomeric red fluorescent protein
mCherry under the control of a ubiquitin-C promoter (Fink et al.,
2010; Shaner et al., 2004). Here we describe the generation and initial
characterization of Gal1-mCherry and Gal2-hrGFP knock-in mice,
focussing on expression in DRG, spinal cord and brain.

2. Materials and methods

2.1. DNA sequence analysis

Planning for knock-in gene characterizations used mouse reference
genome Build 37.1, vector hrGFP-FRTneoFRT (see below, Section 2.2)
and mCherry cDNA (AY678264) sequences. The RepeatMasker 3.2.9
programme (Smit, Hubley and Green, 1996–2010, http://www.
repeatmasker.org) was used to select regions of the GalR1 or GalR2
genes for retrieval target sites or Southern probes that avoided repeti-
tive DNA elements, and homology arm targets that minimized the

presence of repetitive DNA elements. Ribosome profiling data (Ingolia
et al., 2011) was accessed using the GWIPS-viz. browser (http://gwips.
ucc.ie; Michel et al., 2014). The ribosome density peaks for the uORF6
and GalR2 initiation codons were at, respectively, Chr11 nucleotides
(nt) 116,281,254–286 and 116,281,474–509 of the GRCm38/mm10
genome assembly (GWIPS-viz. ribo-seq coverage plot; Ingolia et al.,
2011; Michel et al., 2014).

2.2. Generation of GalR1-mCherry-[neo+] and GalR2-hrGFP-[neo+] knock-
in mice

Mouse genomic clones including either GalR1 or GalR2 genes from
the bMQ mouse strain 129S7 (129Sv) bacterial artificial chromosome
(BAC) library (inserts 89–178 kb; Source BioScience; Adams et al.,
2005) were electroporated into strain EL250 Escherichia coli (Lee et al.,
2001). This allowed temperature-inducible, lambda Red-mediated,
homologous recombination into the BAC (Copeland et al., 2001; Lee
et al., 2001) of PCR products from either vector hrGFP-FRTneoFRT
(Balthasar et al., 2004; Parton et al., 2007; hrGFP derived from
Stratagene-Agilent vector phrGFP-1, Zeng et al., 2003; Fig. 2A, middle
panel) flanked by GalR2 homologous sequence or vector mCherry-
FRTneoFRT (hrGFP exchanged for mCherry; Shaner et al., 2004) flanked
by GalR1 homologous sequence. Within the latter PCR product an AseI
restriction site was introduced immediately downstream of the 3′ FRT
site (Fig. 1A, middle panel), for use in Southern blot digests, and the
mCherry/hrGFP heterologous 3′-untranslated region (UTR) has identity
to nt 705–1193 of vector pCMV-Script (AF028239) which includes the
SV40 early region poly(A) site (Connelly and Manley, 1988; J02400, nt
2828–2547). Correct insertion into the BAC was validated by DNA se-
quencing of cloned PCR products of each junction. All DNA sequencing
was by Source BioScience, Oxford.

Retrieval from the recombined BAC clones by gap repair (Copeland
et al., 2001; Lee et al., 2001) into PCR-amplified vector pCR-Blunt
(Invitrogen) was mediated by either GalR1 target sequences with adja-
cent introduced rare SwaI restriction sites, or GalR2 target sequences
with adjacent introduced BstZ17I restriction sites. Recombined plasmid
DNAs were transformed into STBL3 E. coli (Invitrogen) and the final
targeting constructs were excised with either SwaI (GalR1-mCherry-
FRTneoFRT; 11.3 kb, with GalR1 homology arms of 4.2 and 3.9 kb) or
BstZ17I (GalR2-hrGFP-FRTneoFRT; 8.1 kb, with GalR2 homology arms
of 2.3 and 2.7 kb).

Targeting construct inserts were electroporated into embryonic
stem (ES) cell line E14.1a (strain 129P2/OlaHsd; Downing and Battey,
2004; Hooper et al., 1987) and the SV40-neo cassette selected with
250 μg/ml G418 by Geneta (Dept. of Biochemistry, University of Leices-
ter). G418-resistant ES cell cloneswere screened for correct targeting by
PCR (data not shown) and real-time quantitative genomic PCR, and ex-
panded cloneswere screened bySouthern blot analysis (Supplementary
Materials and Methods). Selected clones were karyotyped to confirm
euploidy, and three ES cell clones of each knock-in gene were injected
into 3.5 day old blastocysts from C57BL/6J mice to produce chimeric
mice (Geneta). These were crossed to strain 129P2/OlaHsd mice and
germline transmission was assessed by PCR genotyping (see below).

2.3. Animals

Mice were housed in a temperature- and humidity-controlled
colony on a 14:10 h light–dark cycle, and fed standard chow
and water ad libitum. Procedures were carried out in accordance with
the U.K. Animals (Scientific Procedures) Act, 1986 and associated
guidelines. Ear-punch biopsies were used for PCR genotyping, animals
were killed by cervical dislocation to obtain DRG for RT-PCR analysis
(Section 2.6), or primary DRG cultures (Section 2.7). Three mice
had peripheral transection of the right sciatic nerve prior to perfusion
seven days later to obtain ipsilateral (axotomized) lumbar L4 and L5
DRG (Holmes et al., 2008) for immunohistochemistry (Section 2.9).
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2.4. PCR genotyping to distinguish knock-in from endogenous receptor
alleles

Mouse PCR genotyping for GalR1 used the three primers 5′-AGCCTT
CCCACTGACGCCAGCTT-3′, 5′-CAGAACTTACTTTACACCATGGAGATC-3′
and 5′-TCGAACTCGTGGCCGTTCACGGA-3′, which amplified an endoge-
nousGalR1 product of 547 bp and a GalR1-mCherry knock-in product of
348 bp. PCR genotyping for GalR2 used primers 5′-CGAGGAGAGCTTCA
GGCCGAGT-3′, 5′-CACCCTGTAAAGTCCCAGAGACGT-3′ and 5′-CTGGTT
GCCGAACAGGATGTTGC-3′, which amplified an endogenous GalR2
product of 543 bp and a GalR2-hrGFP knock-in product of 308 bp.
PCRs with FastStart Taq DNA polymerase (Roche) and HPLC-purified
primers (MWG Eurofins) used cycling conditions of 94 °C for 7 min,
40 cycles of [94 °C, 30 s; 63 °C, 45 s; 72 °C, 45 s], and a final 72 °C
incubation for 10 min.

2.5. Deletion of the FRT-flanked SV40-neo cassette from knock-in mice

Homozygous strain C57BL/6J ACTB:FLPe transgenic mice (Buchholz
et al., 1998; Rodriguez et al., 2000) from the Bristol University colony
(provided by Dr. Alastair Poole and N.B.) were PCR genotyped using
primers 5′-CAATACCTGATCACTACTTCGCACT-3′ and 5′-CATGTCTGAT
CCTCGAGGAGCTC-3′ under standard cycling conditions (Section 2.4),
which amplified the expected 362 bp sequenced product.

Heterozygous GalR1-mCherry-[neo+] knock-in mice were crossed to
ACTB:FLPe transgenic mice, and offspring both heterozygous for GalR1-
mCherry and genetically mosaic for deletion of the SV40-neo cassette
(Δneo) by PCR genotyping (i.e. both Δneo and neo+) were then crossed
to strain 129P2/OlaHsd. Offspring were PCR genotyped in separate reac-
tions for GalR1-mCherry heterozygosity (Section 2.4), presence of neo
and presence of Δneo. Primers for presence of neowere 5′-GCATACGCTT
GATCCGGCTACCT-3′ and 5′-CTCCTTCCGTGTTTCAGTTAGCCT-3 (630 bp
product), and for presence of Δneo were 5′-GTCTGTTCATGATCATAATC
AGCCAT-3′ (UTR-F; heterologous 3′-UTR sequence) and 5′-CAGAACTT

ACTTTACACCATGGAGATC-3′ (GalR1R) which amplified the expected
626 bp sequenced product. A similar breeding strategy was used with
the heterozygousGalR2-hrGFP-[neo+] knock-inmice, except that primers
for presence of Δneo were UTR-F and 5′-CCTCAAACTTGATGGCTGGCTT
TG-3′ (GalR2R) which with annealing at 65 °C amplified the expected
528 bp sequenced product.

Frozen sperm from homozygous GalR1-mCherry (line 33) or GalR2-
hrGFP (line 32) knock-in mice were deposited at the MRC Frozen
Embryo and Sperm Archive and are available from https://www.
infrafrontier.eu/(GalR1-mCherry, EMMA stock ID EM:08192; GalR2-
hrGFP, EMMA stock ID EM:08193).

2.6. Real-time quantitative RT-PCR

Lumbar DRG from individual, age-matched 7–8 week old wild-type,
GalR1-mCherry or GalR2-hrGFP mice (each n = 5; 1 male, 4 females)
were frozen on dry ice and stored at−80 °C, prior to total RNA isolation
and reactions containing reverse transcriptase (RT+) or without
enzyme (RT− control) (Kerr et al., 2004). Real-time quantitative
RT-PCR (reverse transcription polymerase chain reaction) assays and
primer and probe sets (Applied Biosystems) for Gal1, Gal2, galanin and
endogenous control glyceraldehyde 3-phosphate dehydrogenase
(Gapdh)were as reported (Hobson et al., 2006), except for the corrected
Gal2 probe sequence 5′-TTCCTCACTATGCACGCCAGCAGC-3′ (mGalR2-
46TAQ) used then and herein. Relative mRNA expression levels were
derived by the comparative threshold cycle (Ct) method (2−ΔΔCT) nor-
malized to Gapdh (Hobson et al., 2006), with results presented asmean
of log transformed data plus SEM. Sample identities were confirmed by
standard RT-PCR for Gal1-mCherry andGal2-hrGFP receptor-fluorescent
tag products (data not shown).

2.7. DRG culture and live-cell imaging

DRG cultures from 8 week old mice (Hobson et al., 2013) were
generated from individual animals, and neurons were replated onto

Fig. 1. Gene-targeting of GalR1 and genotype analysis. (A) Schematic diagram of endogenous GalR1 (top panel), knock-in GalR1-mCherry-[neo+] (middle panel) and knock-in GalR1-
mCherry-[Δneo] (bottom panel) alleles. Indicated relative locations are GalR1 exon 3 with coding sequence (CDS; black filled box) and endogenous 3′-UTR (‘UTR’; NM_008082, not full-
length), and restriction sites AseI (A), BsrGI (Bs) and BamHI (B). The knock-in GalR1-mCherry-[neo+] DNA (middle panel) includes the following elements: the targeting construct
(grey horizontal thickened line); the 3′ end of the GalR1 CDS joined in-frame by a 21 nucleotide linker, encoding the flexible linker RDPPVAT (Gibbs et al., 2003; Lobbestael et al.,
2010), to mCherry CDS (diagonal banded box; mCherry protein sequence AAV52164); a heterologous 3′-UTR including the SV40 early region poly(A) site (grey filled box); downstream
FRT sites (right arrowheads) flanking a SV40-neo cassette selection marker with a HSV (herpes simplex virus) thymidine kinase (TK) poly(A) site; an introduced AseI restriction site
(A) immediately downstreamof the 3′ FRT site; and the endogenous 3′-UTR (‘UTR’) (seeMaterials andmethods section). Locations of external 5′ and 3′ probes, neo probe, and hybridizing
DNA fragments are also shown (see Supplementary Fig. 1A for more detailed image of [neo+] allele). Note that in the GalR1-mCherry-[Δneo] knock-in allele (bottom panel) the SV40-neo
cassette flanked by FRT sites has been removed by FLPe. (B) Southern blot analysis validates correct insertion of the targeting construct. Wild-type (W) and GalR1-mCherry-[Δneo] knock-
in line 33 (K) mouse tail DNA were digested and hybridized with: BsrGI and GalR1 5′ external probe (left panel; W: 7821 bp, K: 6158 bp); AseI and GalR1 3′ external probe (middle panel;
W: 12,924 bp, K: 5386 bp); and BamHI and neo probe, which only hybridized to positive-control heterozygous GalR1-mCherry-[neo+] ES cell clone 33 (right panel; lane N: 3030 bp). The
relative distance travelled by DNA ladder fragments (1 kb Plus, Life Technologies) is indicated in kb on the left of each panel.
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glass-bottom microwell dishes (MatTek) treated with 0.5 mg/ml
polyornithine and 5 μg/ml laminin (Sigma). Immediately prior to
imaging, medium was changed to air-buffered L15 (Sigma)
supplemented with 5% horse serum, 1 mM L-glutamine and 10 ng/ml
gentamicin. Cell images were recorded using a Leica TCS SP8 confocal
system with enhanced sensitivity due to the GaAsP Hybrid detector
(HyD), attached to a Leica DMI6000 inverted epifluorescence micro-
scope with a 63×/1.30 Glycerol objective lens (Leica Microsystems), at
37 °C. Imaging parameters were selected to optimize confocal resolu-
tion. Specifically, GalR1-mCherry was detected by excitation with a
HeNe 594 nm laser (Anderson et al., 2006; 80% acousto-optic tunable
filter, AOTF) and emission detected at 600–660 nm with 330% gain,
6× line accumulation, and 2× frame averaging. GalR2-hrGFP was
detected by excitation with a 488 nm argon laser (35% power,
with 70% AOTF) and emission detected at 492–538 nm with 400%
gain, 6× line accumulation, and 2× frame averaging. Confocal images
were detected as z stacks of x–y images taken at 1 μm intervals, and
were acquired using LCS (Leica) software. Images designated ‘adjusted’
used linear brightness/contrast functions of Adobe Photoshop software.

2.8. Receptor internalization studies and quantification of somatic cell
membrane associated fluorescence

Immediately prior to imaging the medium was changed to
FluoroBrite DMEM (Life Technologies) to decrease background fluores-
cence, with medium supplements B-27 (Life Technologies), 1 mM
L-glutamine and 10 ng/ml gentamicin. Imaging was at 37 °C with 5%
CO2 enrichment. Single focal planes were imaged to reduce potential
photo-bleaching, with 6× line accumulation andwithout frame averag-
ing. Porcine galanin (1–29)was fromBachem. Quantification of somatic
cell membrane fluorescence (Scherrer et al., 2006) of GalR1-mCherry
from original confocal images used Volocity software (Perkin Elmer)
to define both the area within the cell membrane (intracellular fluores-
cence) and between this and the outside of the somatic cell membrane
(surface fluorescence). Results are presented as mean plus SEM.

2.9. Immunohistochemical staining

Mice were deeply anaesthetised and transcardially perfused with
PBS followed by 4% paraformaldehyde/PBS. Brains, lumbar spinal
cords and lumbar L4 and L5 DRGs were dissected and post-fixed for
24 h in 4% paraformaldehyde/PBS then transferred to 20% sucrose/PBS
for 24 h at 4 °C. Spinal cords and DRG were placed in OCT embedding
matrix (CellPath) and frozen on dry ice, and brains were frozen on dry
ice. Tissue was stored at −80 °C until use. 10 μm sections of DRG and
30 μm sections of spinal cord and brain were cut on a cryostat. DRG
were collected directly onto Polysine slides (Thermo Scientific), or
after immunohistochemical processing of floating sections for brain
and cord. mCherry was detected using the TSA™ (tyramide signal
amplification) Plus Fluorescein System (PerkinElmer). Sections were
processed at room temperature as follows: incubated in 0.3% H2O2/PBS
for 30 min to quench endogenous peroxidase; washed 1 × 5 min with
TN (0.1 M Tris–HCl, pH 7.5; 0.15 M NaCl); blocked for 30 min in
TNB (0.5% Blocking Reagent in TN); and incubated for 18 h in rabbit
anti-DsRed antibody (Discosoma red fluorescent protein; Erbs et al.,
2015; Voigt et al., 2012; Clontech cat. no. 632,496) diluted 1:500 in
TNB. Sections were washed 3 × 5 min in TN; incubated in HRP anti-
rabbit IgG (Vector Laboratories cat. no. PI-1000) diluted 1:200 in TNB
for 1 h; washed 3 × 5 min in TN; incubated in fluorescein-conjugated
tyramide (TSA™ Plus Fluorescein System; PerkinElmer) at 1:50 for
10 min. Sections were washed 3 × 10 min in TN, floating sections
collected onto slides, then all sections mounted in Vectashield (Vector
Laboratories) and coverslipped. Immunohistochemistry of wild-type
tissue verified the specificity of the primary antibody, and omission of
the primary antibody verified the absence of non-specific staining by
the secondary antibody.

The polyclonal anti-hrGFP antibody (Sakata et al., 2009; Zhang et al.,
2013; Stratagene-Agilent 240,142) was used as above diluted at 1:500
or 1:5000 on DRG (±axotomy) and brain, and at 1:500–1:30,000 on
spinal cord (±axotomy), each with wild-type control tissue.

Gal1-mCherry immunofluorescence was detected by excitationwith
a 488 nm argon laser and emission detected at 492–538 nm on a Leica
TCS SP5-II confocal system attached to a Leica DMI6000 inverted
epifluorescence microscope with dry 20× or oil 40× objective lens.
Confocal images were detected as z stacks of x–y images taken at 1 μm
(DRG/brain) or 2 μm (cord, unless stated in Fig. 6N and O) intervals
with 4× line accumulation, and selected images extracted using
Volocity software (Perkin Elmer). Photomicrographs of Gal1-mCherry
immunofluorescence in brain at lower magnifications (2.5×, 5×) used
IM50 Image Manager software (Leica; Holmes et al., 2008) with gain
set at 1 (Fig. 7), as constrained by high immunoreactivity in thalamic
nuclei, and regions with lesser immunoreactivity used gain set at 2
(Supplementary Fig. 6). Images were adjusted using linear brightness/
contrast functions of Adobe Photoshop software. Identification of
mouse lumbar spinal cord laminae followed Zeilhofer et al. (2012)
and brain regions followed Franklin and Paxinos (1997).

Quantification of Gal1-mCherry-immunoreactive neuron profiles in
16 μmsections of lumbar L4 and L5DRG from control unaxotomized an-
imals (n=3)and axotomized animals seven days after axotomy (n=3,
ipsilateral; Section 2.3) was as reported, with counting of 6–10 sections
and at least 800 profiles per DRG (Holmes et al., 2008).

2.10. Statistical analysis

Statistical significance of real-time quantitative RT-PCR results
(Section 2.6) and changes in somatic cell membrane fluorescence after
galanin addition (Section 2.8) were judged by two-tailed Student's
t-test, with P values b0.05 considered significant. P values of b0.05
and b0.01 are indicated by one and two asterisks, respectively.

2.11. Nomenclature

With respect to nomenclature, the genes GalR1 and GalR2 (official
symbols, Mouse Genome Informatics Database) encode the gene prod-
ucts Gal1 and Gal2 (http://www.guidetopharmacology.org/GRAC/
FamilyDisplayForward?familyId=27), and for convenience transcripts
are designated here as Gal1 and Gal2 mRNAs.

3. Results

3.1. Generation of GalR1-mCherry and GalR2-hrGFP knock-in mouse lines

The coding sequences of the fluorescent tagsmCherry or hrGFPwere
cloned in-frame onto the 3′ ends of genomic GalR1 or GalR2 coding
sequences by lambda Red-mediated recombineering, and a smaller
subcloned fragment of each was electroporated into embryonic stem
(ES) cells (see Materials and methods section; Figs. 1A and 2A, middle
panels). Screening of ES cell clones by real-time quantitative genomic
PCR resulted in 6/97 GalR1-mCherry clones and 10/40 GalR2-hrGFP
clones with one correctly targeted, knock-in allele and one endogenous
allele of the receptor gene. Correct targeting of selected ES cell clones
was confirmed further by Southern blot analysis using 5′ and 3′ probes
external to the targeting construct sequence, and internal neo probe
(Supplementary Figs. 1 and 2). Three heterozygous knock-in ES cell
clones of GalR1-mCherry or GalR2-hrGFP were injected into blastocysts
to generate chimeras, from which germline transmission of the
knock-in allele was confirmed by PCR genotyping for all three GalR1-
mCherry lines (33, 63 and 97) and one GalR2-hrGFP line (32).
Expression of knock-in receptor and neo mRNAs in adult DRG was
demonstrated by RT-PCR (Supplementary Figs. 3 and 4).

Gene expression can be perturbed by the presence of a nearby neo
gene under the control of a strong promoter (Ema et al., 2006; Maguire
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et al., 2014; Revell et al., 2005), so the downstream SV40-neo cassette se-
lection marker flanked by FRT (FLP recombination target) sites (Figs. 1A
and 2A, middle panels) was excised in vivo by crossing with ACTB:FLPe
transgenic mice in which FLPe recombinase is under the direction of the
human β-actin promoter (Buchholz et al., 1998; Rodriguez et al., 2000).
Animals heterozygous for GalR1-mCherry, negative for neo, and positive
for deletion of the SV40-neo cassette (Δneo) by PCR genotyping were in-
bred to produce homozygous GalR1-mCherry-[Δneo] knock-in mice
(lines 33 and 97), and the corresponding strategy was used to produce
homozygous GalR2-hrGFP-[Δneo] knock-in mice (see Materials and
methods section). DNA sequencing ofΔneoPCRgenotypingproducts con-
firmed that FLPehadprecisely excised the SV40-neo cassette resulting in a
product with a single remaining recombined FRT site (Figs. 1A and 2A,
bottom panels), while Southern blot analysis confirmed both the expected
different restriction fragment sizes of knock-in compared to endogenous
alleles and the absence of neo-hybridizing sequences in GalR1-mCherry
lines 33 (Fig. 1B) and 97 (data not shown), and in the GalR2-hrGFP
knock-in (Fig. 2B).

3.2. mRNA expression in DRG from knock-in mice

Expression and correct splicing of transcripts from the knock-in
genes was assessed by RT-PCR of adult DRG, the GalR1 and GalR2
genes having respectively three and two exons (Pang et al., 1998;
Wang et al., 1997). GalR1-mCherry line 33 expressed the expected
spliced product of GalR1 exons 1–3 fused to mCherry coding sequence
(637 bp), mCherry to the heterologous 3′-UTR (431 bp), and did not
express neo (Supplementary Fig. 3). Similar results were obtained
for GalR1-mCherry line 97 (data not shown) which was therefore
discontinued. The GalR2-hrGFP knock-in expressed the spliced product
of coding sequences fromGalR2 exons 1–2 (426 bp), bothGalR2 fused to
hrGFP (533 bp) and hrGFP to the heterologous 3′-UTR (483 bp), and did
not express neo (Supplementary Fig. 4). The identities of knock-in RT-
PCR products were confirmed by DNA sequencing, and it is important
to note that products that did not span exons were shown to be RT-

dependent i.e. derived from mRNA and not genomic DNA contamina-
tion (Supplementary Figs. 3 and 4).

QuantitativeRT-PCRwasused todeterminewhether expression levels
of the knock-in mRNA either differed fromwild-typemouse endogenous
receptor or led to adaptive regulation of galanin and galanin receptor
mRNAs (Hawes et al., 2005; Hohmann et al., 2003). Expression levels in
DRG from five individual wild-type, GalR1-mCherry knock-in or GalR2-
hrGFP knock-in mice were compared using previously published assays
for Gal1, Gal2 and galanin spliced coding sequences (Hobson et al.,
2006) that are common to both the wild-type and knock-in animals.
We have reported previously that Gal3 mRNA expression in mouse DRG
is too low for reliable comparisons (Hobson et al., 2006). Compared to
wild-type mice, there were no significant differences in the levels of
Gal1 or galanin mRNAs detected in either GalR1-mCherry knock-in
(0.856 ± 0.177, P = 0.165 and 0.904 ± 0.072, P = 0.477, respectively)
or GalR2-hrGFP knock-in mice (1.261 ± 0.099, P = 0.067 and 1.102 ±
0.195, P=0.850, respectively). In contrast, levels of Gal2mRNAvaried de-
pending on genotype, with a small but significant increase in GalR1-
mCherry knock-ins (1.361±0.076, P=0.020; *P b 0.05) and a significant
decrease inGalR2-hrGFP knock-ins (0.524±0.080, P=0.004; **P b 0.01).

The quantitative RT-PCR results were also used to compare the rela-
tive abundance of different transcripts (Marsh et al., 2012;
Pollema-Mays et al., 2013). In wild-type DRG Gal1 and Gal2 mRNAs
were amplified to detectable levels (mean threshold cycle, Ct) at respec-
tively 25.37 and 32.58 cycles (each n= 5), the difference of 7.21 cycles
corresponding to Gal2 being 148-fold less highly expressed than Gal1.
These comparatively low expression levels of Gal2 mRNA were RT-
dependent, i.e. derived from mRNA, as no products were detected in
RT-minus controls at 50 cycles.

3.3. Live-cell imaging of Gal1-mCherry and Gal2-hrGFP proteins in primary
DRG neurons from knock-in mice

In preliminary experiments to detectmCherry or hrGFP fluorescence
by confocal microscopy, the PC12 cell line was transiently transfected

Fig. 2. Gene-targeting of GalR2 and genotype analysis. (A) Schematic diagram of endogenous GalR2 (top panel), knock-in GalR2-hrGFP-[neo+] (middle panel) and knock-in GalR2-hrGFP-
[Δneo] (bottom panel) alleles. Indicated relative locations are the two exons of GalR2 (boxed) with coding sequences (CDS; black filled boxes); the downstream terminal exon of ExoC7
(exocyst complex component 7) on the other DNA strand (box with arrowhead); and restriction sites XmnI (X), BlpI (Bl, greytone) and BciVI (B). [XmnI sites are shown as used to char-
acterize the [neo+] allele (Supplementary Fig. 2).] The knock-inGalR2-hrGFP-[neo+] DNA (middle panel) includes the targeting construct (grey horizontal thickened line), and the 3′ end of
the GalR2 CDS (exon 2) joined to knock-in elements as in Fig. 1A except for exchanging hrGFP (diagonal banded box; hrGFP protein sequence AAK63811) for mCherry. Locations of ex-
ternal 5′ and 3′ probes, neo probe, and hybridizing DNA fragments are also shown (see Supplementary Fig. 2A for more detailed image of [neo+] allele). Note that in the GalR2-hrGFP-
[Δneo] knock-in allele (bottom panel) the SV40-neo cassette flanked by FRT sites has been removed by FLPe. (B) Southern blot analysis of tail DNA from wild-type (W) and GalR2-
hrGFP-[Δneo] knock-in line 32 (K) mice validates correct insertion of the targeting constructs. DNA was digested and hybridized with: BciVI and GalR2 5′ external probe (left panel;
W: 5366 bp, K: 6664 bp); BlpI and GalR2 3′ external probe (middle panel; W: 5466 bp, K: 6767 bp); and BciVI and neo probe, which only hybridized to positive-control heterozygous
GalR2-hrGFP-[neo+] ES cell clone 32 (right panel; lane N: 1653 bp). DNA ladder as Fig. 1B.
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with either human (h) Gal1-mCherry or hGal2-hrGFP cDNAs under the
control of the strong CMV (cytomegalovirus) promoter/enhancer
(data not shown). Imaging conditions were then established for detect-
ing the much lower fluorescence of each knock-in gene product under
the control of the endogenous promoter in primary DRG neurons
(Materials and methods section). Cells were detected that expressed a
wide range of different levels of Gal1-mCherry fluorescence associated
with the somatic cell membrane (Fig. 3A, middle row). However,
under these sensitive detection conditions the globular, intracellular au-
tofluorescence from lipofuscin (see Discussion section; Terman and
Brunk, 2004) was also readily apparent within the cell bodies of both
knock-in and wild-type neurons, which made it impossible to distin-
guish between specific Gal1-mCherry fluorescence and non-specific
lipofuscin autofluorescence within the neuronal cell bodies (Schnell

et al., 1999). Growth cones were also examined, as lipofuscin is limited
to the neuronal cell body (Gorenstein and Ribak, 1985), but
Gal1-mCherry fluorescence was not detected.

Gal2-hrGFP fluorescence was expected to be more difficult to detect
than Gal1-mCherry, due to the much lower mRNA expression (see
above, Section 3.2). Gal2-hrGFP fluorescence at the somatic cell
membrane was near the limits of detection, but was detectable in 3 of
150 DRG neurons analysed (Fig. 3B).

A previous study in transfected CHO cells demonstrated a decrease
influorescently-taggedGal1 receptor at the cellmembrane following in-
cubationwith 100 nM–2 μMgalanin (Wirz et al., 2005). To study the ef-
fect of galanin on Gal1-mCherry localization in primary DRG neurons,
cells with comparatively high somatic cell membrane fluorescence
were selected and imaged at 37 °C in a recently available medium

Fig. 3.Detection of Gal1-mCherry andGal2-hrGFPfluorescence by live-cell imaging. (A) Primary DRG neurons from GalR1-mCherry knock-in (cells 1–5) or wild-type (wt)mice are shown
in brightfield images (top row); corresponding original fluorescent images, each acquired during the same imaging session with identical confocal settings (middle row); and correspond-
ing adjusted images to emphasize somatic cell membrane fluorescence (seeMaterials andmethods section), with cells 4, 5 andwt images treated identically (bottom row). Note that both
knock-in and wild-type cells have intracellular autofluorescence within the neuronal cell body due to lipofuscin, but only knock-in cells have somatic cell membrane fluorescence.
(B) Primary DRG neurons from GalR2-hrGFP knock-in (cells 1–3) or wild-type (wt1–3) mice are shown in brightfield images (top row); corresponding adjusted confocal fluorescent
images (second row); corresponding brighter images to emphasize somatic cell membrane fluorescence (third row); and magnified fluorescent images from knock-in cells 1–3 at each
of the two relative brightness levels (areas boxed in second and third rows), with arrows indicating the position of somatic cell membranes (bottom row). Knock-in and wild-type cells
from the same imaging sessions are shown (1/wt1, 2/wt2 or 3/wt3). Note that expression of Gal2-hrGFP fluorescence at the somatic cell membrane is at the limits of detection, and
that both knock-in and wild-type cells have intracellular autofluorescence within the cell body due to lipofuscin. For (A) and (B), each fluorescent image is a single optical section from
a z stack, and the scale bar is 5 μm.
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with reduced background fluorescence (Materials and methods
section). In control Gal1-mCherry neurons there was no significant
decrease in somatic cell membrane fluorescence on re-imaging at
20 min, i.e. no apparent photo-bleaching, whereas the somatic cell
membrane fluorescence significantly decreased by 35% in neurons re-
imaged 20 min after the addition of 1 μM galanin (65.17 ± 5.18%; P =
0.0067; Fig. 4), demonstrating agonist-induced internalization.

3.4. Immunohistochemical detection of Gal1-mCherry protein in DRG,
spinal cord and brain of adult knock-in mice

In order to detect Gal1-mCherry protein expressionwith higher sen-
sitivity, we used a previously characterized antibody to mCherry (Erbs
et al., 2015; Voigt et al., 2012) that specifically detected the protein
expressed from CMV-driven hGal1-mCherry cDNA in transiently
transfected PC12 cells (data not shown). Gal1-mCherry immunofluores-
cence in adult lumbar DRG was detected as comparatively high expres-
sion in a restricted subset of neurons (Fig. 5A–C, I), with localization to
the somatic cell membrane and a punctate distribution within the
cytoplasm (Fig. 5E–H, J), whereas in neurons with lesser immunofluo-
rescence localization to the cell surface was often not detected
(Fig. 5K–L). In wild-type DRG specific immunofluorescence was not ap-
parent (Fig. 5D). Previously we reported quantitative RT-PCR results
showing that Gal1 mRNA decreased by 37% in wild-type mouse DRG
seven days after sciatic nerve transection (axotomy; Hobson et al.,
2006), whereas here by cell counts of Gal1-mCherry immunoreactive
neuronal profiles no apparent difference was detected between
10.9 ± 1.9% in control lumbar L4 and L5 DRG and 9.5 ± 1.1% in ipsilat-
eral L4 and L5 DRG seven days after axotomy (each n = 3, ±SEM).

Within adult lumbar spinal cord, high levels of Gal1-mCherry immu-
nofluorescencewere detected in the superficial layers of the dorsal horn
in lamina I–II processes, with lesser levels in the lateral spinal nucleus
(LSN) and around the central canal in lamina X (Fig. 6A–C). Little immu-
nofluorescence was detected in the ventral horn (Fig. 6D), and specific
immunofluorescence was not detected in wild-type cord (Supplemen-
tary Fig. 5). Occasional intrinsic cell bodies were detected in lamina
I/II, the lamina III/IV border and lamina X (boxed, Fig. 6E, G and H;
Supplementary Fig. 5), the most highly expressing cells showing somatic
cell membrane localization and puncta within the cell bodies (Fig. 6I–M).
Outward transport of Gal1-mCherry from the cell body was detected as
puncta within cell processes of multipolar neurons within the lamina

III/IV border area (Fig. 6J, with further sections in Supplementary
Fig. 5–J). In addition, we show a neuron within the medial part of lamina
IV (Zeilhofer et al., 2012) extending a process laterally ~75 μm to end in a
terminal containing multiple Gal1-mCherry immunofluorescent puncta,
apposed to another Gal1-mCherry expressing neuron (Fig. 6N–P).

In wild-type brain no specific immunofluorescence was detected,
whereas in similar sections of knock-in brain high levels of
Gal1-mCherry immunoreactivity were detected within thalamus, hypo-
thalamus and amygdala (Fig. 7A and B). Examples of themost immuno-
reactive brain regions are shown at higher magnification (5×),
including the intermediate and ventral parts of the lateral septal
nucleus (Fig. 7C and D); a number of thalamic nuclei including the
paraventricular thalamic nucleus (Fig. 7E and F); the dorsomedial and
ventromedial hypothalamic nuclei and median eminence (Fig. 7G);
medial amygdala nuclei (Fig. 7H); and the locus coeruleus (Fig. 7I). Con-
focal images at higher magnification show localization of Gal1-mCherry
to the somatic cell membrane of neurons within the lateral septal
nucleus (Fig. 7J), high levels of expression in nerve endings within the
external zone of the median eminence (Fig. 7K and L) and numerous
nerve fibres in the locus coeruleus area (Fig. 7M).

Examples of brain regions with lesser Gal1-mCherry immunoreac-
tivity (Materials and Methods) are shown in Supplementary Fig. 6.
These include themediocaudal part of the lateral posterior thalamic nu-
cleus; pretectal nucleus; subiculum; medial mammillary nucleus;
periaqueductal grey; posteromedial hippocampal amygdala; scattered
cells in the ventral-most hippocampal pyramidal cell layer; the ventral
part of the dorsal raphe nucleus and medial raphe nucleus. The corre-
spondence of the highermagnification images (Fig. 7 and Supplementa-
ry Fig. 6) to those at a lowermagnification are shown in Supplementary
Fig. 7, which also localize Gal1-mCherry immunoreactivity in the anteri-
or hypothalamic area and anterior part of basomedial amygdala
(Supplementary Fig. 7).

3.5. Absence of immunohistochemical detection of Gal2-hrGFP protein in
adult knock-in mouse tissues

A previously characterized antibody to hrGFP (Sakata et al., 2009;
Zhang et al., 2013) specifically detected the protein expressed by
CMV-driven hGal2-hrGFP cDNA in transiently transfected PC12 cells
(data not shown). However, we could not detect specific Gal2-hrGFP
protein expression by immunohistochemistry in adult normal DRG,

Fig. 4. Live-cell imaging of changes inGal1-mCherryfluorescence at the somatic cellmembrane following the addition of galanin. (A) PrimaryDRGneuron ‘1’ fromGalR1-mCherry knock-in
mouse shown (left to right) in brightfield image; corresponding original confocal fluorescent images at time zero and at 20min after addition of 1 μM galanin (+gal), fromwhich quan-
tifications in (D) were made; and the same fluorescent images adjusted to emphasize cell membrane fluorescence (see Materials andmethods section). (B) Corresponding images of pri-
mary DRG neuron ‘2’. (C) Magnified fluorescent images of each cell at both timepoints (areas boxed in (A) and (B)), with arrows indicating the position of somatic cell membranes. Each
fluorescent image is a single optical section, and the scale bar ((A) and (B)) is 5 μm. (D)Quantification of changes inGal1-mCherry fluorescence at the somatic cellmembrane. Compared to
somatic cell membrane fluorescence at time zero, defined as 100%, therewas not a significant decrease in somatic cell membrane fluorescence in control neurons re-imaging 20min later
(left; 91.75 ± 3.76%, n=4; P=0.1155). In other cells imaged and then re-imaged 20min after 1 μMgalanin addition, there was a significant decrease in somatic cell membrane fluores-
cence to 65.17±5.18% (right; n=4; P=0.0067; **, P b 0.01). The somatic cellmembranefluorescence at the 20min timepoint also is significantly decreased in galanin-treated compared
to control neurons (n = 4; P = 0.0089; **, P b 0.01).
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spinal cord or brain, or in DRG and spinal cord after sciatic nerve
axotomywhichmarkedly induces Gal2 mRNA in rat ventral horn moto-
neurons (Brumovsky et al., 2006b). Immunofluorescence did not differ
from wild-type tissue using a range of primary antibody dilutions
(Materials and Methods), and omission of the primary antibody
eliminated fluorescence. The inability to detect Gal2-hrGFP is compatible
with the low endogenous expression of Gal2/Gal2-hrGFP mRNA
(Section 3.2; see Discussion section).

4. Discussion

The goal of this study was to produce knock-in mice expressing
fluorescently-tagged Gal1 or Gal2 receptors for live-cell functional imag-
ing and immunohistochemical localization studies. The Gal1-mCherry
and Gal2-hrGFP mRNAs were each expressed and correctly spliced in
adult DRG from the respective knock-inmice, but the steady-state levels
of Gal2-hrGFP mRNA were decreased by ~50% compared to the endog-
enousGal2 transcript of wild-type DRG. Thismay be due to the presence
of mRNA stabilization sequence(s) present in the endogenous Gal2
mRNA 3′-UTR that do not occur in the heterologous 3′-UTR of
Gal2-hrGFP mRNA (Fig. 2A), such as the stabilization motif CCTnCCTG-
like sequence ACTACCTG (Cohen et al., 2014; NM_010254).

The live-cell imaging of Gal1-mCherry and Gal2-hrGFP proteins was
restricted to the somatic cell membrane, axons and growth cones due
to lipofuscin autofluorescence within the soma (see below). This still
allowed the detection of Gal1-mCherry fluorescence localized to the
somatic cell membrane, plus the demonstration of galanin-dependent
internalization in DRG neurons. Previously, [125I]-galanin binding to
neuronal cell bodies of intact monkey DRG or human nodose ganglion
(Sweerts et al., 2000; Zhang et al., 1995b), lacked the spatial resolution

to distinguish cell membrane from intracellular binding, whereas the
increased membrane excitability upon addition of galanin to acutely
dissociated rat DRG neurons indicated functional receptor(s) localized
to the somatic cell membrane (Kerekes et al., 2003). Intact DRG neuron
cell bodies have been shown to express surface receptors for a variety of
neuroactive substances e.g. theGPCRs neuropeptideY (NPY) type Y1 re-
ceptor (Y1-R) and somatostatin type 2A receptor (Sstr2A) (Hanani,
2005; Shi et al., 2014; Zhang et al., 1994).

Lipofuscin autofluorescence is known to complicate fluorescent mi-
croscopy of brain, spinal cord and DRG (Schnell et al., 1999), for exam-
ple identifyingGFP-GR (glucocorticoid receptor) knock-in expression in
brain (Usuku et al., 2005), and will be exaggerated by the very sensitive
detection conditions used here (Spitzer et al., 2011; Materials and
methods section). Lipofuscin is composed of oxidized protein and lipid
degradation residues, that is locatedwithin lysosomes but cannot be de-
graded by lysosomal hydrolases and so accumulates over time within
post-mitotic cells such as neurons or cardiac myocytes (Sulzer et al.,
2008; Terman and Brunk, 2004). Studies on lipofuscin generally focus
on aged animals, but it has been reported in 2 month old rat brain and
heart (Ikeda et al., 1985; Nakano et al., 1995; Sulzer et al., 2008), and
in 6 week old brain and 1–3 month old spinal cord from mouse
(Bandyopadhyay et al., 2014; Constantinides et al., 1986; Usuku et al.,
2005). The classical defining characteristic of lipofuscin is broad
spectrum autofluorescence (Eldred et al., 1982; Sulzer et al., 2008), as
we detected in 500–700 nm emission spectral scans of wild-type
DRG neurons (data not shown), which overlaps the commonly used
fluorophores such as mCherry and hrGFP with emission peaks of re-
spectively 610 and 506 nm (Shaner et al., 2004; Stratagene-Agilent).

Gal1-mCherry protein was localized within DRG, spinal cord and
brain using the higher sensitivity of immunohistochemistry (Figs. 5-7).

Fig. 5. Detection of Gal1-mCherry immunofluorescence in DRG. (A–C) Three confocal images of adult GalR1-mCherry knock-in lumbar DRG show some neurons with comparatively high im-
munofluorescence (green colour, boxed) and others with lesser immunofluorescence whereas, (D) in adult wild-type (wt) DRG specific immunofluorescence is not detected (40× objective,
scale bar 40 μm). (E–H) Higher magnification images of highly immunofluorescent neurons (boxed in (A-C)) show localization of Gal1-mCherry to the somatic cell membrane and a punctate
distribution within the cytoplasm (40× objective, zoom 6×; scale bar 15 μm). (I) In a confocal image with high, moderate and low level immunofluorescent cells (boxed; scale bar 40 μm), at
highermagnification somatic cellmembrane localization is apparent in thehigh expressingneuron (J) but not in either amoderate (K, top) or two lowexpressingneurons (KbottomandL; scale
bar 15 μm). Each fluorescent image is a single optical section from a z stack.
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Similarly, in the δ-opioid receptor (DOR)-EGFP knock-in mouse fluores-
cence was often weak and required EGFP-specific antibodies for proper
visualization (Erbs et al., 2015), and DOR and Gal1 mRNA are expressed
at similar levels in mouse DRG based on next generation RNA sequenc-
ing (RNA-Seq; Supplementary Table 1 of Thakur et al., 2014). Cellular
localization of a specific GPCR can differ between different regions of
the nervous system, for example DOR-EGFP is localized to the somatic
cell membrane in DRG but is not readily detected at the cell surface of
spinal cord neurons (Ceredig and Massotte, 2014; Erbs et al., 2015;
Nathanson, 2008). In highly immunofluorescent Gal1-mCherry neurons,
somatic cell membrane localization was detected in DRG (Fig. 5E–H, J),
in spinal cord lamina I/II, lamina III/IV border, medial lamina IV and lam-
ina X (Fig. 6I–K, M and O; Supplementary Fig. 5) and within brain in the
lateral septal nucleus and locus coeruleus (Fig. 7J andM). In the live-cell

imaging of primary DRG neurons we did not detect Gal1-mCherry
fluorescence in growth cones or axons, which could be clearly viewed
because lipofuscin autofluorescence is limited to the neuronal cell
body (Gorenstein and Ribak, 1985). In contrast, the combination of the
immunohistochemistry and the generally restricted expression among
intrinsic spinal cord neurons allowed the detection of Gal1-mCherry
transport within cell processes as puncta in successive confocal images
of neurons within the lamina III/IV border area (Fig. 6J and Supplemen-
tary Fig. 5–J) and medial lamina IV (Fig. 6N–P; Zeilhofer et al., 2012).

Previously, we detected Gal1 mRNA in mouse DRG by RT-PCR
(Hobson et al., 2006), and here detected Gal1-mCherry immunofluores-
cence in a restricted subset of neurons (Fig. 5A–C, I) corresponding to
10.9% of lumbar L4 and L5 neuronal profiles. Published data on Gal1
mRNA+ neuron profiles is not available for mouse DRG, but in adult

Fig. 6. Detection of Gal1-mCherry immunofluorescence in spinal cord. (A) Low-power photomicrograph (10× objective) and (B–D) confocal images (20× objective) of adult GalR1-
mCherry knock-in lumbar spinal cord showing high levels of immunofluorescence in the superficial dorsal horn laminae I–II, with lesser levels in the lateral spinal nucleus (LSN, labelled
‘L’) and around the central canal (white asterisk) in lamina X (A–C), whereas little immunofluorescence was detected in the ventral horn (D). (E–H) Higher magnified confocal images
(40× objective) of mid superficial dorsal horn (E); lateral superficial dorsal horn and LSN (labelled ‘L’; F); lamina III/IV border (G); and lamina X (H; central canal, white asterisk);
with examples of local cell bodies boxed. (I–L,M) Highermagnification confocal images (40× objective, zoom 6×) of local neurons (boxed in row above) showdistinct somatic cell mem-
brane localization in highly fluorescent cells of the superficial dorsal horn (I), lamina III/IV border (J) and lamina X (M; location arrowed inN,mainly different plane), whereas in less fluo-
rescent neurons cell surface localization may (K, arrow; insert merged 3 z-sections) or may not be detected (K–L; L, merged 4 z-sections). Note the multiple Gal1-mCherry
immunofluorescent puncta within neuronal processes (J, arrows; additional images in Supplementary Fig. 5A–F), and insert of M shows three main neuronal projections (each double
arrows; merged 16 z-sections, 1 μm intervals). (N–P) Confocal images of medial spinal cord including a lamina IV neuron sending a process laterally to another Gal1-mCherry expressing
neuron (boxed, N; 40× objective); as shown at higher magnification to show the neuronal process (O; objective 40×, zoom 3×; merged 8 z-sections, 1 μm intervals), with insert images
showing somatic cell membrane localization of each cell (right cell, merged 3 z-sections); and at furthermagnification Gal1-mCherry puncta are seen in the terminal process of the lamina
IVneuron (arrows, P; objective 40×, zoom8×;merged 7 z-sections, 1 μmintervals), with insert images of details from successive z-sections of the terminal process. FD is funiculus dorsalis.
Each confocal image is a single optical section from a z stack unless indicated, with (B–D) at same brightness intensity, as are (E–H and N). Scale bars: 150 μm for 20× objective; 70 μm for
40× objective; 40 μm for 40× objective with zoom 3×; and 15 μm for 40× objective with either zoom 6× or 8×.
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rat DRG the initial figure was 23% whereas in a more sensitive study
using labelled riboprobes the figure was 51% (Kerekes et al., 2003;
O'Donnell et al., 1999; Xu et al., 1996). Differences between mouse
and rat DRG neuron profiles are not uncommon, for example between
7 and 20% for NPY receptor Y1 mRNA+ or between 39 and 8% for
P2X5 immunopositive profiles (Shi et al., 1998; Zeng et al., 2013). In
addition, immunohistochemical analysis can give lower numbers of
positive neurons compared to ISH, as for example with DOR-EGFP im-
munostaining compared to DOR mRNA ISH in mouse DRG (Scherrer
et al., 2009; Wang et al., 2010). The apparent lack of effect of axotomy
on Gal1-mCherry immunoreactive neuronal profiles (9.5% versus
control 10.9%), in combination with our previous quantitative RT-PCR
results showing a 37% decrease in Gal1 mRNA in wild-type DRG

(Hobson et al., 2006),may be explained in part by a threshold for immu-
noreactive detection. If the mRNA decrease occurs mainly in the highly
expressing neurons theywould still maintain sufficient expression to be
counted as Gal1-mCherry immunopositive. Consistent with this, an ISH
study of NPY mRNA expression in rat superior cervical ganglion (SCG)
after axotomy detected a 40% decrease in average grain density/neuron,
but the number of NPY mRNA+ neurons was unchanged (Kroesen
et al., 1997).

In DRG the potential sources of galanin to bind to somatic cell mem-
brane Gal1 are either via fenestrated capillaries that allow access into
the neuronal extracellular space (Hanani, 2005) or locally produced li-
gand. Basal expression of galanin mRNA and protein in DRG are low
but increase dramatically after axotomy (Villar et al., 1989; Zhang

Fig. 7. Detection of Gal1-mCherry immunofluorescence in brain. (A–B) In low-powermicrographs (2.5×), specific immunofluorescence is not detected in adult wild-type (wt) brain (A),
whereas in a similar section of adult GalR1-mCherry knock-in brain, high levels of Gal1-mCherry immunoreactivity were detected (B; see F-H for same section at higher magnifications).
(C–I) Higher magnification images (5×) show high immunoreactivity in: (C) intermediate and ventral parts of lateral septal nuclei (LSI, LSV) and scattered cells within caudate putamen
(CPu), but not in the dorsal part of the lateral septal nucleus (LSD) at this level or in medial septal nucleus (MS); (D) LSI, and scattered cells within CPu; (E–F) paraventricular-, medial
mediodorsal-, central medial-, paracentral-, central lateral- and intermediodorsal-thalamic nuclei (PV; MDM; CM; PC; CL; IMD), but not in dentate gyrus (DG) or medial habenula
(MHb); (G) dorsomedial and ventromedial hypothalamic nuclei (DM; VMH), median eminence (ME; see below) and scattered cells within posterior and lateral hypothalamic areas
(PH; LH); (H) posterior basomedial and posterodorsal medial amygdala nuclei (BMP; MePD) and LH; (I) locus coeruleus (LC) and posterodorsal tegmental nucleus (PDTg), but not cer-
ebellum (CB). (J–M) Confocal images at highermagnification (J–L: 40×;M: 40×, zoom3×; scale bars 40 μm) showing: (J) somatic cellmembrane localization in some neuronswithin the
intermediate part of the lateral septal nucleus (LSI; arrows; area boxed in (D)); (K) high levels of expression inmedian eminence (ME) shown either over-bright to show location of third
ventricle (3V; left pair of arrows showing join of torn tissue; 30 z-sections) or less-bright image (L; 3 z-sections),with insert of boxed areamagnified to show immunoreactivefibres and an
absence of immunoreactive cell bodies (40×, zoom 6×; scale bar 15 μm; 3 z-sections); and (M) fibres within the locus coeruleus (LC) area, together with a single cell body (arrow; 20 z-
sections), with inserts showing somatic cell membrane localization (single z-sections). Other abbreviations: aca, anterior part of anterior commissure; and 4V, 4th ventricle. Images (A–B)
and (C–I) are each at the same brightness intensity, with scale bars of 1 mm (A–B, 2.5× objective) or 0.5 mm (C–I, 5× objective lens). Sections are similar to mouse brain atlas Figures 46
(A, B), 23 (C), 29 (D, J), 40 (E), 46 (F–H, K, L) and 79 (I, M) of Franklin and Paxinos (1997).
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et al., 1995a), when it is abundant in the Golgi region and also present
stored in large dense-core vesicles within the cell body (Zhang et al.,
1995a). Somatic exocytosis of galanin has yet to be studied, though it
has been demonstrated for substance P (SP) and calcitonin gene-
related peptide (CGRP) (Liu et al., 2011; Trueta and De-Miguel, 2012)
and references therein), and in addition to post-axotomy would also
be relevant following galanin induction in several other neuropathic
painmodels (Lang et al., 2015) and during nerve regeneration following
nerve crush injury (Villar et al., 1989).

In mouse spinal cord expression of Gal1 mRNA has previously been
detected by northern blot and RT-PCR (Jacoby et al., 2002; Wang et al.,
1997), and by ISH was reported as enriched in the dorsal horn
(Table 1 of Guo et al., 2012).We detected dense Gal1-mCherry immuno-
fluorescence in the superficial dorsal horn laminae I–II with lesser levels
in the lateral spinal nucleus and lamina X, similar to previous rat Gal1
mRNA ISH studies (Brumovsky et al., 2006b; O'Donnell et al., 1999). It
will be of interest to determine the expression of other neurochemical
markers within intrinsic neurons highly expressing Gal1-mCherry. For
example, the potential relationship of the multipolar neurons of the
lamina III/IV border (Fig. 6G and J; Supplementary Fig. 5) to the
occasional multipolar neurons of similar location that express galanin,
NPY receptor Y1-R or somatostatin receptor Sstr2 (Brumovsky et al.,
2006a; Melander et al., 1986; Shi et al., 2014), and the relationship of
neurons lateral to the central canal and potentially interacting medial
lamina IV neurons (Fig. 6M–P) to galanin or Y1R expressing cells
(Brumovsky et al., 2006a; Ch'ng et al., 1985; Melander et al., 1986).

The heterogeneous distribution of Gal1 mRNA in mouse forebrain
has been determined by ISH (Hohmann et al., 2003) and was highly
similar to [125I]-galanin binding sites, which were not detected in mice
deficient for Gal1 (Jungnickel and Gundlach, 2005). The examples of
brain regions shown as the most Gal1-mCherry immunoreactive
(Fig. 7 and Supplementary Fig. 7) correspond, with three exceptions,
to areas expressing Gal1 mRNA which on an intensity scale of + to
++++ (from weak to very dense) were in the range of ++ to
++++(Hohmann et al., 2003). The ISH study did not extend caudally
to the locus coeruleus and posterodorsal tegmental nucleus (Fig. 7I)
which are known to bind [125I]-galanin (Jungnickel and Gundlach,
2005), so the apparent discrepancy is in median eminence (ME) be-
tween the high level of Gal1-mCherry immunofluorescence (Fig. 7G, K
and L) and the absence of Gal1 mRNA expression in both mouse and
rat (Fig. 4d of Hohmann et al., 2003; Mitchell et al., 1997). However,
Gal1 mRNA is detected in most hypothalamic nuclei that project to-
wards it, and as there is a high density of [125I]-galanin binding sites in
the ME of mouse and rat (Jungnickel and Gundlach, 2005), these
findings are therefore compatible with the hypothesis that median em-
inence Gal1 receptors are transported and play a local role at the nerve
terminals (Mitchell et al., 1997). This is now clearly demonstrated by
Gal1-mCherry immunofluorescence localized to densely packed nerve
endings within the external zone of the ME (Fig. 7K–L), a blood–brain
barrier-free circumventricular organ (Fekete and Lechan, 2014; Mullier
et al., 2010) with a very high density of galanin-immunoreactive fibres
in both mouse and rat (Melander et al., 1986; Perez et al., 2001).

Brain regions with lesser Gal1-mCherry immunoreactivity
(Materials and methods section; Supplementary Fig. 6) correspond to
Gal1 mRNA intensities in the range + to ++ (Hohmann et al., 2003),
or in the case of the lateral posterior thalamic nucleus is known to
bind [125I]-galanin (Jungnickel and Gundlach, 2005), while the dorsal
raphe nucleus (DR) andmedian raphe nucleuswere too caudal to be in-
cluded in the ISH study. Gal1mRNA is expressed in adult rat DR (Burazin
et al., 2000; O'Donnell et al., 1999), but on the basis of a lack of
Gal1-immunoreactivity or detection of Gal1 mRNA by ISH in mouse, a
species difference in expression was proposed (Larm et al., 2003).
Since then, [125I]-galanin binding sites and weak expression of Gal1
mRNA in the ventral part of mouse DR have been detected
(Borroto-Escuela et al., 2010; Jungnickel and Gundlach, 2005). Here
we show Gal1-mCherry immunoreactivity in the DR (Supplementary

Fig. 6), galanin receptor agonists having implicated mouse DR Gal1 in
facilitating limbic seizures (Mazarati et al., 2005).

The difficulty in detecting Gal2-hrGFP fluorescence in the somatic
cell membrane of DRG neurons canmainly be ascribed to comparatively
low mRNA expression from the endogenous promoter. In wild-type
mouse DRG the endogenous Gal2 mRNA was 148-fold less highly
expressed than Gal1 (Section 3.2), which is consistent with data used
in our previous report (Hobson et al., 2006) in which Gal2 was
136-fold less highly expressed (difference of 7.09 cycles; each n = 5).
This wide difference in expression of the two receptors is confirmed
by RNA-Seq data of adult mouse DRG in which Gal1 and Gal2 had
FPKM (Fragment Per Kilobase of exon per Million fragments mapped)
values of 4.865 and 0.020, respectively (Supplementary Table 1 of
Thakur et al., 2014). The expression levels of Gal2-hrGFP in DRG, spinal
cord and brain may be below the sensitivity for detection by immuno-
histochemistry, but Gal2 expression appears to be sufficient to affect
behaviour. Gal2-deficient mice have anxiogenic-like and depression-
like phenotypes (Bailey et al., 2007; Lu et al., 2008), and compounds
with a marked preference for binding Gal2 over Gal1 have anticonvul-
sive and anti-nociceptive activities (Metcalf et al., 2015; Robertson
et al., 2010).

Of direct relevance to the very low levels of Gal2-hrGFP, is the obser-
vation that Gal2 is likely to be under translational control mediated by
upstream open reading frames (uORFs) within the 5′-UTR. This will
tend to diminish translation of the main ORF by reducing the number
of ribosomes reaching and initiating at the main start codon (Barbosa
et al., 2013; Calvo et al., 2009). Unlike the 5′-UTR of mouse and rat
Gal1 mRNA sequences that do not contain upstream ATG triplets
(NM_008082; NM_012958), those of mouse Gal2 contains six uORFs
(here designated uORF1–6) whilst rat Gal2 contains only two uORFs
(Fig. 8). These latter two are conserved between mouse and rat
(hereafter uORF3 and uORF6) in both relative position and approximate
length, potentially encoding 5 and 71/69 amino acids respectively, and
the mouse/rat uORF6 terminates only 4 nucleotides upstream of the
Gal2 initiation codon. Such proximity has previously been correlated
with translational repression of the main coding sequence (Child et al.,
1999; Kozak, 1987; but see Calvo et al., 2009), as has uORF length
(Calvo et al., 2009; Kozak, 2001), and uORF-mediated repression may
or may not depend on the potential uORF-encoded protein sequence
(Child et al., 1999; Iacono et al., 2005; Morris and Geballe, 2000) but
conservation of the uORF mRNA sequence between species suggests a
functional selection (Churbanov et al., 2005; Crowe et al., 2006; Iacono
et al., 2005).

Ribosome profiling (ribo-seq) data based on deep-sequencing of
ribosome-protected mRNA fragments is not yet available for mouse
neurons (Michel et al., 2014), but is for initiating ribosomes of the
mouse ES cell line E14 in which Gal2 has low expression and ribosome
density (Ingolia et al., 2011). The predicted initiation site of uORF6 has
a ribosome footprint, with a peak density ~1.7-fold higher than at the
Gal2 initiation site (Materials and methods section, Section 2.1; Ingolia
et al., 2011; Michel et al., 2014), which suggests a functional role for
the conserved uORF6. Intriguingly, endoplasmic reticulum (ER)-stress
and a number of other stressors that transiently inhibit the translation
of most mRNAs can also promote translation initiation of mRNAs with
uORFs (Barbosa et al., 2013; Spriggs et al., 2010), and ER-stress is
known to occur in vivo following neuronal axon damage, spinal cord in-
jury or brain trauma (Li et al., 2013; Nakka et al., in press; Yasuda et al.,
2014). However, attempts to detect Gal2-hrGFP protein in DRG or spinal
cord at 3 or 7 days after sciatic nerve peripheral axotomy were unsuc-
cessful (Section 3.5). Further studies could be useful either in DRG
after carrageenan-induced inflammation when Gal2 mRNA is induced
in rat (Sten Shi et al., 1997) or in the carotid body which has 100-fold
more Gal2 than Gal1 mRNA in rat (Hawes and Picciotto, 2005;
Porzionato et al., 2010). There is now a clear need for in vitro studies
on the mechanism of Gal2 translational control using various stressors
(Barbosa et al., 2013; Spriggs et al., 2010) in order to understand both
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the conditions and time-courses of Gal2 protein expression, preferably
in a neuronal-like cell line.

5. Conclusions

The generation and initial characterization of the Gal1-mCherry
knock-in mice will allow more detailed regional tissue distribution
studies, co-localization studies, interactome analysis (Bauch et al.,
2014) and provide an impetus to understand the function of Gal1 at
the somatic cell membrane. Expression of Gal2-hrGFP was at the limits
of detection and a possible mechanism involving uORFs is discussed.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.mcn.2015.08.006.
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