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Morphing structures: non-linear composite shells with

irregular planforms

E. Lamacchia∗∗, E. Eckstein††, A. Pirrera‡‡and P.M. Weaver§§

Advanced Composites Centre for Innovation and Science

University of Bristol, Queen’s Building, University Walk, Bristol BS8 1TR, UK

The concept of morphing structures refers to devices that exhibit large scale shape
changes, whilst maintaining load bearing capability, in response to distinctive operating
conditions. This behavior comes from combinations of non-linear material or kinematic
responses. Here, we limit our interests to shell type structures made from low strain, elastic
materials that exhibit highly nonlinear kinematic behavior. Often, but not necessarily, the
response can be bistable.

Models predicting the multistability of shells often present a compromise between com-
putational efficiency and accuracy of results. Moreover, they deal mainly with regular
domains, such as rectangular or elliptical planforms. Few studies have been done to in-
vestigate the performance and the possible advantages of exploiting multistable structures
with more general domains.

In the present work, the multistability of thin shallow composite shells with irregular
domains is investigated. An accurate and computationally efficient energy-based model is
developed, in which the membrane and the bending components of the total strain energy
are decoupled using the semi-inverse formulation of the constitutive equations. Transverse
displacements are approximated using Legendre polynomials and the membrane problem is
solved in isolation by combining compatibility conditions and equilibrium equations. The
result is the total potential energy as a function of curvatures only. Stable shapes are
recovered by minimizing the total energy with respect to curvature. The accurate evalua-
tion of the membrane energy is a key step in order to accurately capture the bifurcation
points. Here the membrane problem is solved using the Differential Quadrature Method
(DQM), which provides accuracy at a relatively small computational cost. However, DQM
is limited to rectangular domains. For this reason, blending functions are used to map the
irregular physical domain into a regular computational domain.

This approach allows multistable shells with arbitrary convex planforms to be described
without affecting the computational efficiency and the accuracy of the proposed model.

Nomenclature

u, v In-plane displacements
w Transverse displacements
2Lx, 2Ly Dimensions of the shell along the Cartesian axes
Ω Surface area
n Vector normal to the surface Ω
h Shell thickness
ε Green-Lagrange strain tensor
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ε Membrane strain tensor
k0 Curvature tensor of the undeformed configuration
k Curvature strain tensor of the deformed configuration
∆k Change in curvature from the undeformed to the deformed configuration
Ud, Vd,Wd Coefficients used to scale the displacements
E Coefficients used to scale the in plane strains
K Coefficients used to scale the curvatures
σ Membrane stress tensor
N Membrane stress resultant
Σ Coefficients used to scale the membrane stress resultant
M Bending moment resultant
Q∗k Lamina stiffness matrix
A, B, D In-plane, coupling and bending stiffness matrices respectively
Π Total strain energy
Πd Coefficients used to scale the total strain energy
L Differential operator
ΣN Coefficients used to scale the thermoelastic stress resultant
ΣM Coefficients used to scale the thermoelastic bending moment resultant
α∗k Secant thermal expansion coefficients of the lamina
T0 Stress-free temperature
Tref Reference temperature
∆T0 Change in cure to room temperature
τ Parameter used to characterise the thermal field
Pl (φ) Legendre polynomials
qij Legendre parameters

Subscript
0 Undeformed reference surface
r Inelastic deformation e.g. thermal, piezoelectric or moisture effects
k Through the thickness position of the lamina

Superscript
∼ Non-dimensional parameters

I. Introduction

Morphing shells are non-linear structures characterised by the ability to shape-change and often adopt
multiple stable states. By exploiting this concept, designers may be able to devise structures able to adapt to
a wide range of service conditions, resulting in more efficient structures that minimise both design complexity
and cost.

A large variety of morphing concepts have been developed. These often utilise stiffness tailoring to provide
shape changing features, such as non-symmetric composite plates1 or prestressed laminates.2 However, the
main constraint traceable throughout all of them is the limiting variety of shapes that a single morphing
device is actually able to achieve. It is perhaps intuitive that this limitation is mainly due to the geometric
characteristics of the device itself, which narrow the range of possible configurations.

At present, non-linear models require high computational costs in order to accurately describe the mul-
tistability of shells. A further limitation is that most of the current works model regular domains, such as
rectangular or elliptical planforms.

In this paper, we propose a robust and computationally efficient method to describe the multistability of
thin shallow composite shells with irregular domains. As a consequence, we show the possibility of devising a
novel class of morphing structure able to fulfill a wide range of applications compared with more conventional
concepts.

Guest and Pellegrino3 considered the stability of a cylindrical shell with constant curvature before Seffen4
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generalised this approach to elliptic planforms with constant curvature whilst Vidoli5 added quadratically
varying curvature. Our approach builds upon these works by considering arbitrary-shaped planforms.

The total strain energy of a thin structure is expressed as the sum of the stretching and bending con-
tributions. Once the problem is decoupled into these components, an auxiliary set of membrane problems
is solved, combining the membrane equilibrium and constitutive equations. These equations link membrane
strains and curvatures according to Gauss’ Theorema Egregium.6 The result is a membrane strain field
which is a function of the curvatures. By substituting the strain field into the stretching energy, one obtains
an expression for the total energy which is now a function of the curvatures only. Finally, the Hessian of the
total energy with respect to the curvatures evaluates the stability of the resulting equilibrium shape.

The membrane strains can be solved in a closed form for an elliptic planform as done by Seffen.4 As-
suming constant curvature over the surface, Seffen uses the Airy stress function to solve the compatibility
condition. Moreover, he expresses the membrane stress as a second order polynomial, which satisfies the
boundary conditions of zero force and zero shear normal and tangent to the free boundary. Vidoli5 relaxes
the assumption of constant curvature over the surface, but he also observes that the limitation given by solv-
ing a series of auxiliary elliptic problems still holds, since the boundary conditions are satisfied exactly only
for special geometries, i.e. shells with elliptic planforms or shells with lenticular cross section, as illustrated
in Mansfield.7

The investigation of a membrane problem with arbitrary geometry calls for a numerical solution, as
suggested in Vidoli and Maurini.8 Following this observation, the present work solves the membrane problem
by adopting an accurate and computationally efficient numerical method, i.e. the Differential Quadrature
Method (DQM). Moreover, we are able to impose point-wise boundary conditions for the membrane problem,
which are satisfied only in an average sense by in Vidoli.5

DQM was introduced by Bellman and Casti9 and it is based on the premise that any continuous function
can be approximated by a high-order polynomial in the overall domain, and that the derivative of a function
can be expressed as a linear combination of the functional values at all the mesh points of the domain.
Owing to the higher-order polynomial approximation, DQM usually requires fewer grid points in comparison
to other approximation methods, such as Finite Element Method (FEM) or Finite Difference Method (FDM),
to achieve accurate results.

The accuracy of the numerical method adopted to solve the membrane problem is crucial in order to
evaluate the importance of each term in the energy functional. Other approximation methods, such as
polynomial expansions for the in-plane displacement fields, leads to inefficiency in terms of computational
costs, as shown by Mattioni et al.,10 Aimmanee and Hyer11 and Pirrera et al.12 In this sense, DQM guarantees
accuracy at a reduced computational cost.

However, DQM can be directly applied only to rectangular domains. For this reason, blending functions
are used to map the irregular physical domain into a regular computational domain so that the DQM can
be easily adapted to describe structures with arbitrary geometries. The feasibility of this approach has been
already shown by Bert13 and by Shu et al.14 to analyse the vibration modes of irregular and curvilinear
plates, respectively.

This paper is structured as follow: Section II illustrates the general model and its non-dimensional form.
In Section III the model is validated against available benchmark results. Section IV describes the mapping
technique using the blending functions. Here an interesting case study in which the morphing structure is
not rectangular in planform is analysed. In particular, as a proof of concept we analyse the multistability
of a thin-walled shell having a trapezoidal planform, similar to the chevron devices featured on modern civil
airliners to reduce noise due to turbulent jet mixing.

II. Non-dimensional Model

A. Kinematics

In a Cartesian reference system x-y, the strains are defined in the usual form as a non-linear combination of
linear deformations as:15

ε = ε + zk, (1)
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are the von-Kármán non linear mid-plane strains and curvature, respectively. Here u, v are the in-plane and
w the transverse displacements.

In order to reduce possible numerical ill-conditioning of the non-linear model and to analyse the relative
importance of each term in the governing equations, the following non-dimensional quantities are defined
with the symbol tilde (˜):

x = Lxx̃, y = Ly ỹ,

u = Udũ, v = Vdũ, w = Wdw̃,

ε = Eε̃, ∆k = K∆k̃, N = ΣÑ .
(3)

where ∆k = k − k0 describes the change in curvature from the reference undeformed configuration to the
current deformed configuration.

The dimensional parameters introduced in equation (3) are defined as:

• 2Lx and 2Ly are the dimensions of the plate along the cartesian axes.

• Ud, Vd and Wd are coefficients used to scale the displacements12,16,17 defined as:
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Lx

2
√

A∗11A
∗
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∗
22,
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22,
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22,

(4)

where A∗ and D∗ are in-plane compliance and reduced bending stiffness terms, respectively.18

• E and K are scale the in plane strains and curvatures respectively and are defined as:

E =
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W 2
d
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0 0

0
1

2

W 2
d

L2
y

0

0 0
W 2
d
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 , K =
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0 0
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L2
y

0

0 0 −2
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 . (5)

• Σ scales the membrane stress resultant N defined as Σ = AE.

B. Energy

The total potential energy is defined by using Claperyon’s theorem as:19

Π =

∫
Ω

h/2∫
−h/2

1

2
σ>εdzdΩ, (6)

where the stress tensor is:
σ = Q (ε − εr) . (7)
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Here Q is the plate stiffness, Ω is the surface area, z represents the through the thickness coordinate and
h is the plate thickness. The subscript r describes the contribution of any inelastic deformation e.g. thermal,
piezoelectric or moisture effects; however for current purposes we will consider the thermal strains to be the
sole contributors to inelastic deformations.

For a laminate plate, assuming A, B and D to be the in-plane, coupling and bending stiffness matri-
ces respectively, and defining N r and M r as the in-plane stress and moment resultants of the inelastic
deformations, the total potential energy is written as:

Π =

∫
Ω

1

2

[
ε

∆k

]> [
A B

B D

][
ε

∆k

]
−

[
N r

M r

]> [
ε

∆k

] dΩ. (8)

By substituting the semi-inverse constitutive relations expressed as:18[
ε

M +M r

]
=

[
A∗ B∗

−B∗
′

D∗

][
N +N r

∆k

]
, (9)

into equation (8), where A∗ = A−1, B∗ = −A−1B and D∗ = D − BA−1B, and where N and M are
the vectors of the in-plane stress resultants and bending moments, the total potential energy in terms of
non-dimensional parameters becomes:

Π̃ =

1∫
−1

1∫
−1

[
1

2
Ñ
>

Ã∗Ñ +
1

2
∆k̃
>

D̃∗∆k̃ − 1

2
τ̃ Ã∗r τ̃ − τ̃ b̃∗r∆k̃ − τ̃ d̃∗r∆k̃

]
dx̃dỹ, (10)

in the presence of an external thermal field characterised by τ . The non-dimensional matrices in the total
strain energy are defined as:

Ã∗ =
LxLy

Πd
Σ>A∗Σ =

LxLy
Πd

EAE,

Ã∗r =
LxLy

Πd
Σ>NA∗ΣN ,

b̃∗r =
LxLy

Πd
Σ>NB∗K,

D̃∗ =
LxLy

Πd
K>D∗K,

d̃∗r =
LxLy

Πd
Σ>MK,

(11)

where Πd is used to scale the total potential energy and it is defined as:12

Πd = tr

([
E 0

0 K

][
A B

B D

][
E 0

0 K

])
. (12)

In equation (11), the thermoelastic strains are N r = ΣN τ̃ and M r = ΣM τ̃ , where τ̃ is a non-dimensional
parameter characterizing the temperature defined as:

T − Tref = ∆T0τ̃ ,

ΣN =

Nply∑
k=1

zk+1∫
zk

Q∗k (T )α∗k (T ) ∆T0dz,

ΣM =

Nply∑
k=1

zk+1∫
zk

Q∗k (T )α∗k (T ) ∆T0zdz,

(13)

in which ∆T0 reflects the change in cure to room temperature and Q∗k (T ) and α∗k (T ) are functions of
temperature.
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C. Compatibility Conditions

A generic Riemaniann manifold is completely characterised by its first and second fundamental form.6

Components of the first and second fundamental forms are not independent and must satisfy the compatibility
(or integrability) conditions. In two dimensions, these conditions reduce to three non-vanishing differential
equations,20 i.e. Gauss’ Theorema Egregium and the Codazzi-Mainardi equations. They can be obtained
from the Riemann tensor recast for a two-dimensional space. Physically, the compatibility relations between
strains and curvatures represent the conditions of uniqueness of the normal vector at each point of the
surface.

In particular, Gauss’ Theorema Egregium plays a fundamental role in decoupling the membrane and
bending contributions for our problem. It allows the compatibility condition, when combined with the
equilibrium equations, to express the three components of the in-plane stress resultants as a function of
curvatures only.

In the adopted Cartesian reference system and assuming small displacements and moderate rotations,
the non-dimensional formulation of the compatibility condition for a thin shell is:

1

2

∂2ε̃xx
∂ỹ2

+
1

2

∂2ε̃yy
∂x̃2

− 2
∂2ε̃xy
∂x̃∂ỹ

= k̃xxk̃yy − 4k̃2
xy −

(
k̃0xxk̃0yy − 4k̃2

0xy

)
, (14)

where the components of the non-dimensional membrane strains ε̃ and curvatures ∆k̃ are defined in equa-
tion (3).

Introducing the differential operator L̃1 defined as:

L̃1 =
1

2

[
∂2

∂ỹ2
,
∂2

∂x̃2
,−4

∂2

∂x̃∂ỹ

]
, (15)

and the non-dimensional form of equation (9), the compatibility condition expressed in equation (14) can be
recast as:

L̃1

(
Ñ − B̃∗k̃ + Σ−1ΣN τ̃

)
= k̃xxk̃yy − 4k̃2

xy −
(
k̃0xxk̃0yy − 4k̃2

0xy

)
. (16)

D. Membrane Problem

The membrane problem is solved by combining equilibrium equations and compatibility conditions. For a
free-free plate, the equilibrium of the in-plane stress resultants and the boundary conditions are:

∂Nx
∂x

+
∂Nxy
∂y

= 0, on Ω,

∂Nxy
∂x

+
∂Ny
∂y

= 0, on Ω,

N · n = 0, on ∂Ω,

(17)

where ∂Ω refers to the boundary of the plate Ω and n is its normal.
Introducing the differential operators L2 and L3 defined as:

L2 =

 ∂

∂x
0 0

0 0
∂

∂x

 , L3 =

 0 0
∂

∂y

0
∂

∂y
0

 , (18)

the equilibrium equations assume the form:

(L2 + L3)N = 0, (19)

which is recast in terms of non-dimensional parameters as:√
LxLy

tr(Σ)

[
1

Lx
L̃2Σ +

1

Ly
L̃3Σ

]
Ñ = 0. (20)
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Finally, combining equation (16) and equation (20), the membrane problem is given by: L̃1√
LxLy

tr(Σ)

[
1

Lx
L̃2 +

1

Ly
L̃3

]
Σ

 Ñ =

[
L̃1B̃

∗k̃ + k̃xxk̃yy − 4k̃2
xy −

(
k̃0xxk̃0yy − 4k̃2

0xy

)
0

]
, (21)

where
B̃∗ = Σ−1BK. (22)

Of great significance is that equation (21) gives the in-plane stress resultants Ñ as functions of curvatures
k̃. Let us define

L̃ =

 L̃1√
LxLy

tr(Σ)

[
1

Lx
L̃2 +

1

Ly
L̃3

]
Σ

 , (23)

and

f =

[
L̃1B̃

∗k̃ + k̃xxk̃yy − 4k̃2
xy −

(
k̃0xxk̃0yy − 4k̃2

0xy

)
0

]
. (24)

The solution of the membrane problem is simply given by:

Ñ = L̃−1
f , (25)

which is a function of x, y and the curvature field ∆k̃.
In order to solve equation (25), it is necessary to discretise the matrix of differential operators defined

in equation (23). This has been done using the matrix formulation of DQM. A comprehensive description
of the DQM in matrix form can be found in Lamacchia et al.21 By applying the DQM to equation (23),
the differential operators L̃1, L̃2 and L̃3 are now matrices of weighting coefficients that we evaluate on a
Chebyshev-Gauss-Lobatto mesh grid, which has been shown to be numerically efficient and well behaved.22

In order to find a general curvature field which satisfies equation (25), the out-of-plane displacements w
have been approximated using the Legendre polynomials defined as:

w (x, y) = w0 (x, y) +

n∑
i=0

n∑
j=0

qijPi (x)Pj (y) , (26)

where w0 is the reference (undeformed) shell configuration and qij are the Legendre parameters. Here Pi (x)
and Pj (y) are the shape functions of order n given by the Legendre polynomials and they are defined using
the binomial coefficient23 as:

Pl (φ) =

l∑
k=0

(
l

k

)(
−l − 1

k

)(
1− φ

2

)k
, for l = i, j and φ = x, y. (27)

Legendre polynomials are a complete set of orthogonal functions which have been shown to provide
great robustness of results,24 both in terms of accuracy and flexibility to describe the deformed shape of the
laminate. For each value of n, w is a 2n order polynomial in x and y. Hence we approximate w with (n+ 1)

2

degrees of freedom, i.e. all the distinct combinations of the i and j indices of the qij parameters, from 0 to
n.

Solving equation (25) involves the solution of a set of independent membrane problems whose number
depends on the order n of the Legendre polynomial. In particular, for n = 1, 2, 3, 4, ..., one needs to solve
2, 17, 80, 233, ... independent membrane problems respectively. The DQM accurately captures this step of
the proposed method with small computational cost, expecially given the relatively small number of mesh
points necessary to achieve convergence of results compared to more conventional FEM or FDM.22
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E. Equilibrium and Stability

The in-plane stress resultants Ñ of equation (25) are functions of the Legendre parameters qij . By substi-

tuting Ñ into equation (10) we have an expression of the total potential energy as a function of the qij only.
The minima of the energy with respect to the qij give the equilibrium configuration:

∂Π̃

∂qij
= 0. (28)

The Hessian of the total potential energy with respect to the qij gives the stability position:

∂2Π̃

∂q2
ij

> 0. (29)

Finally, the stable or unstable configurations that the laminate assumes are given by substituting the qij
obtained from equation (28) back into equation (26).

III. Validation

A. Multi-mode Morphing

In Eckstein et al.25 the deformations of an initially cylindrically curved unsymmetric [04/904] laminate under
thermal loads were studied. The combination of initial curvature and opposing thermal moments was found
to give rise to multiple deformation modes. The laminate showed two orthogonal pure cylindrical shapes at
curing and room temperature, and an intermediate twisting mode.

The authors formulated a Rayleigh-Ritz analytical model assuming a second order polynomial to approx-
imate the out of plane displacements, with a resulting constant curvature tensor as in Dano et al.26 The
model was validated against a FEM simulation consisting of 256 ABAQUS S8R elements, using a uniformly
distributed converged mesh. The FEM and the Rayleigh-Ritz analytical model showed excellent agreement
in predicting the two orthogonal cylindrical shapes. However, the analytical model overpredicted the values
of curvatures in the range of temperatures when twisted configurations are present. The authors claimed
that this limitation was due to the simple functions that were used to describe the in-plane strains, resulting
in an overestimation of the membrane stiffness. This constraint makes it preferential for the laminate to
store strain energy in the form of the bending component, hence the overprediction of the curvatures. The
authors also observed that the approach adopted in Fernandes et al.27 would likely yield more accurate
results, because the membrane problem is first approximated with more degrees of freedom and then solved
separately using an FEM. This model relies on the simplifying hypothesis of uniform curvature throughout
the morphing process. Following the work done by Guest and Pellegrino,3 Seffen4 and Seffen et al.,28 the
global stability scenario can be described as function of curvature only.

As discussed in Section I, the present work follows a similar approach. Hence, the multi-mode morphing
presented in Eckstein et al.25 is used to validate our model and eventually show further insight.

Temperature-dependent material properties are taken into account, so that the non-dimensional matrices
of the thermoelastic strains in equation (13) become:

ΣN =

Nply∑
k=1

zk+1∫
zk

Q∗k (T ) [α∗k (T0) (Tref − T0) /τ̃ +α∗k (T ) ∆T0] dz,

ΣM =

Nply∑
k=1

zk+1∫
zk

Q∗k (T ) [α∗k (T0) (Tref − T0) /τ̃ +α∗k (T ) ∆T0] zdz, ,

(30)

in which T0 is the stress-free temperature, α∗k are the secant thermal expansion coefficients as calculated
from reference temperature Tref . The terms in brackets express thermal strains for the case when Tref 6= T0,
as is often the case in composite material data sets. In the case when Tref = T0 the terms in brackets collapse
to their familiar form of equation (13).
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B. Results and Discussion

Table 2 compares the curvatures given by the present model with the ones obtained analytically and numer-
ically by Eckstein et al.25 Material properties are obtained from reference [25] and reproduced in Table 1
for convenience. Results of the present model converge for a mesh grid of 31× 31 nodes and for fourth order
Legendre polynomials.

Table 2 shows that the current approach closely matches the cylindrical shapes obtained using the model
presented in reference [25]. However, for values of temperature close to the twisted configurations some
discrepancies arise. In particular, for T = 90◦C, the analytical model in reference [25] overestimates the
values of curvatures by predicting a twisted shape, whereas FEM and the present model predict the cylindrical
configuration, with values of curvatures in excellent agreement.

Figure 1 shows the membrane and bending components of the total potential energy as a function of the
temperature. As expected, by cooling down from the curing temperature (stress free configuration) to room
temperature, the laminate reacts storing energy via membrane and bending components. It is interesting to
observe how the membrane component increases as the laminate approaches the twisted configurations. As
observed in reference [25], the maximum value of kxy occurs at T = 122◦C. This value of twist corresponds
to the maximum value of membrane energy in Figure 1a. For the ranges of temperature where the cylindrical
modes appear, the laminate behaves as a plate rather than a shell by storing strain energy in the form of
bending rather than membrane component.

Table 1. Material properties as function of temperature.

T [◦C]
CFRP aluminium alloy 5251

E11[GPa] E22[GPa] G12[GPa] ν12[−] α11[10−6/◦C] α22[10−6/◦C] E [GPa] ν[−] α [10−6/◦C]

30 129.55 8.85 5.28 0.33 -2.3 23.4 72.0 0.33 23.00

60 127.99 8.42 4.88 0.33 -2.1 27.8 72.0 0.33 23.00

90 127.47 7.92 4.65 0.33 -1.5 28.6 70.6 0.33 23.10

120 127.18 7.57 4.50 0.33 -0.5 30.0 69.8 0.33 23.33

150 126.11 7.18 4.26 0.33 1.7 32.1 68.4 0.33 23.35

180 125.31 6.48 3.77 0.33 2.3 33.5 66.9 0.33 23.36

Table 2. Comparison of curvatures between the present model (order 4) and reference [25].

T [◦C]
Analyitical ref. [25]

[
m−1

]
FEM ref. [25]

[
m−1

]
Present model

[
m−1

]
kx ky kxy kx ky kxy kx ky kxy

30 -2.90 0 0 -2.90 0 0 -2.90 0 0

60 -2.30 0 0 -2.30 0 0 -2.30 0 0

90 -1.75 -0.10 -0.70 -1.75 0 0 -1.73 0 -0.01

120 -1.10 -0.90 -1.70 -1.09 -0.75 -1.60 -1.10 -0.79 -1.60

150 -0.30 -1.55 -1.45 -0.25 -1.55 -1.25 -0.25 -1.55 -1.30

180 0 -2.30 0 0 -2.3 0 0 -2.3 0

C. Conclusions

The validation of the proposed model against the work done by Eckstein et al.25 showed how the correct
evaluation of the membrane and bending components of the total strain energy influences the accuracy of the
results. This accuracy has been achieved using the DQM to solve the membrane problem defined in equa-
tion (21). Moreover, by discretising the differential operator defined in equation (23), the membrane stress
resultants have been evaluated by simply inverting a sparse matrix of weighting coefficients, as described in
equation (25). This operation keeps the computational cost to acceptably low levels.

In the next section we show that the proposed model can be extended to shells of arbitrary convex
planforms without affecting its accuracy. As a consequence, the aim is to provide an accurate and compu-
tationally efficient tool to devise a novel class of morphing structures able to fulfill a wide range of tasks
compared to more conventional morphing concepts.

9 of 17

American Institute of Aeronautics and Astronautics



20 40 60 80 100 120 140 160 180
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Temperature [ºC] 

M
em

b
ra

n
e 

E
n

er
g

y
 [

J]

(a) Membrane energy.
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Figure 1. Membrane energy (a) and bending energy (b) as function of temperature.

IV. Multistability of Shells with Irregular Domain

In general, DQM provides accurate solutions with relatively low computational cost.9,29 However, rel-
atively little work has been done with irregular domains. Most of the applications of the DQM deal with
regular domains having boundaries that are parallel to the coordinates axis.30–32 Bert et al.13 show the
very first attempt to extend the DQM to irregular domains in the form of general curvilinear quadrilaterals
using the mapping technique from the physical domain into a regular computational domain. In their work,
the matrices of weighting coefficients in the computational domain are obtained applying the chain-rule.
However, as observed by Shu et al.,14 the dimension of the resulting matrices of weighting coefficients for the
higher order derivatives is (NxNy)

4
compared to (NxNy)

2
for regular domains, where Nx and Ny are the

number of grid points along x and y. This effect clearly influences the efficiency of the method. To overcome
this limitation, Shu et al.14 proposed that the governing and boundary conditions equations should be recast
directly using the mapping technique, so that only the weighting coefficients for the first order derivatives are
directly involved. Therefore, the conventional quadrature rule can be straightforwardly extended to capture
irregular domains.

In this section, we show the flexibility of our model to describe irregular convex planforms, closely
following the approach illustrated by Shu et al.14 The equations derived in Section II are recast according
to the transformation rules derived to map the irregular domain into the regular computational domain. In
particular, the only expressions involved are the kinematics equations, the compatibility conditions and the
boundary conditions. We observe that the computational cost, the accuracy in evaluating the membrane
component of the total potential energy and hence the efficiency of the proposed model is not affected by
the presence of irregular planforms.

A. Trapezoidal Domain

As a proof of concept, we analyse the multistability of a thin-walled shell having a trapezoidal planform,
similar to the chevron devices featured on modern civil airliners. The aim is to provide a case study in which
the candidate morphing structure is non-rectangular in planform. As depicted in Figure 2, a chevron is an
aerodynamic device used on the trailing edge of aero-engine fan and exhaust nozzles to reduce noise due to
turbulent jet mixing.33 This noise reduction is accompanied by a drag penalty, and thus significant attention
has been paid to developing Shape Memory Alloys (SMA)-actuated variable-geometry morphing chevrons,
which can switch between low-noise and low-drag shapes.34

This case study aims to demonstrate that SMA-like behavior can also be achieved using conventional
engineering materials acting in a Coefficient of Thermal Expansion (CTE)-mismatched bimorph arrangement.
Ideally, the proposed chevron would be actuated by the temperature change between sea level and cruise
altitude operation.
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(a)

(b)

Figure 2. Illustration of a potential morphing chevron concept, whereby a number of vortex-generating devices
are affixed to the trailing edge of a nozzle. These devices impinge upon the nozzle flow when deployed (b),
encouraging mixing over shorter length scales and thus shifting jet noise to higher frequencies which are both
less perceptible to the human ear and also attenuated faster when propagating through the atmosphere.35

This action comes at a drag penalty, and thus it is desirable to stow the devices parallel to the local flow
direction (a) at flight levels where community noise targets can be achieved without their aid.

We consider a hybrid aluminium/CFRP shell as proposed in Eckstein et al.36 Material properties are
a function of temperature and are listed in Table 1. With respect to the reference system of Figure 3, we
consider an Al/ [904] laminate, with CFRP having ply thickness of 0.26 mm and a 1.2 mm thick isotropic
aluminium plate. The shell is clamped at the middle of the bottom edge. The temperature change is
∆T0 = −150◦C, from the curing stress-free configuration at T0 = 180◦C to room temperature Tref = 30◦C.

It is important to observe that, although the proposed morphing chevron seems an interesting solution
for jet engine noise reduction, the aim of this work is not a detailed design of the chevron itself. Instead, we
aim to provide a robust and computationally efficient method to devise novel class of morphing structures
exploiting geometric feautures along with stiffness tailoring.

x

y

CFRP 

aluminium

Clamped node
z

Figure 3. Hybrid laminate shell showing reference system and boundary conditions.

B. Blending Function

Let us consider the physical and computational domains of Figure 4. The points of the physical domain are
identified by a set of x-y coordinates, Figure 4a. Each of these points is then mapped into the computational
domain, identified by the ξ-η reference system of Figure 4b, through an appropriate system of transformation
of coordinates defined by the vector v (ξ, η) as:

v (ξ, η) =

[
x (ξ, η)

y (ξ, η)

]
. (31)
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In order to find the rule to map the physical domain into the computational domain, let us consider the
following linear blending function:37

v (ξ, η) =

(
1− ξ

2

)
P (−1, η) +

(
1 + ξ

2

)
P (1, η) +

(
1− η

2

)
P (ξ,−1) +

(
1 + η

2

)
P (ξ, 1)

− (1− ξ) (1− η)

4
P (−1,−1)− (1− ξ) (1 + η)

4
P (−1, 1)

− (1 + ξ) (1− η)

4
P (1,−1)− (1 + ξ) (1 + η)

4
P (1, 1) , (32)

where the functions P (ξi, η) and P (ξ, ηi) are the parametric curves that describe the original domain in terms
of computational variables and where the the values P (±1,±1) are the four corners of the computational
domain corresponding to the analogous points in the physical domain.
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Figure 4. Physical domain (a) and computational domain (b) showing the relative reference systems.

For the non-rectangular domain of Figure 4a, the values of P (ξ, η) in equation (32) are:

P (1, η) = (−3 + η, η) ,

P (−1, η) = (3− η, η) ,

P (ξ,−1) = (4ξ,−1) ,

P (ξ, 1) = (2ξ, 1) ,

(33)

and the four corners in the computational domain with respect to the coordinates of the physical domain
are:

P (−1,−1) = (−4,−1) ,

P (−1, 1) = (−2, 1) ,

P (1,−1) = (4,−1) ,

P (1, 1) = (2, 1) .

(34)

Substituting equations (33) - (34) into equation (32), the mapping rule is given by:

v (ξ, η) =

[
x (ξ, η)

y (ξ, η)

]
=

[
ξ (3− η)

(η)

]
. (35)

In order to recast the governing equations in terms of the mapped domain, we need to express the partial
derivatives in the computational domain using the chain rule. Given a general function f (x, y), the partial
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derivatives of f are:
∂f

∂xi
=
∑
i

∂f

∂ψi

∂ψi
∂xi

, (36)

where xi = x, y and ψi = ξ, η. Applying equation (36) to equation (35), the partial derivatives of any
function g (ξ, η) in the computational domain corresponding to f (x, y) in the physical domain are given by:

∂f

∂x
=

1

3− η
∂g

∂ξ
,

∂f

∂y
=

ξ

3− η
∂g

∂ξ
+
∂g

∂η
.

(37)

Applying the expressions of the partial derivatives given in equation (37) to the membrane and out-of-
plane displacements expressed in equation (2), the membrane strain and curvature tensors in the computa-
tional domain are:

εξξεηη
εξη

 =



1

3− η
∂u0

∂ξ
+

1

2

(
1

3− η
∂w0

∂ξ

)2

ξ

3− η
∂v0

∂ξ
+
∂v0

∂η
+

1

2

(
ξ

3− η
∂w0

∂ξ
+
∂w0

∂η

)2

ξ

3− η
∂u0

∂ξ
+
∂u0

∂η
+

1

3− η
∂v0

∂ξ
+

1

3− η
∂w0

∂ξ

(
ξ

3− η
∂w0

∂ξ
+
∂w0

∂η

)

 , (38)

and

kξξkηη

kξη

 =


− 1

(3− η)
2

∂2w0

∂ξ2

− 2ξ

(3− η)
2

∂w0

∂ξ
− ξ2

(3− η)
2

∂2w0

∂ξ2
− 2ξ

(3− η)

∂w0

∂ξ∂η
− ∂2w0

∂η2

− 2

(3− η)
2

∂w0

∂ξ
− 2ξ

(3− η)
2

∂2w0

∂ξ2
− 2

(3− η)

∂w0

∂ξ∂η


. (39)

Hence, the dimensional form of the differential operator defined in equation (15), and the differential
operators defined equation (18), become:

L1 =

[
ξ2 ∂

2

∂ξ2
+ 2ξ

∂

∂ξ
+ 2ξ (3− η)

∂2

∂ξ∂η
+ (3− η)

2 ∂2

∂η2
,

∂2

∂ξ2
, −2

∂

∂ξ
− 2ξ

∂2

∂ξ2
− 2 (3− η)

∂2

∂ξ∂η

]
,

(40)
and

L2 =


1

3− η
∂

∂ξ
0 0

0 0
1

3− η
∂

∂ξ

 , L3 =

 0 0
ξ

3− η
∂

∂ξ
+

∂

∂η

0
ξ

3− η
∂

∂ξ
+

∂

∂η
0

 . (41)

Two important observations at this point can be made:

• The Legendre polynomials used here that approximate the transverse displacements are now functions
of ξ and η, because they have been obtained by applying the mapping rule given in equation (35) to
equations (26) - (27) .

• The boundary conditions in equation (17) always refer to the physical domain. Hence, they need to
be expressed in the physical planform accordingly before the mapping is done.

C. Results and Discussion

Results reported in Figure 5 show the stable configurations of the shell with trapezoidal planform as a
function of temperature when a temperature change ∆T is applied. As was the case in the multi-mode
morphing mechanism observed by Eckstein et al.25 and reported in Section III, the hybrid shell deforms
between two orthogonal cylindrical shapes at curing and room temperature through a series of intermediate
twisted shapes for the range of temperatures around the bifurcation points. Our model shows that these
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shape changes are the most energetically efficient to deform between two orthogonal cylindrical modes having
curvatures of the same sign.

In the cylindrical configuration at T = 30◦C, the flow is directed along the longitudinal axes of the engine
and parallel to the ξ-η plane of the shell. At high temperature, the shell assumes a second cylindrical shape
orthogonal to the initial one, so that it impinges the flux creating turbulence. This process is reversible, so
by decreasing the temperature, the chevron deforms back into an orthogonal cylindrical configuration and
the flux recovers a laminar condition. The morphing process is hence totally passive.

Results shown in Figure 5 converge at the fourth order Legendre polynomial n = 4, as shown in details in
Table 3. It was observed that further increments of n led to negligible differences in w. Analogously, results
reach convergence for a Nξ ×Nη = 31× 31 Chebyshev-Gauss-Lobatto mesh grid.

Table 3. Convergence analysis for the transverse displacements w as function of the order n of the Legendre
polynomials. The convergence analysis refers to the transverse displacements wC and wD of the two corners
C and D reported in Figure 4.

T [◦C]
n=2 n=3 n=4 n=5

wC[cm] wD[cm] wC[cm] wD[cm] wC[cm] wD[cm] wC[cm] wD[cm]

180 1.501 1.501 1.505 1.505 1.506 1.506 1.506 1.506

150 1.162 1.162 1.165 1.165 1.169 1.169 1.169 1.169

120 0.0075 0.0078 0.0077 0.0079 0.0077 0.0089 0.0078 0.0089

90 0.0114 0.0115 0.0107 0.0128 0.0112 0.0133 0.0111 0.0133

60 0.4623 0.4623 0.4691 0.4691 0.4710 0.4710 0.4710 0.4710

30 0.4883 0.4883 0.4883 0.4883 0.4883 0.4883 0.4883 0.4883

V. Conclusions

By exploiting anisotropy of composite materials along with the inherent geometric nonlinearity of curved
shells, these structures display unique and interesting behaviors, including multistability and temperature-
triggered shape-morphing capability. In order to better predict these features, we have presented a robust
and accurate energy-based semi-analytical model to describe the multistable behavior of laminate shells for
morphing applications. The key step of the proposed method is the decoupling of the total strain energy
into the stretching and bending contributions. We apply the DQM to solve the membrane problem, which
allows the in-plane stress resultants to be found by simply inverting a sparse matrix of weighting coefficients.
This process keeps the computational cost to acceptable low levels.

By using Legendre polynomials to approximate the transverse displacements, our model is able to accu-
rately capture the values of the membrane and bending components of the total strain energy.

As an additional benefit, we have shown the flexibility of our model in describing the multistable behavior
of thin laminate shells with arbitrary convex planforms. The accuracy and the efficiency of the proposed
model are maintained when dealing with irregular domains, by mapping the physical irregular domain
into a computational rectangular domain with blending functions. The governing equations have been
recast according to a specific mapping law, so that the matrices of weighting coefficients used to solve the
membrane problem are unchanged. As an example application, we have described the multistable behavior
of a thermally-actuated hybrid aluminium/CFRP trapezoidal shell that resembles a morphing chevron for
noise attenuation in jet engines. By using conventional engineering materials acting in a CTE-mismatched
bimorph arrangement, the proposed multistable shell is actuated by the gradient of temperature through the
exhaust gases flowing around the nozzle and outside the case. This makes the morphing structure totally
passive, providing potential benefits compared to more conventional actuation systems.
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(e) T = 150◦C, ∆T = −30◦C
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Figure 5. Stable states of the multistable shell with trapezoidal planform as a function of the temperature
when a temperature change ∆T is applied. The shell deforms between two orthogonal cylindrical configurations
at curing and room temperature through a series of twisted modes for intermediate values of temperature.
The color maps plotted onto the surfaces represent the transverse displacements w. Results are shown for
Legendre polynomial of order n = 4 and Nξ ×Nη = 31× 31 Chebyshev-Gauss-Lobatto mesh grid.
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