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Aeroelastic Tailoring using Rib/Spar Orientations: 

Experimental Investigation 

G. Francois1, J. E. Cooper2 and P. M. Weaver3 

Department of Aerospace Engineering, University of Bristol, Bristol, BS8 1TR, U.K. 

Wing aeroelastic performance, such as static aeroelastic shape, flutter/divergence speed 

and gust load response, has a critical impact on aircraft design and consequently the 

tailoring of aeroelastic response offers much potential for weight savings. In this paper, the 

configuration between the spars and ribs of an un-tapered, un-swept wing box is varied to 

modify the aeroelastic performance. Different spar/rib orientations are investigated through 

numerical simulation and an experimental test program using 3D printed wings. A series of 

static and dynamic wind-off and wind tunnel tests show that it is possible to have a 

significant influence on the structural behaviour.  

I. Introduction 

oday's commercial aviation is predicted to see a growth of 5% per annum until at least 20301. Such a promising 

future is nonetheless facing some issues amongst which the industry’s fossil fuel dependency is one of the 

biggest. The improvement in engine fuel efficiency has started to flatten, forcing aircraft designers to find efficiency 

improvements by focusing on the overall aircraft and reducing structural weight and drag. These goals require that 

future aircraft be optimised and designed with rules where tradition does not override success.  

The science of aeroelasticity focuses on the excitation and deformation of a structure under the interaction of 

elastic, aerodynamic and inertial forces2. The aeroelastic performance of aircraft wings has been considered for 

many years in the design process as a certification requirement so as to avoid flutter/divergence and a catastrophic 

failure during a gust encounter2, often resulting in penalising the design through the addition of weight. 

Aeroelasticity also dictates the deformation shape of the wing in-flight affecting the drag produced by the aircraft; 

the wing “jig-shape” is designed to that the optimal aerodynamic shape is obtained at the cruise flight condition. 

Challenged with the need to improve aircraft efficiency, aeroelastic performance is becoming a key design driver so 

as to reduce the amount of structure used by the wing, for flutter/divergence and gust response control, and by 

tailoring wing deformation during the entire flight envelope to reduce drag. Understanding the different methods by 

which aeroelastic performance can be controlled is therefore important to aircraft designers.  

Aeroelastic tailoring has been primarily researched using composite materials to influence the coupling of 

bending and torsion motions through control of material anisotropic properties3. The use of coupling phenomenon 

through either stacking sequence optimisation4–8 or novel manufacturing methods9,10 have shown the possibility of a 

large positive impact on the aeroelastic performance. However, the idea of aeroelastic tailoring has mainly been 

investigated on conventional structural designs6,7. 

In addition to aeroelastic tailoring through composite tailoring, aeroelastic performance can be improved through 

the use of novel wing internal structural designs. This has been highlighted by research in wing structural 

optimisation which encompasses: (1) topology optimization and (2) shape optimisation.  

Topology optimization focuses on finding the optimal number and shape of structural features11. Significant 

improvement in aeroelastic tailoring have been achieved through the development of novel wing structure by 

research work using the Solid Isotropic Material with Penalization12 (SIMP) method or the Level Set13,14 method. 

Kolonay and Kobayashi15 who used a cellular division method to perform topology, shape and sizing optimisation of 

a fighter aircraft wing box showed similar improvements in aeroelastic tailoring. However, aeroelastic tailoring 

achieved through the topology optimisation often generates complex solutions often hardly transferable into real 

designs. 
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An alternative approach to structural aeroelastic tailoring is structure shape optimisation where the initial number 

and positions of the structural members are specified and set, but can change shape as part of the design process. 

The possibility offered by shape optimisation was first presented by Harmin et al16 who modified the angles between 

the ribs and the spars to generate bend-twist coupling on an aluminium wing to improve the aeroelastic performance. 

When considering composite wings, Vio and Fitzpatrick17 optimised the shape of a straight un-tapered composite 

wing box. The optimisation looked at modifying the spars shape using a Genetic Algorithm (GA) by moving the 

nodes position in a cell-discretised wing box structure. The analysis showed the possibility of controlling instability 

speed, mass and gust response in an advantageous manner by controlling the structural shape. Later Vio et al8 

explored further this concepts  of wing box deformation by fitting third order Non-Uniform Rational B-Splines 

(NURBS) to the rear and front spar of a sweptback tapered wing box.  The optimised design was seen to be different 

to straight spars/ribs structure design and had improved mass, instability speed and gust response. Finally, Francois 

and Cooper18 showed that the significant improvement in flutter speed and gust response could be achieved by 

modifying the shape of a straight wing box through the use of curved spars and/or ribs.  

Similarly, Locatelli et al19 showed that the use of curved spars and ribs allowed a reduction of the weight of a 

wing-box when subjected to stress and buckling constraints. Their approach decoupled the spars and ribs curvatures 

from the rib/spar arrangement allowing for more realistic wing design. Later Liu et al19 performed a two-step 

optimisation of the aluminium NASA Common Research Model (CRM) wing to minimise its structural weight 

while subject to flutter speed, stress and buckling constraints in a static aeroelastic calculations. Significant weight 

savings were achieved while aeroelastic constraints were met. Jutte et al10 used curvilinear spars and ribs to perform 

aeroelastic tailoring on a composite NASA CRM wing when considering flutter speed and stresses during a static 

aeroelastic analysis. Although this work did not consider the optimising of the solution, it highlighted that 

significant aeroelastic performance gains can be achieved through the use of curvilinear spars and ribs. Finally 

Francois et al20 showed that curved spars and ribs in a reduced design freedom framework resulted in wings with 

improved flutter speed while meeting buckling and stress constraints on both backward and forward swept wings.  

Past research in aeroelastic tailoring have shown that improvements in aeroelastic performances are achieved by 

a positive change in the structural coupling phenomenon such as the creation of twist through the application of 

bending loads. Although research work has highlighted the benefits that novel wing structural design can offer in 

aeroelastic tailoring, understanding the mechanism by which novel structural design changes the structural coupling 

behaviour remains to be established. Additionally this has never been illustrated experimentally.  

In this paper, the impact of the rib/spar arrangement on aeroelastic performance is investigated both numerically 

and experimentally through consideration of different rib/spar arrangements. The numerical and experimental tests 

include static testing, wind tunnel testing and dynamic testing using wings manufactured using polyamide laser 

sintering.   

This paper is structured as follows: Section II described the concept explored and the wing geometry considered 

then Section III describes the structural modelling performed. Section IV details the experimental part of this paper. 

Finally Section V shows the modelling and experimental results and Section VI concludes this paper. 

II. Concepts and Wing Model Considered 

A. Concept 

This paper explores the impact of the orientation of the ribs with respect to the spars (rib/spar arrangement) on 

the aeroelastic performance of a wing. Interestingly very little information exist regarding the impact of the rib/spar 

arrangement. Classic structural design textbooks21 limit the rib/spar arrangement on swept wings to only two cases: 

(1) the ribs perpendicular to the spars or (2) the ribs parallel to the air flow. Both of those orientations are shown in 

Figure 1. Although both arrangements are mentioned in design textbooks the second arrangement is often 

disregarded because of weight concerns and no consideration is made for aeroleasticity. In research work the impact 

of the rib/spar arrangement was first explored by Harmin et al16 who highlighted that rib/spar arrangement impacted 

the wing bend-twist coupling and hence its aeroelastic performance. 
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Figure 1. Design Textbook Rib Orientation for a Swept Back Wing. 

 

B. Wing Model 

All wings considered in this paper had a similar geometry. The wings were untapered and un-swept with a span 

of 500mm and a chord of 100mm. The aerofoil was a NACA 0012 profile. The wings internal structure were made 

of 8 ribs, 2 spars and a root and tip ribs closing the box. The leading and trailing edge spars were placed at 25% and 

75% of the wing chord. The skin thickness was of 1mm and the rib and spar thickness changed with the orientation 

of the ribs to maintain a wing of constant mass. Additionally, to avoid the increase in skin panel size the change in 

rib orientation created a half rib at each end of the wing. The dimensions of the wings are shown in Figure 2 and the 

thicknesses summarised in Table 1. Since the wings were un-swept, the two classic rib/spar arrangements show in 

Figure 1 were similar: the ribs perpendicular to both spars and parallel to the airflow. In this paper this arrangement 

is referred to as the Base Case. The rib/spar arrangements explored in this paper are shown on Figure 3. 

 

 
 

Figure 2. Wing Model External Dimensions in mm. 
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Table 1. Spar/Rib Arrangement and Corresponding Spar and Rib Thicknesses. 

 

Rib Orientation (Degrees) Spar Thickness (mm) Rib Thickness (mm) 

0 (Base Case) 2.00 2.00 

15 1.88 1.88 

-15 1.88 1.88 

30 1.80 1.80 

45 1.62 1.62 

 

 
Figure 3. Rib/Spar Arrangement Explored in this Paper. 

III. Structural Model  

The impact of the rib/spar arrangement was first investigated using finite element (FE) modelling. The wing 

model shape and spar/rib arrangement was controlled in MATLAB and modelled in MSC.PATRAN. The material 

used was driven by the manufacturing of the wings and is specified in Section IV. 

The geometry of the wing was specified in a MATLAB script that outputted a PATRAN session file to generate 

the FE model of the wing, which was then read by MSC.PATRAN. Actions include the creation of the surfaces, 

meshing of the surfaces, node equivalence and check of the element geometries as well as the creation of element 

properties and boundary conditions to be used in the different analyses. The geometry was meshed automatically in 

MSC.PATRAN using the IsoMesh meshing algorithm. The structure model was made using 2D shell elements. 

Initially, the wing model was built using quadrilateral shell elements (CQUAD4); however, these were replaced by 

triangular shell elements (CTRIA3) if their skew angle was less than 30ᵒ. It should be noted that the FE model made 

no simplification about the wing geometry, and so the curvature of the NACA aerofoil were fully considered and so 

required a high number of elements. The model mesh contained over 120,000 structural elements and 400 

aerodynamic panels for the aeroelastic calculations.  

The wings created underwent three different types of FE analysis: a static analysis, a modal analysis and an 

aeroelastic static analysis. The aim of these analysis was to model the behaviour of the wing in conditions similar to 

the experimental ones.  

 The static analysis (SOL 101) was performed to assess the deflection and twist of the different wings when 

subjected to static loading. Two different analysis were performed, and in both analysis the wing was assumed to be 

fully fixed at the root.  
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Initially, various loads were applied at the tip of the wing. These aimed at validating the FE model in a simple 

load case. The load was applied to the wing tip using a Multiple Point Constraint (MPC) slaving all the nodes on the 

tip aerofoil to a node placed at the mid chord and on a line between the trailing and leading edge. It should be noted 

that such load would generate a bending load and a torque as the shear centre of an aerofoil is around quarter chord.   

Secondly, a static analysis was used to estimate the position of the Flexural Axis by applying a unit load at the 

leading and trailing edge at various sections along the wing. The flexural axis is the line connecting flexural centres 

which are a point on a wing section at which the application of a shear force creates no twist of that section with 

respect to the root22,23. 

The modal analysis (SOL 103) was used to estimate the natural frequencies of the different mode shape of the 

wings and so compare such results with the experimental ones. The wing was, once again, assumed to be fully fixed 

by the root.  

The static aeroelasticity analysis (SOL 144) was performed at angles of attack ranging from 0 to 5ᵒ and at speed 

from 5m/s to 40m/s. This analysis assessed the deflection and twist of the wing under different aeroelastic loading. 

In this analysis the wing was assumed to be fully fixed at the root.   

 

IV. Experimental Testing 

A. Wing Manufacturing 

Having designed a set of wings to be tested, the wings had to be manufactured quickly, efficiently and at a 

limited cost. Additionally, the manufacturing method had to provide sufficient freedom for the consideration of 

various structural configurations in this study and finally, the manufacturing route had to ensure that the wings 

were made in a material with enough structural stiffness for the different tests to be carried out. For these reasons it 

was decided that the wings would be laser sintered from polyamide powder. The harden polyamide powder was 

considered to have the material properties shown in Table 2 as specified by the manufacturer and was considered 

to be an isotropic material with a dimensional tolerance of 0.3mm.  

 

Table 2. Cured Polyamide Material Properties as Specified by Manufacturer. 

 

E (N/mm2) 1,650.0 

ν 0.4 

ρ (kg/m3) 1,150.0 

 

Excess powder trapped in the rib bays was removed by the creation of three small holes at the connection of the 

spars and covers at the root. Since the wings were to be tested in a fully fixed root condition a rectangular root 

section was manufactured with every wings as shown by Figure 4. Finally, the wings were painted with white paint 

on both sides and black paint speckles were applied on one side of the wings as shown by Figure 5 to enable the use 

of Digital Image Correlation (DIC). Table 3 highlights the variation in weight among the different wings and with 

the application of the paint.  

 

 
 

Figure 4. 3 View of the CAD File Sent to the Manufacturer with the Root Plate. 
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Figure 5. Illustration of the Black Speckle Pattern Applied on the Wings. 

 

Table 3. Weight of the Wings without and With Paint. 

 

Wing Weight – No Paint (g) Weight – With Paint (g) 

Base Case 345 351 

Rib @ 15ᵒ 324 332 

Rib @ -15ᵒ 334 342 

Rib @ 30ᵒ 327 336 

Rib @ 45ᵒ 335 344 

 

B. Static Testing 

The static testing consisted of two different tests: (1) a static tip loading and (2) a static flexural axis loading. The 

loads were applied on the wing using the Load Application Device (LAD). The LAD consisted of a rectangular part 

with an opening of the shape of the wing aerofoil which is slightly larger than the wing aerofoil. This allowed the 

application of a load at various location along the span of the wing and yet provided a tight fit to prevent any motion 

of the LAD. The LAD is shown in Figure 6. In both tests, wing deflections were recorded using the 3D Digital 

Image Correlation (DIC) method –a contactless displacement measurement method. The DIC cameras were placed 

above the wings in order to measure the top side of the wings during these tests. The set up for the static testing is 

shown in Figure 7. 

The first test (Static Experiment 1) examined the application of different tip loads and recorded whole wing 

deflection in all three axis. This test had for purpose to illustrate the behaviour of the different wings under static 

loading and also validate the FE model. The weight schedule is specified in Table 1. For every test point, three DIC 

images were captured. 

The second test (Static Experiment 2) aimed to find the flexural axis by using the method described in Tathan22 

and Stodieck et al23.  Loads were applied separately at the leading edge and then at the trailing edge of the wing.  

Two different weights (200 and 400g) were used for this test at the position specified in Table 4. The loads were 

always applied first at the trailing edge and then at the leading edge. The LAD was then moved to the new position 

and the procedure repeated. For every test point, three DIC images were taken.  

 

Table 4. Mass Schedule for Static Experiment 1 and LAD Position from Root in Static Experiment 2. 

 

Mass Applied  (g) in Static Experiment 1 

0 105 245 350 451 554 654 758 858 963 1063 1167 

LAD Position from Root (mm) in Static Experiment 2 

56 111 167 222 278 333 444 500 
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Figure 6. Load Application Device (LAD). 

 

 

 
Figure 7. Experimental Set-Up for the (a) Wind Tunnel Test and (b) the Static Test. 

 

C. Wind Tunnel Testing 

The wind tunnel test was used to measure the deflection of the wings under aerodynamic loading. The wings 

were placed horizontally in the wind tunnel and fixed to one wall. The DIC camera was placed outside the wind 

tunnel looking at the underside of the wings through a glass wall. The wind tunnel set up is shown in Figure 7. 

The wings were fixed at a range of angle of attacks from 0ᵒ to 5ᵒ with 1ᵒ increment and the wind tunnel speed 

was varied from 0m/s to 40m/s with 5m/s increment. At each test point three DIC images were captured.  

 

D. Dynamic Testing 

Dynamic testing was used to find the natural frequencies, damping ratios and the associated mode shapes. A 

“hammer” test was performed using a single accelerometer placed at the tip of the wing and impacting the 

structure at various impact points as shown by Figure 8 using five averages. The data measurement and analysis 

was performed using LMS International software.  
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Figure 8. Accelerometer and Impact Locations and Dynamic Testing Set Up. 

 

V. Results 

The bending deflection for each test point was found by averaging the deflection found at the leading and trailing 

edge in both the FE modelling and by averaging the recorded points closest to the trailing and leading edge in the 

experiments. In the experiments, the displacement at particular points along the wings were found by surface fitting 

the point mesh data generated by the DIC system for every test points. This allowed the removal of any 

displacement inconsistency generated by the DIC system and also allowed computation of displacements at any 

point of interest on the wing.  

The tip twist was found by measuring the difference in displacement on the trailing and leading edge in the FE 

modelling. In the experiments, the displacement at the leading and trailing edge was not available and thus the 

displacement at the points closest to the leading and the trailing edge were used to define the twist at a particular 

section and nose up twist is defined as positive.  

The above calculations were performed for every DIC picture taken. A minimum of three pictures were taken for 

every test point. Hence in the following sections, the curve fitted line shown on plots results from a third order 

polynomial curve fit using every picture of every test points for a particular wing.  

 

A. Static Loading – Tip Loading 

In this section the experimental and modelling results for the different wings subjected to tip loads applied 

around the whole tip are presented. Figure 9 shows the increase in average tip deflection as the load is increased 

while Figure 10 details the variation in average tip deflection as the rib orientation is changed for the maximum load 

applied (1167g).  

As shown by Figure 9 the different wings undergo different average tip deflection and a linear deflection as the 

load is increased as shown by the FE and test results. The FE modelling results display an increase in tip deflection 

for wings with a rib orientation different than zero. The Base Case wing has least deflection followed by the wing 

with ribs at successive angle of 15ᵒ, 30ᵒ,-15ᵒ and 45ᵒ as shown in Figure 10. The experimental results also predict a 

change in tip deflection as the rib orientation is changed. Once again the Base Case wing sees the least tip deflection 

followed by the wing with ribs at successive angles of 15ᵒ, 30ᵒ, 45ᵒ and -15ᵒ.  
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Figure 9. Average Tip Deflection due to Static Loads. 

 

 
Figure 10. Average Deflection at Tip for Different Rib Orientation at a Load of 1167g. 

 

Figure 11 shows the increase in tip twist as the load is increased while Figure 12 details the variation in tip 

deflection as the rib orientation is changed for the maximum load applied (1167g). The FE modelling results predict 

that the wing with ribs at -15ᵒ, 30ᵒ, 0ᵒ and finally ribs at 15ᵒ undergo an increase in nose down twist. Meanwhile the 

wing with ribs at 45ᵒ is predicted to undergo a nose up twist. Interestingly this variation in twist direction was not 
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found in the experimental results. In the experiment all the wings underwent a nose down twist. The twist was found 

to increase with the rib orientation as follows: ribs at 45ᵒ, 0ᵒ, -15ᵒ, 30ᵒ and finally 15ᵒ. 

 
Figure 11. Tip Twist due to Static Loads. Nose up is Positive Twist. 

 
Figure 12. Twist at Tip for Different Rib Orientation at a Load of 1167g. 

 

As shown by Figure 11 and Figure 12 some difference exists in tip displacement and twist between the FE and 

experiment results. A potential explanation for such differences is the material properties. Figure 13 shows the tip 

displacement and twist under maximum tip load for the Base Case wing with a 10% and 20% reduction in Young’s 
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Modulus. Clearly, a reduction in material properties from the manufacturer values would explain part of the 

difference between the FE and experimental results. Additionally, manufacturing tolerances and experimental 

precision can explain some of the difference between the FE modelling and the experimental results.  

 

 
 

Figure 13. Tip Displacement and Twist for the Base Case Wing with Varying Young’s Modulus. 
 

B. Static Loading – Location of Flexural Axis 

The aim of these tests was to evaluate the location of the flexural axis. In the modelling case, the vertical 

deflection of the nodes at a particular section was used to find out the twist of that section when subjected to a unit 

load at the trailing and leading edge. The location of flexural centre is then found by calculating the position on that 

section where a shear load results in no twist of the section. The FE modelling results of this analysis are presented 

in Figure 14. 

In the experimental case, the vertical displacements ( ) of every sections along the wings for every load case ( ) 

considered were used to estimate the flexibility matrix ( ) of the wing  

 

 
The flexibility matrix was then used to find the location of flexural centres. Those results are presented in Figure 

15 and Figure 16. 
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Figure 14. FE Modelling Flexural Axis Location for the Different Wings. 

 
Figure 15. Experimental Flexural Axis Location for the Different Wings using a load of 200g. 
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Figure 16. Experimental Flexural Axis Location for the Different Wings using a load of 400g. 

 

The location of the flexural axis of the different wings, shown in Figure 14 for the FE modelling and Figure 15 

and Figure 16 for the experiment, provides an explanation for the variation in bending and twist behaviour. For this 

discussion, the experimental results refer to Figure 16.  

FE modelling predicted that the flexural axis at the tip of the wings is closer to the quarter chord when the ribs 

are placed at 15ᵒ, then 0ᵒ, then 30ᵒ, -15ᵒ and finally 45ᵒ. It should be noted that all the wings except the wing with 

ribs at 45ᵒ have a flexural axis in front of the mid chord. The application of a tip load at the mid chord creates a nose 

up moment resulting in a nose up twist for the wings with ribs at 0ᵒ,-15ᵒ, 15ᵒ and 30ᵒ. Similarly the application of a 

tip load at the mid chord for the wing with ribs at 45ᵒ translates in a bending force and a nose down moment.  

The experimental results show that at the tip, the flexural axis is closer to the quarter chord point in the 15ᵒ wing, 

then -15ᵒ, 0ᵒ, 30ᵒ and finally 45ᵒ wing. Thus the flexural axis results for the wings that undergo highest and lowest 

twist correlate with the twist results found in the tip load experiment. It should be noted that none of the wings were 

found to have their flexural axis behind the mid chord point. Hence, for all wings the application of a load at the mid 

chord results in the generation of a bending force and nose down moment. 

Although FE modelling and experimental results do not fully agree they both show that a change in rib 

orientation changes the location of the flexural axis which changes the structural bend-twist coupling of the wings 

suggesting that rib orientation can be used for aeroelastic tailoring purposes. However, it should be noted that the 

thickness of the spars and ribs were modified with the change in rib orientation so as to keep the wing mass 

constant. Thus to illustrate only the impact of the rib orientation on the coupling of the wing the flexural axis for the 

different wings was calculated by FE modelling on wings with ribs and spars of constant thickness of 2mm. The 

results of that analysis are shown in Figure 17 and show that small variation has a limited impact on the location of 

the flexural axis as compared to the impact provided by the change in rib orientation.  

Manufacturing tolerances and experimental precision can explain some of the difference between the FE 

modelling and the experimental results.  
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Figure 17. Flexural Axis Location of the Wings with Different Rib Orientation with Different Rib and Spar 

Thickness. 

C. Aeroelastic Analysis 

Figure 18 and Figure 19 show the modelling and experimental variation in average tip displacement and tip twist 

as the angle of attack is varied at an airspeed of 0m/s. The small variation in displacement recorded by the different 

DIC images at particular test points illustrates the impact of the vibration of the wind tunnel engine. Moreover, the 

fact that some of the data points are non-zero illustrates the precision of the DIC method and the data interpolation 

method applied on the DIC point mesh.  

Figure 20 and Figure 21 show the modelling and experimental variation in average tip displacement and twist as 

the angle of attack is varied at an airspeed of 40m/s. Figure 20 and Figure 21 show that at an angle of attack of 0ᵒ 

some tip deflection and twist were recorded. Since the wing has a symmetric aerofoil this should not occur. Thus 

this discrepancy in result is explained by the manufacturing tolerances and inaccuracy in the angle of attack setting.  
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Figure 18. Average Displacement for Different Angle of Attack with an Airspeed of 0m/s. 

 

 
Figure 19. Tip Twist for Different Angle of Attack with an Airspeed of 0m/s. 
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Figure 20. Average Displacement for Different Angle of Attack with an Airspeed of 40m/s. 

 

 
Figure 21. Tip Twist for Different Angle of Attack with an Airspeed of 40m/s. 

 

Table 5, Table 6 and Table 7 present a ranking for the absolute tip displacement and the tip twist for every test 

point considered. In those tables, the maximum displacement/twist is noted by a 1 and the minimum 

displacement/twist is noted by a 5. Table 5 and Table 7 highlights the experimental deflection and twist behaviour of 

the different wings under aeroelastic loads. As the load increases, through higher airspeed and higher angle of 
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attack, it can be seen that a pattern appears: the wing with ribs at 45ᵒ experience the largest deflection and twist 

while the Base Case wing undergo the smallest deflection twist. Figure 21 shows that the wing with ribs at 45ᵒ 

undergoes larger twist while all the other wings are clustered around similar values. This behaviour is predicted by 

the FE models.  

FE results shown in Figure 22, Figure 23 and in Table 6 show that the average tip deflection increases from the 

Base Case to the wing with rib at 15ᵒ, then 30ᵒ then -15ᵒ and finally rib at 45ᵒ. The tip twist is found to increase from 

the wing with rib at 15ᵒ, then 30ᵒ, then 0ᵒ, then -15ᵒ and finally 45ᵒ. It should be noted that the difference in average 

tip deflection and tip twist between the Base Case and the wings with ribs at 15ᵒ, -15ᵒ and 30ᵒ is at a maximum of –

2.18mm and 0.16 degrees which are small when compared to the variation between the Base Case and the wing with 

rib at 45ᵒ (maximum of 37.47mm and 0.46 degrees). Such small variations are believed to be too small to be 

appropriately captured in the current experimental work. It should be noted that the FE results ranking does not vary 

with airspeed or a change in angle of attack.   

The variation in average tip deflection and tip twist can once again be explained by looking at the flexural axis. 

The wing with ribs at 45ᵒ was found to have a flexural axis location the furthest aft implying maximum twist and 

deflection when a load is applied at the quarter chord.  
 

Table 5. Ranking Matrix of the Average Tip Displacement Recorded During the Wind Tunnel Experiment.  

R0 is the Base Case. 
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Table 6.  (a) Tip Displacement and (b) Twist Ranking Matrix for the FE Modelling Results during the Wing 

Tunnel Experiment. R0 is the Base Case. 
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Table 7. Ranking Matrix of the Tip Twist Recorded during the Wing Tunnel Experiment. R0 is the Base 

Case.  
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Figure 22. Zoom on the Tip Displacement for FE Results at an Airspeed of 30m/s. 

 

 
Figure 23. Zoom on the Tip Twist FE Results at an Airspeed of 30m/s. 
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D. Modal Analysis 

Table 8 presents the natural frequencies, damping ratios and mode shape found through the experiment and an 

FE normal modes analysis. The difference in natural frequencies between the FE modelling and the experimental 

results are shown in Table 9, note that there is a significant difference between the two results in frequency but that 

the mode shapes are similar with the exception of a mixed mode that could not be detected by the experiment 

because of the positon of the accelerometer. Additionally, the consistency in difference in natural frequencies 

between in the FE and the experiment results suggests a good FE and experiment agreement. Once again the wing 

with the ribs at 45ᵒ has the smallest difference between the FE modelling and the experimental result as shown in 

Table 9. 

Table 10 shows the variation in natural frequency for each mode with respect to the Base Case. It can be seen 

that natural frequencies change with the variation in rib orientation. FE modelling predicted that the largest change 

in natural frequencies occurs for a rib orientation of 45ᵒ, followed by rib at 30ᵒ and rib at -15ᵒ and finally rib at 15ᵒ. 

The experimental results suggest variation in natural frequencies is greater for rib -15ᵒ, 45ᵒ, 15ᵒ then ribs at 30ᵒ. The 

variation in weight for the different wings as shown in Table 3 could explain the lack of coherence in the 

experimental results. Nonetheless, it should be noted that the variation in natural frequencies by the change in rib 

orientation is found in both the experiment and the FE modelling suggesting that an increase in flutter speed through 

the control of the rib orientation is possible. 

 

Table 8. Natural Frequencies, Damping and Mode Shape for the Different Wings Considered. 

 

 

R0 – Experiment R0 – FE 

     
Mode Freq (Hz) Damping % Shape Freq (Hz) Shape 

     
1 7.64 4.81 Bending 10.66 Bending 

     
2 47.51 1.2 Bending 64.00 Bending 

     

    

69.48 Mixed 

     
3 80.58 2.53 Torsion 94.68 Torsion 

     
4 128.92 2.02 Bending 169.12 Bending 

     
5 233.39 3.12 Torsion 282.13 Torsion 

     

 

R15 – Experiment R15 – FE R-15 – Experiment R-15 – FE 

Mode Freq (Hz) Damping % Shape Freq (Hz) Shape Freq (Hz) Damping % Shape Freq (Hz) Shape 

1 7.22 3.74 Bending 10.55 Bending 7.12 2.17 Bending 10.43 Bending 

2 46.03 1.48 Bending 63.44 Bending 45.62 2.06 Bending 62.97 Bending 

    

68.76 Mixed 

   

67.49 Mixed 

3 78.61 2.25 Torsion 95.16 Torsion 78.00 2.56 Torsion 94.52 Torsion 

4 125.48 2.01 Bending 168.00 Bending 123.78 2.1 Bending 167.05 Bending 

5 227.64 2.09 Torsion 283.16 Torsion 223.04 3.22 Torsion 281.73 Torsion 

 

R30 – Experiment R30 – FE R45 – Experiment R45 – FE 

Mode Freq (Hz) Damping % Shape Freq (Hz) Shape Freq (Hz) Damping % Type Freq (Hz) Shape 

1 7.36 3.2 Bending 10.54 Bending 7.25 3.1 Bending 9.15 Bending 

2 46.41 1.41 Bending 63.47 Bending 45.58 1.32 Bending 54.58 Bending 

    

68.65 Mixed 

   

67.55 Mixed 

3 79.31 2.54 Torsion 96.07 Torsion 78.93 2.35 Torsion 84.81 Torsion 

4 126.11 2.2 Bending 168.29 Bending 123.62 1.72 Bending 144.49 Bending 

5 230.63 4.71 Torsion 285.69 Torsion 228.69 3.02 Torsion 253.77 Torsion 
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Table 9. Percentage Difference in Natural Frequencies between the Experimental and the FE Results. 

 

 % Difference Between Experiment and FE 

Mode R0 R15 R-15 R30 R45 

1 -28.30 -31.60 -31.73 -30.18 -20.80 

2 -25.77 -27.45 -27.55 -26.88 -16.50 

 -100.00 -100.00 -100.00 -100.00 -100.00 

3 -14.89 -17.39 -17.48 -17.45 -6.94 

4 -23.77 -25.31 -25.90 -25.06 -14.45 

5 -17.27 -19.61 -20.83 -19.27 -9.88 
 

 

Table 10. Variation in Natural Frequencies between the Base Case (R0) and the Other Wings with the FE and 

the Experimental Results. 
 

 
% Difference with respect to R0 - FE 

% Difference with respect to R0 - 

Experiment 

Mode R15 R-15 R30 R45 R15 R-15 R30 R45 

1 -0.99 -2.18 -1.09 -14.13 -5.55 -6.86 -3.68 -5.14 

2 -0.87 -1.60 -0.83 -14.72 -3.12 -3.97 -2.31 -4.07 

 -1.03 -2.86 -1.19 -2.78 0.00 0.00 0.00 0.00 

3 0.51 -0.17 1.47 -10.42 -2.44 -3.20 -1.58 -2.05 

4 -0.66 -1.22 -0.49 -14.57 -2.67 -3.99 -2.18 -4.12 

5 0.37 -0.14 1.26 -10.05 -2.47 -4.44 -1.19 -2.02 
 

VI. Conclusions 

In this paper, the impact of rib orientation with respect to the spars was investigated through an experimental test 

programme in comparison with FE modelling. Wings with different rib orientation from -15ᵒ to 45ᵒ with 15ᵒ 

increment were considered with the wings manufactured using polyamide laser sintering. The wings were tested 

through: (1) static testing, (2) wind tunnel testing and (3) dynamic testing.  

Although FE modelling and experimental work did not fully agree, both showed that the change in rib 

orientation modified the structural bend-twist coupling of the wings and so changed the wings’ responses under 

static and aeroelastic loading. Those changes were related to a change in the flexural axis location. Additionally, 

both showed a change in the natural frequencies.  

Future work will be dedicated to reducing the differences between the FE models and the experiments and to 

examine the effect of uncertainties in the manufacturing process. A better characterisation of the material properties, 

the physical wing weight distribution and shape will help in reducing this gap. To do so, the use of a four point bend 

test and methods such as X-ray and laser scanning of the wings to make a wing model will be considered.  
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