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December 8, 2009

Abstract

In the past dozen years random matrix theory has become a useful tool for conjec-
turing answers to old and important questions in number theory. It was through the
Riemann zeta function that the connection with random matrix theory was first made
in the 1970s, and although there has also been much recent work concerning other va-
rieties of L-functions, this article will concentrate on the zeta function as the simplest
example illustrating the role of random matrix theory.

1 Introduction

The Riemann zeta function (see [35, 67]) is defined as a Dirichlet series or an Euler product
over the primes,

ζ(s) =
∞∑

n=1

1
ns

=
∏
p

(1− 1/ps)−1, (1.1)

which both converge for Re(s) > 1. These can be continued analytically, yielding a mero-
morphic function on the complex plane. There then exists a functional equation,

ζ(s) = πs−1
2
Γ(1

2 − 1
2s)

Γ(1
2s)

ζ(1− s), (1.2)

which relates the Riemann zeta function on one side of the critical line Re(s) = 1/2 to the
same function on the other side. The connection with random matrix theory is through
the infinite number of complex zeros that lie in the critical strip; that is, that have a real
part between 0 and 1. The Riemann Hypothesis asserts that all these zeros have the form
ρ = 1/2+ iγ (with γ real) - that they lie on the critical line with a real part equal to 1/2. It
is in the distribution of the imaginary parts of these zeros that we see the link with random
matrix theory.

2 Limiting zero statistics

To begin, we will consider statistics of the zeros in the limit of large height on the critical
line. If we label the Riemann zeros ρj = βj + iγj , for those zeros with γj > 0, then the



density of the γj ’s increases with height t up the critical line as

d(t) ∼ 1
2π

log
t

2π
. (2.1)

It is the fluctuation of the positions of the zeros around this average density that is of
interest, and so often it is useful to scale away the effect of the increasing density. We define
a new set of points

wj = γj
1
2π

log
γj

2π
, (2.2)

which on average have a consecutive separation distance of one.
In the early 1970’s Hugh Montgomery [57] studied two-point statistics of the Rie-

mann zeros and conjectured that, for an appropriate test function f(x),

Conjecture 2.1 (Montgomery, 1973)

lim
W→∞

1
W

∑
1≤n,m≤W

n6=m

f(wn − wm) =
∫ ∞

−∞
f(x)R2(x)dx, (2.3)

where

R2(x) = 1−
(

sin(πx)
πx

)2

. (2.4)

He also proved that (2.3) holds true for f(x) such that

f̂(τ) =
∫ ∞

−∞
f(x)e2πixτdx (2.5)

has support in (−1, 1). Numerical evidence suggests that Montgomery’s conjecture is correct
[58], see Figure 1.
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Figure 1: Two-point correlation function of the scaled Riemann zeros plotted using 106

zeros around the 1020th zero, computed by A. Odlyzko, and compared with R2(x) from
(2.4).

Shortly after Montgomery completed this work he was introduced to Freeman Dyson.
After hearing about Montgomery’s latest results Dyson [34] recognized in R2(x) the two-
point correlation function of eigenvalues of random unitary matrices defined, for a suitable
test function f(x, y), as:
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Theorem 2.2

lim
N→∞

1
N

∫

U(N)

∑
1≤j,k≤N

j 6=k

f

(
N

2π
(θj − θk)

)
dAHaar

=
∫ ∞

−∞
f(x)

(
1−

(
sinπx

πx

)2
)

dx. (2.6)

The integral in the first line is over the group U(N) of unitary N ×N matrices and g(x) =
f( N

2πx) is a 2π-periodic function. The matrices are weighted with respect to Haar measure
on the group. eiθ1 , eiθ2 , . . . , eiθN are the eigenvalues of A ∈ U(N).

As there are N eigenangles (θ1, . . . , θN ) on a circle of circumference 2π, we can scale the
eigenangles by N/2π in order to give them an average consecutive spacing of unity. In (2.6)
the test function f(x) is being sampled at the spacings between pairs of scaled eigenangles
and the result is averaged over the unitary group U(N). This is equal (see, for example, [17]
or [54]) to the second line of (2.6), which features the same two-point correlation function
R2(x) as Montgomery’s conjecture.

There is substantial further evidence, both analytic and numerical, that in the limit
of large height up the critical line, statistics describing the distribution of the Riemann zeros
converge, when correctly scaled, to the limiting distribution of eigenvalues of large unitary
matrices [6, 8, 43, 58, 62].

3 Modelling zeta at finite height on the critical line

Thus it appears that random matrix theory succeeds in modelling the limiting distribution
of Riemann zeros, but this is not the end of the story. There is a theorem of Selberg (see
eg. [67, 58])

Theorem 3.1 (Selberg)
For any rectangle B ∈ C,

lim
T→∞

1
T

∣∣∣∣∣∣



t : T ≤ t ≤ 2T,

log ζ(1/2 + it)√
1
2 log log T

∈ B





∣∣∣∣∣∣

=
1
2π

∫∫

B
e−(x2+y2)/2dx dy.

That is, in the limit as T , the height up the critical line, tends to infinity, the value dis-
tributions of the real and imaginary parts of log ζ(1/2 + iT )/

√
(1/2) log log T each tend,

independently, to a Gaussian with unit variance and zero mean. Odlyzko [58] computed nu-
merically the distribution of Re log ζ(1/2 + iT )/

√
(1/2) log log T for values of the Riemann

zeta function around the 1020th zero and he obtained the solid curve in Figure 2. Despite
the apparently large height on the critical line at which he did the computation, the value
distribution is still far from the limiting Gaussian, shown in the short-dashed line on the
figure.

To model this distribution using random matrix theory, some analogue of the Rie-
mann zeta function is needed. We know that the zeros of the Riemann zeta function, at
least in the limit of large height up the critical line, behave like the eigenvalues of large
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Figure 2: The value distribution for Re log ΛA with respect to matrices taken from U(42),
Odlyzko’s data for the value distribution of Re log ζ(1/2 + it) near the 1020th zero (taken
from [58]), and the standard Gaussian, all scaled to have unit variance. (Taken from [53].)

unitary matrices. The natural function that has zeros at the eigenvalues of a matrix is
the characteristic polynomial. The characteristic polynomial of a unitary matrix A may be
defined by

ΛA(s) = det(I −A∗z) =
N∏

n=1

(1− se−iθn), (3.1)

where eiθ1 , . . . , eiθN are the eigenvalues of A and A∗ is its conjugate transpose. The following
central limit theorem can be established for log ΛA(eiθ) (see also [4, 31]):

Theorem 3.2 (Keating and Snaith, 2000 [53])

lim
N→∞

meas



A ∈ U(N) :

log ΛA(eiθ)√
1
2 log N

∈ B



 =

1
2π

∫∫

B
e−

1
2 (x2+y2)dxdy

for rectangles B ∈ C.

This theorem corresponds precisely to Selberg’s for the value distribution of log ζ(1/2+
it), suggesting that random matrix theory, in the limit as the matrix-size tends to infinity,
can indeed model the value distribution of log ζ(1/2 + it) as t →∞.

The question, though, is to explain the slow convergence to this limit seen in
Odlyzko’s numerics in Figure 2. We have seen that the limit T → ∞ corresponds to
the limit of matrix size N →∞. A natural way to relate N and T is to equate the density
of zeros with the density of eigenvalues [53], giving, asymptotically,

1
2π

log
T

2π
=

N

2π
. (3.2)

We note this also has the effect, for large T and N , of equating the variance 1
2 log log T with

1
2 log N . The 1020th zero of the Riemann zeta function lies at height T ∼ 1.5202 × 1019,
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yielding a value for N of about 42. Thus on Figure 2 is also shown the distribution of
Re log ΛA(1), averaged over A ∈ U(42). We see that characteristic polynomials of matrices
of finite size are very effective at modelling the value distribution of the logarithm of the
Riemann zeta function at finite height on the critical line. The moments of the distribution
of the logarithm of the characteristic polynomial can be calculated. (For example, for the
real part of the logarithm they can be calculated from the generating function that we
will meet later, (4.5). For details see [53].) The lower order terms that contribute in the
approach to the N →∞ limit describe the slow approach to the limit of the Riemann data
in Figure 2.

In determining the value distribution of log ΛA(eiθ) (e.g. as in Theorem 3.2), the
averages were performed over matrices A taken uniformly with respect to Haar measure on
the unitary group U(N). The value of θ chosen makes no difference as the unitary group
is rotationally invariant. It is natural to ask how close this average is to an average with
respect to θ when A is fixed; that is, about ergodicity. It was proved in [44] that indeed the
average is ergodic, in the sense that in the limit as N →∞, the average over θ equals that
over A for all but a set of matrices of zero measure.

As has been described above, the scaling of log ΛA with respect to 1
2 log N leads to a

central limit theorem. Different scalings, characterizing the large deviations of log ΛA, were
also computed in [44], and shown to agree with numerical calculations and other results
known to hold for the zeta function.

4 Incorporating number theory

At large, but finite, height on the critical line, the logarithm of the Riemann zeta function
is modelled very effectively by finite size matrices. The arithmetic contribution to the
distribution of the logarithm of the Riemann zeta function does not appear in the leading
order term, and its effects are concentrated in the tails of the distribution so we do not see
them in Figure 2 even for finite T . None the less, there is a contribution containing number
theoretical information - random matrix theory alone cannot fully predict the behaviour for
finite height on the critical line.

One sees this phenomenon clearly by plotting the two-point correlation of the un-
scaled zeros of the Riemann zeta function, and looking on a longer correlation scale than
we did in Section 2. Now there appears a very different picture, see Figure 3. This plot is
a histogram of the frequency of separation distances (between 0 and 40) occurring between
pairs of zeros chosen from the lowest 100 000 zeros of the Riemann zeta function.

We note in Figure 3 the dips in the data at values around 14, 21, etc. On the plot
we have marked the positions of the lowest six Riemann zeros (approximately: 14.13, 21.02,
25.01, 30.42, 32.93, 37.59). It is curious to note that pairs of Riemann zeros have a relatively
small likelihood of being separated by a distance corresponding to the height of a low zero.
This is something that cannot be predicted by random matrix theory, as random matrices
do not contain information about specific positions of Riemann zeros. Clearly there is input
of a number theoretic nature here. To understand how arithmetic and behaviour predicted
by random matrix theory combine it is useful to follow the history of computing moments
of the Riemann zeta function using random matrix theory.
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Figure 3: The dots represent the two-point correlation function of the raw Riemann zeros
plotted using the first 100 000 zeros, computed by A. Odlyzko. The solid grey line is
the prediction from the ratios conjecture, given in (4.19). The positions of the lowest six
Riemann zeros are marked, coinciding with the dips in the two-point statistic.

4.1 Moments

Number theorists believe the moments of the Riemann zeta function grow asymptotically
like

1
T

∫ T

0
|ζ(1/2 + it)|2λdt ∼ aλ

gλ

Γ(1 + λ2)
(log T )λ2

(4.1)

for large T , where aλ is a product over primes

aλ =
∏
p

(
1− 1

p

)λ2 ∞∑

m=0

(
Γ(m + λ)
m!Γ(λ)

)2

p−m, (4.2)

but gλ has remained elusive. Much work has been done on the subject of moments of the
Riemann zeta function, for example [1, 2, 23, 24, 25, 33, 39, 40, 41, 42, 48, 49, 59, 60, 61,
65, 63], but still g1 = 1 [39] and g2 = 2 [48] are the only proven values. Number theoretical
methods have lead to conjectures for g3 = 42 [24] and g4 = 24024 [25] (and more recently
for all moments [33]), but before random matrix techniques there was no viable conjecture
for any further values.

To apply random matrix theory to this problem we once again use the characteristic
polynomial ΛA(s) to model the Riemann zeta function. The analogous quantity to (4.1) is

MN (λ) =
∫

U(N)
|ΛA(1)|2λdAHaar, (4.3)

where the integration is, as before, with respect to Haar measure. We average the character-
istic polynomial at s = 1 because the unitary group is rotationally invariant and so it makes
no difference at what position on the unit circle we evaluate the average. Weyl’s integration
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formula [68] allows us to write Haar measure on U(N) in terms of the eigenangles, giving
∫

U(N)
|ΛA(1)|2λdAHaar (4.4)

=
1

(2π)NN !

∫ 2π

0
· · ·

∫ 2π

0

∏

1≤j<m≤N

∣∣∣eiθj − eiθm

∣∣∣
2
∣∣∣∣∣

N∏

n=1

(1− e−iθn)

∣∣∣∣∣

2λ

dθ1 · · · dθN .

This N -dimensional integral may then be computed by relating it to an integral evaluated
by Selberg (see [54]) for −1/2 < Re(λ), giving

MN (λ) =
N∏

j=1

Γ(j)Γ(j + 2λ)
(Γ(j + λ))2

(4.5)

∼ f(λ)Nλ2
,

where the final line is the asymptotic for large N . For integer λ = k the leading order
coefficient is

f(k) =
k−1∏

j=0

j!
(j + k)!

, (4.6)

and for arbitrary λ the general expression is

f(λ) =
(G(1 + λ))2

G(1 + 2λ)
. (4.7)

Here we use the Barnes double gamma function [5] in the expression for f(λ). It is related
to the gamma function, having the property

G(1) = 1, (4.8)
G(z + 1) = Γ(z) G(z).

Note that, in reference to Section 3, all information about the value distribution
of Re log Λ on the unit circle is contained within (4.5): moments may be computed in
terms of the derivatives of MN (λ) at λ = 0, and the value distribution itself is the fourier
transform of MN (iy). Information about the value distribution of Im log Λ, and the joint
value distribution of the real and imaginary parts of log Λ may be computed in a similar
way [53].

It is conjectured [53] that

f(λ) =
gλ

Γ(1 + λ2)
, (4.9)

or equivalently

lim
T→∞

(log T )−λ2 1
T

∫ T

0
|ζ(1/2 + it)|2λdt (4.10)

= aλ lim
N→∞

N−λ2

∫

U(N)
|ΛA(1)|2λdAHaar. (4.11)

We see that here again N is playing the role of log T , and also that here even in the leading
order coefficient arithmetic information contributes, in the form of aλ. This conjecture
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agrees with the previously known and (independently) conjectured results for gk for k =
1, 2, 3, 4.

It is clear from this conjecture that random matrix theory alone cannot always
predict the behaviour of quantities involving the Riemann zeta function, even in the limit
T →∞. The key is to ascertain how to combine random matrix behaviour with the intricate
number theoretical aspects that are specific to the Riemann zeta function.

4.2 Shifted moments

In the previous section we considered only the leading order (in large T ) of the moments
of the Riemann zeta function. It turns out that an effective way to understand the lower
order terms is to consider instead “shifted” moments. These are quantities of the form

1
T

∫ T

0
ζ(1/2 + it + α1) · · · ζ(1/2 + it + αk)

×ζ(1/2− it− αk+1) · · · ζ(1/2− it− α2k)dt. (4.12)

Conjectures for these shifted moments were developed by Conrey, Farmer, Keating,
Rubinstein and Snaith, where they also propose a “recipe” for conjecturing such moments
in other situations, for example, for averages over families of L-functions. See [19] for the
precise form of these conjectures. The important point is that these conjectures, which
derive from a highly non-rigorous but nonetheless number theoretical argument, have an
identical structure to the analogous moment in random matrix theory [18] (see also [11]):

∫

U(N)
ΛA(e−α1) · · ·ΛA(e−αk)ΛA∗(eαk+1)ΛA∗(eα2k)dAHaar. (4.13)

The major features of the formulae for (4.12) and (4.13) are the same, but the
conjectural result for (4.12) it is embellished with arithmetic details that incorporate specific
information about the Riemann zeta function. We will see an example of this in (4.17) and
(4.18).

Once a conjecture for (4.12) has been accepted, setting the α’s to zero reduces the
expression to a formula for the moments (4.1), and this leads to a conjecture that goes
deeper than just the leading order term:

∫ B

A
|ζ(1

2 + it)|2kdt =
∫ B

A
Pk(log t

2π )(1 + O(t−
1
2+ε))dt, (4.14)

where Pk(x) is a polynomial of degree k2. As an example, the 4th degree polynomial
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associated with the moment when k = 2 is

P2(x) =
1

2π2
x4 +

8
π4

(
γπ2 − 3ζ ′(2)

)
x3 +

6
π6

(−48γζ ′(2)π2 − 12ζ ′′(2)π2 + 7γ2π4 + 144ζ ′(2)2 − 2 γ1π
4
)
x2 +

12
π8

(
6γ3π6 − 84γ2ζ ′(2)π4 + 24γ1ζ

′(2)π4 − 1728ζ ′(2)3 + 576γζ ′(2)2π2 +

288ζ ′(2)ζ ′′(2)π2 − 8ζ ′′′(2)π4 − 10γ1γπ6 − γ2π
6 − 48γζ ′′(2)π4

)
x +

4
π10

(
−12ζ ′′′′(2)π6 + 36γ2ζ

′(2)π6 + 9γ4π8 + 21γ2
1π8 + 432ζ ′′(2)2π4 +

3456γζ ′(2)ζ ′′(2)π4 + 3024γ2ζ ′(2)2π4 − 36γ2γ1π
8 − 252γ2ζ ′′(2)π6 +

3γγ2π
8 + 72γ1ζ

′′(2)π6 + 360γ1γζ ′(2)π6 − 216γ3ζ ′(2)π6 − 864γ1ζ
′(2)2π4 +

5γ3π
8 + 576ζ ′(2)ζ ′′′(2)π4 − 20736γζ ′(2)3π2 − 15552ζ ′′(2)ζ ′(2)2π2 −

96γζ ′′′(2)π6 + 62208ζ ′(2)4
)

(4.15)

Whereas with just the leading order term numerical testing of the conjecture was
not particularly convincing, the more accurate formula (4.14), derived from the shifted
moments, compares very well with numerics, as seen in Table 1 (taken from [19]). Note
in particular the excellent agreement between numerics and theory in the final line of the
table where a large interval of integration was used.

4.3 Ratios of the Riemann zeta function

A further generalization was made by Conrey, Farmer and Zirnbauer [21] to averages of
ratios of the Riemann zeta function:

1
T

∫ T

0

∏K
k=1 ζ(1/2 + it + αk)

∏K+L
`=K+1 ζ(1/2− it− α`)∏Q

q=1 ζ(1/2 + it + γq)
∏R

r=1 ζ(1/2− it + δr)
dt. (4.16)

They develop a similar recipe for generating conjectures for quantities of this type. Once
again the structure mirrors that of the analogous random matrix quantity (see [20, 14, 22]
for this calculation).

As an example we consider

Conjecture 4.1 (Conrey, Farmer, Zirnbauer, 2008 [21]) Let −1/4 < Re(α), Re(β) <
1/4, 1/ log T ¿ Re(γ), Re(δ) < 1/4 and Im(α), Im(β), Im(γ), Im(δ) ¿ε T 1−ε for every
ε > 0. Then with s = 1/2 + it,

∫ T

0

ζ(s + α)ζ(1− s + β)
ζ(s + γ)ζ(1− s + δ)

dt =
∫ T

0

(
ζ(1 + α + β)ζ(1 + γ + δ)
ζ(1 + α + δ)ζ(1 + β + γ)

Aζ(α, β; γ, δ)

+e− log
t

2π (α+β) ζ(1− α− β)ζ(1 + γ + δ)
ζ(1− β + δ)ζ(1− α + γ)

Aζ(−β,−α; γ, δ)
)

dt (4.17)

+O
(
T 1/2+ε

)
.

We compare this to the following:
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[A,B] conjecture (4.14) numerical average ratio
[0,50000] 7236872972.7 7231005642.3 .999189

[50000,100000] 15696470555.3 15723919113.6 1.001749
[100000,150000] 21568672884.1 21536840937.9 .998524
[150000,200000] 26381397608.2 26246250354.1 .994877
[200000,250000] 30556177136.5 30692229217.8 1.004453
[250000,300000] 34290291841.0 34414329738.9 1.003617
[300000,350000] 37695829854.3 37683495193.0 .999673
[350000,400000] 40843941365.7 40566252008.5 .993201
[400000,450000] 43783216365.2 43907511751.1 1.002839
[450000,500000] 46548617846.7 46531247056.9 .999627
[500000,550000] 49166313161.9 49136264678.2 .999389
[550000,600000] 51656498739.2 51744796875.0 1.001709
[600000,650000] 54035153255.1 53962410634.2 .998654
[650000,700000] 56315178564.8 56541799179.3 1.004024
[700000,750000] 58507171421.6 58365383245.2 .997577
[750000,800000] 60619962488.2 60870809317.1 1.004138
[800000,850000] 62661003164.6 62765220708.6 1.001663
[850000,900000] 64636649728.0 64227164326.1 .993665
[900000,950000] 66552376294.2 65994874052.2 .991623
[950000,1000000] 68412937271.4 68961125079.8 1.008013
[1000000,1050000] 70222493232.7 70233393177.0 1.000155
[1050000,1100000] 71984709805.4 72919426905.7 1.012985
[1100000,1150000] 73702836332.4 72567024812.4 .984589
[1150000,1200000] 75379769148.4 76267763314.7 1.011780
[1200000,1250000] 77018102997.5 76750297112.6 .996523
[1250000,1300000] 78620173202.6 78315210623.9 .996121
[1300000,1350000] 80188090542.5 80320710380.9 1.001654
[1350000,1400000] 81723770322.2 80767881132.6 .988303
[1400000,1450000] 83228956776.3 83782957374.3 1.006656

[0,2350000] 3317437762612.4 3317496016044.9 1.000017

Table 1: Sixth moment of ζ versus the conjecture 4.14. The ‘numerical average’ column,
i.e. integrals involving ζ, were computed using Mathematica.

Theorem 4.2 (Conrey, Farmer, Zirnbauer [20]) For Re(γ), Re(δ) > 0,

∫

U(N)

ΛA(e−α)ΛA∗(e−β)
ΛA(e−γ)ΛA∗(e−δ)

dAHaar =
z(α + β)z(γ + δ)
z(α + δ)z(β + γ)

(4.18)

+e−N(α+β) z(−β − α)z(γ + δ)
z(−β + δ)z(−α + γ)

,

with z(x) = (1− e−x)−1.

The interesting point is that z(x) has a pole at x = 0 with residue 1, exactly as does ζ(1+x).
Comparing (4.17) and (4.18) in this light shows that the structure of the two formulae are
identical: z(α + β) takes the place of ζ(1 + α + β), etc. Remembering that we relate N to
log t

2π , we see clearly that the formulae mirror each other remarkably well. Aζ(α, β; γ, δ) is

10



a product over primes, and ζ(1 + x) contains arithmetic information that z(x) lacks, but
the overall behaviour of these expressions is dominated by their polar structure, and this
is identical in the two cases. This gives strong support to the conjecture in the number
theory case. Even apart from the connection with number theory, averages of ratios of
characteristic polynomials have been the subject of work in random matrix theory (see for
example [3, 9, 14, 37]).

Upon accepting Conjecture 4.1 we can now fully understand the two-point correla-
tion function in Figure 3. By taking a logarithmic derivative of (4.17) with respect to the
variables α and β, subsequently setting γ = α and δ = β and performing a double integra-
tion, integrated against a suitable test function around a contour that encloses the zeros
with 0 < γj ≤ T , we obtain a detailed expression for the two-point correlation function [28].

Theorem 4.3 Assuming Conjecture 4.1, and with f a suitable, even, test function, we
have

∑

0≤γj ,γk≤T

f(γj − γk) =
1

(2π)2

∫ T

0

(
2πf(0) log

t

2π
+

∫ T

−T
f(r)

[
log2 t

2π
+ 2

((
ζ ′

ζ

)′
(1 + ir)

+
(

t

2π

)−ir

ζ(1− ir)ζ(1 + ir)A(ir)−B(ir)
)]

dr

)
dt + O(T 1/2+ε); (4.19)

here the integral is to be regarded as a principal value near r = 0,

A(η) =
∏
p

(1− 1
p1+η )(1− 2

p + 1
p1+η )

(1− 1
p)2

, (4.20)

and

B(η) =
∑

p

(
log p

(p1+η − 1)

)2

. (4.21)

To compare with the numerical two-point correlation function we plot the quantity

in square brackets as the solid curve in Figure 3. It is the term containing
(

ζ′
ζ

)′
(1 + ir), a

derivative of the zeta function on the line with real part equal to 1, that feels the influence
of the low Riemann zeros and accounts for the dips at these positions on the figure. The
expression (4.19) was first derived by Bogomolny and Keating [7] by a different method,
which could be extended to treat the higher correlation functions as well. The higher
correlation functions have been obtained from the ratios conjectures in [30, 29].

4.4 The hybrid formula and extreme values

In Section 4.1, it is noticeable that the leading order coefficient of the moments of the
Riemann zeta function splits into a product of arithmetic information aλ and a factor
determined by random matrix theory. This inspired a “hybrid” formula, developed by
Gonek, Hughes and Keating [38]. The zeta function can be written as an Euler product
over primes, or as a Hadamard product over its zeros. Combining these two forms, using an
explicit formula connecting the zeros and the primes, Gonek, Hughes and Keating derive a
hybrid product:

11



Theorem 4.4 (Gonek, Hughes and Keating, 2007 [38]) For s = σ + it with 0 ≤ σ
and |t| ≥ 2, let X ≥ 2 be a real parameter, and let K be any fixed positive integer. Let f(x) be
a nonnegative C∞-function of mass one supported on [0, 1], and set u(x) = Xf(X log(x/e)+
1)/x. Thus u(x) is a function of mass one supported on [e1−1/X , e]. Set

U(z) =
∫ ∞

0
u(x)E1(z log x)dx, (4.22)

where E1(z) is the exponential integral
∫∞
z e−w/w dw. Then

ζ(s) = PX(s)ZX(s)
(

1 + O
( XK+2

(|s| log X)K

)
+ O(X−σ log X)

)
, (4.23)

where
PX(s) = exp

( ∑

n≤X

Λ(n)
ns log n

)
, (4.24)

with

Λ(n) =
{

log p if n is a power of a prime p
0 else

, (4.25)

and
ZX(s) = exp

(
−

∑
ρn

U
(
(s− ρn) log X

)
. (4.26)

The constants implied by the O-terms depend only on f and K.

We see that the parameter X acts to moderate the balance between the product over zeros
and the product over primes: U limits the sum over zeros to those near s (on a scale of
1/ log X), and the product over primes goes up to X.

This hybrid product is used in [38] to reconsider the moments of the Riemann zeta
function. The authors make progress by conjecturing that upon averaging ζ(σ + it) over t,
the averages of PX and ZX are independent (something they prove in particular cases).

Very interestingly, the hybrid product also led to a conjecture concerning the ex-
treme values achieved by the Riemann zeta function on the critical line. Taking t > 0, the
Lindelöf Hypothesis asserts that for every ε > 0, ζ(1/2 + it) = O(tε). With the assumption
of the Riemann hypothesis it has been shown [15] that

ζ(1
2 + it) = O

(
exp

(
log 2

2
log t

log log t

))
. (4.27)

On the other hand [64], there are arbitrarily large t such that

|ζ(1
2 + it)| ≥ exp

(
(1 + o(1))

√
log t

log log t

)
. (4.28)

Farmer, Gonek and Hughes use the hybrid formula to present a case for the following:

Conjecture 4.5 (Farmer, Gonek and Hughes, 2007 [36])

ζ(1
2 + it) = O

(
exp

(( 1√
2

+ ε
)√

log t log log t

))
(4.29)

for all ε > 0 and for no ε < 0.
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5 Probabilistic interpretation of moments of characteristic
polynomials

There have recently been developments on a new probabilistic model for characteristic
polynomials. Bourgade, Hughes, Nikeghbali and Yor [10] have shown that averages of char-
acteristic polynomials behave in the same way as products of independent beta variables.
We state their theorem here and follow it with some explanation and applications.

Theorem 5.1 Let VN ∈ U(N) be distributed with the Haar measure µU(N). Then for all
θ ∈ R,

det(I − eiθVN ) law=
N∏

k=1

(1 + eiθk
√

β1,k−1) (5.1)

with θ1, . . . , θn, β1,0, . . . , β1,n−1 independent random variables, the θk’s uniformly distributed
on [0, 2π], and the β1,j’s (0 ≤ j ≤ N − 1) being beta-distributed with parameters 1 and j.
(By convention, β1,0 is the Dirac distribution on 1.)

The theorem states that the characteristic polynomial of a Haar distributed unitary
matrix is equal in law to a product of independent random variables. Equality in law for
two random variables X and Y means that for suitable test functions from the domain of
the random variable to R,

E[f(X)] = E[f(Y )], (5.2)

where E is the expectation value. The probability density of a beta-distributed random
variable, defined on [0, 1], with parameters α and β is

Γ(α + β)
Γ(α)Γ(β)

xα−1(1− x)β−1. (5.3)

From the above theorem, with a bit of work on expectation values of an individual
beta-distributed random variable, the authors rederive (4.5). They also revisit the distrib-
ution of the logarithm of the characteristic polynomial of a random U(N) matrix, the real
and imaginary parts of which are known to be independently Gaussian distributed in the
limit of large matrix size, as we saw in Section 3. The Gaussian behaviour in the limit
follows naturally from the probabilistic model as the logarithm of the characteristic poly-
nomial can be decomposed into sums of independent random variables and then classical
central limit theorems can be applied, and in addition the authors of [10] obtain new results
in the form of estimates on the rate of convergence to the Gaussian limit.

6 Conclusions and extensions

We see that random matrix theory is a useful tool in exploring the statistical behaviour of
values of the Riemann zeta function and the positions of its zeros. In this article we have
confined the discussion to the Riemann zeta function, but there also exist many other L-
functions with similar properties: a representation as a Dirichlet series, an Euler product, a
functional equation and a Generalized Riemann Hypothesis. Any random matrix calculation
applied to the Riemann zeta function could equally be applied to such an L-function (see,
for example, [62]). In addition, Katz and Sarnak [50, 51] proposed that collections of L-
functions gathered into natural families also show random matrix statistics, and much work
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has been done using random matrix theory to calculate moments and zero statistics in this
case, too, leading to surprising new applications [12, 13, 16, 26, 27, 28, 32, 45, 46, 47, 52,
55, 56, 66].

References

[1] F.V. Atkinson, The mean value of the zeta-function on the critical line, Quart. J.
Math. Oxford Ser., 10:122–128, 1939.

[2] F.V. Atkinson, The mean value of the zeta-function on the critical line, Proc. London
Math. Soc. (2), 47:174–200, 1941.

[3] J. Baik, P. Deift, and E. Strahof, Products and ratios of characteristic polynomials of
random Hermitian matrices, J. Math. Phys., 44(8):3657–70, 2003.

[4] T.H. Baker and P.J. Forrester, Finite-N fluctuation formulas for random matrices, J.
Stat. Phys., 88:1371–1385, 1997.

[5] E.W. Barnes, The theory of the G-function, Q. J. Math., 31:264–314, 1900.

[6] E.B. Bogomolny and J.P. Keating, Random matrix theory and the Riemann zeros I:
three- and four-point correlations, Nonlinearity, 8:1115–1131, 1995.

[7] E.B. Bogomolny and J.P. Keating, Gutzwiller’s trace formula and spectral statistics:
beyond the diagonal approximation, Phys. Rev. Lett., 77(8):1472–1475, 1996.

[8] E.B. Bogomolny and J.P. Keating, Random matrix theory and the Riemann zeros
II:n-point correlations, Nonlinearity, 9:911–935, 1996.

[9] A. Borodin and E. Strahov, Averages of characteristic polynomials in random matrix
theory, Comm. Pure Appl. Math., 59(2):161–253, 2006.

[10] P. Bourgade, C.P. Hughes, A. Nikeghbali, and M. Yor, The characteristic polynomial
of a random unitary matrix: A probabilistic approach, Duke Math. J., 145(1):45–69,
2008.
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