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Prediction of negative radiation forces due to a Bessel beam
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The mechanism of generating backward dragging forces on objects standing in the path of a single,

translationally invariant, symmetric acoustic Bessel beam is studied. This paper aims to provide

mechanical and structural conditions for the emergence of negative axial forces based on the

elastodynamic response of acoustically penetrable objects and beam’s nonparaxiality parameter.

An extensive numerical study has been performed for various liquid and solid elastic cases to

illustrate the validity of the proposed eigenfrequency-based conditions. Results have revealed the

existence of a complex but interpretable link between the emergence of negative radiation forces

on spheres illuminated by zero-order Bessel beams and the eigenfrequencies of the particle.

Considerable progress has been made in elucidating these relationships, which may lead to the

development of predictable and robust single-beam acoustic handling devices.
VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4884758]

PACS number(s): 43.25.Qp, 43.25.Uv, 43.80.Ev, 43.20.Gp [ANN] Pages: 547–555

I. INTRODUCTION

Understanding the mechanisms through which acoustic

beams push objects in the wave propagation direction or

move objects laterally toward or away from the beam axis is

relatively straightforward using the conventional radiation

force theory. However, using a single gradientless symmetric

acoustic beam to produce negative radiation forces (NRF) on

a particle placed on the beam axis is more complex, and its

underlying physics is not yet fully understood. In the case of

a zero-order Bessel beam (ZOBB), for instance, numerical

studies have shown that the radiation force on rigid/soft

particles is always repulsive, whereas that for acoustically

penetrable objects may become negative under specific

conditions.1–12 In the absence of gradient and absorption

forces, this can only be interpreted to be due to the scattering

forces and the structural properties of the object itself.

Despite the recent works on the emergence of NRFs due to

Bessel beams,3–7 to the best knowledge of the author, the

relation between the structural properties of the particles,

e.g., mechanical properties and eigenfrequencies, and the

emergence of NRFs on spheres due to an acoustic ZOBB has

not been studied before. Development of a robust and

predictable single-beam handling technique can lead to the

development of advanced technologies for handling/sifting

of micro-particles, based on their sizes or mechanical proper-

ties (e.g., white and red blood cells; see Fig. 1).

The application of Bessel beams of zero- and high-order

(helicoidal) and focused beams for particle manipulation has

been the subject of much theoretical and experimental stud-

ies in optics and more recently in acoustics.1–13 Studies have

shown that spherical particles placed on the axis of a Bessel

beam may be attracted toward the source of the beam for

appropriately selected beam parameters (shape and fre-

quency) and particle properties (optical or mechanical).1–13

Several theoretical studies have been carried out over the

past few years to explore the feasibility of using ordinary

(zeroth-order) and high-order Bessel beams for handling of

on-axis objects with different mechanical properties.3–12 The

scattering of Bessel beams by liquid, solid elastics, and

porous spheres have also been investigated in some recent

papers.10,11,14–16 Unlike high-order Bessel beams, an ordi-

nary Bessel beam does not carry an orbital momentum and

has no on-axis phase singularity, and therefore the emer-

gence of NRFs using an ordinary Bessel beam, in a way, is

even more intriguing.

As mentioned earlier, it can be readily shown that the

axial radiation force due to a ZOBB on acoustically rigid/

soft particles (i.e., admit no fields into its interior) is always

repulsive, while that for drops, elastic, viscoelastic, and

porous particles has been shown in recent investigations to

be achievable over specific frequency bands.3–12 It has been

tried before to relate the emergence of such negative axial

forces to the far-field characteristics of the object. For

instance, for an optical Bessel beam, Chen et al. have shown

that only if the radiation is emitted predominantly in the for-

ward direction may a large backward recoil force then occur

and give rise to NRFs on the object.2 Likewise, in acoustics,

Zhang and Marston illustrated some geometrical aspects of

the momentum transport associated with negative radiation

forces and showed that NRFs occur when the scattering into

the backward hemisphere is suppressed relative to the scat-

tering into the forward hemisphere.6 Based on the derivation

of acoustic radiation force developed by Zhang, and

Marston,6 the axial force on a lossless sphere is related to

cos(b) � hwi, where hwi is the scattering asymmetry param-

eter and b is the conical angle of the beam [see Eq. (21) of

Zhang and Marston6]. Therefore the necessary condition for

the emergence of NRFs on a lossless spherical particle has

been found to be hwi > cos(b). The effect of particle’s

absorption has also been discussed.6 Numerical analysis

based on this condition shows that it can accurately predict

the ka - b position of the NRF islands. In this study,
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however, we will show that in addition to the condition

developed by Zhang and Marston,6 one can also use the

structural characteristics, namely mechanical properties and

eigenfrequencies, of the particle to locate the NRF islands

due to a ZOBB. In this study, we shall numerically investi-

gate the emergence of NRFs for a wide range of materials,

i.e., liquid and solid elastic, and will relate the emergence of

such NRFs to the eigenfrequencies of the particle.

II. FORMULATION

In what follows, we shall consider the acoustic radiation

force acting on an acoustically penetrable sphere (droplet

and solid elastic), with radius a, placed on the axis of a

ZOBB, in a lossless liquid medium with density and speed

of sound of qf, cf, see Fig. 1. The velocity potential field of a

symmetric incident sound beam can be expressed in cylindri-

cal coordinates (R, z), in terms of a Bessel transform with

respect to R and two Fourier transforms with respect to vari-

ables z, and t,17

/ðincÞðR;z; tÞ¼/0

ðx=c

0

ð1
�1

lJ0ðlRÞeicz�ixtSðl;xÞdxdl;

(1)

where /0 is the real-valued incident field amplitude constant,

c¼ k cosb and l¼ k sinb are, respectively, the longitudinal

and transverse wavenumbers of the incident field, with

k¼x/cf, J0(�) is the Bessel function of order zero,18 and

S(l, x) is the spectral function of the beam.17 In the case of

a ZOBB, the spectral function is given by, Sðl;xÞ
¼ ð1=lÞdðl� k sin bÞdðx� x0Þ, which after substitution

into the preceding integral representation of the incident field

yields,

/ðincÞðR; z;uÞ ¼ /0J0ðlRÞ eicz�ixt: (2)

A closer inspection of the integral representation of the

incident wave, Eq. (1), reveals that an axially symmetric

Bessel beam is essentially the result of the superposition of

plane-wave components the wave vectors of which lay on

the surface of a cone having the propagation axis as its sym-

metry axis and an angle equal to b (conical angle).17

Because acoustic radiation force on spherical objects is of in-

terest, one first needs to rearrange the incident field expres-

sion, Eq. (2), in terms of spherical harmonic basis functions.

Using the wave series expansion for cylindrical waves, see

Eq. (82), page 413 of Stratton,19 one can express the incident

field in the spherical coordinate system (r, h) as

/ incð Þ r; hð Þ ¼/0 e�ixt
X1
n¼0

inð2nþ 1ÞjnðkrÞ

� Pnðcos bÞPnðcos hÞ; (3)

where jn is a spherical Bessel function and Pn a Legendre

function.18 The interaction of the incident wave with an

acoustically penetrable object, submerged in an inviscid

fluid, results in the formation of a compressional sound field

in the surrounding medium and an internal (transmitted)

sound field. The form of the transmitted sound field depends

on the mechanical characteristics of the particle (liquid, elas-

tic, etc.), which will be dealt with later. The scattered sound

field in the host medium can be readily expressed in spheri-

cal coordinate system as

/ scað Þ r; hð Þ ¼/0 e�ixt
X1
n¼0

inð2nþ 1Þxnhð1Þn ðkrÞ

� Pnðcos bÞPnðcos hÞ; (4)

where xn are the partial wave scattering coefficients, and

hð1Þn ð�Þ ¼ jnð�Þ þ iynð�Þ denotes the Hankel function of the

first order.18

The acoustic radiation force on a sphere can be calcu-

lated using F ¼
Þ

AS � dA where S ¼ �hpI � qf vvi is the

Brillouin radiation stress-tensor, and p¼qf d//dt and

v¼�r/ are the acoustic pressure and particle velocity in

the surrounding fluid, respectively,20–22 with /¼Re(/(inc)

þ/(sca)). In the preceding integral radiation force equation,

h�i denotes time average and the integration is performed

over a fixed surface A around the scatterer. The time average

of the acoustic radiation pressure can be obtained by inte-

grating the Bernoulli equation, i.e., hpi ¼ h1
2

p2=qf c
2
f

� 1
2
qf jvj2i, which then leads to20–22

F¼�
þ

A

qf hvvi �dA�
qf

2
hjvj2i �dAþ 1

2qf c
2
f

hpi2 �dA

( )
:

(5)

The fact that the equation of a ZOBB is equivalent to

the superposition of weighted plane-wave components, as

seen in Eq. (3), allows us to find the exerted radiation

force by using the general radiation force expression

developed by Chen and Apfel23 for any axisymmetric

acoustic fields, although the case of ZOBB was not

mentioned in their paper. The acoustic radiation force

equation for ZOBB can also be found in other papers.3,4

The experienced time-averaged acoustic radiation force

on a sphere due to a ZOBB can then be written as

Ypðka; bÞ ¼ �4ðkaÞ�2P1
n¼0Yp;n, where the nth modal con-

tribution term (Yp,n) are given by3,4,23

FIG. 1. (Color online) Interaction of a zero-order Bessel beam with uneven-

sized particles in a container slab and production of attractive and repulsive

forces.
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Yp;n ¼ðnþ 1Þ½an þ anþ1 þ 2ðananþ1 þ bnbnþ1Þ�
� Pnðcos bÞPnþ1ðcos bÞ; (6)

where an and bn are the real and imaginary parts of the scat-

tering coefficients, xn. Equation (6) somewhat reveals the

connection of Yp,n to both the nth and the (nþ 1)th partial

wave components due to the presence of xnþ1 scattering

coefficient terms and the last Legendre term of the nonparax-

iality parameter [Pn(cosb)Pnþ1(cosb)]. The effects of this

interconnection will be discussed later for the prediction of

the effective conical ranges over which NRFs may occur. It

is worth mentioning that this interconnection between differ-

ent modal radiation force components disappears at the

complex-valued eigenfrequencies of the system. This impor-

tant property of radiation force components will be used later

in Sec. III C for finding the effective conical angle range of

each NRF island.

The mechanical and structural properties of particles

can be studied using their farfield form-function spectra. The

acoustic form-function for the scattering of a ZOBB by an

ideal sphere in an ideal inviscid fluid can be defined in

terms of the far-field pressure (ps), as F(ka, h)¼ (2r/

a)e-ikr ps(ka, h, u), where upon using the high-frequency

asymptotic form of the spherical Hankel function, i.e.,

iphpðkrÞ � 1=ikrð Þeikrðkr !1Þ, reduces to Fðka; hÞ
¼ �2ðkaÞ�1P1

n¼0Fn, where the partial-wave form-function

components Fn are given by

Fn ¼ ið2nþ 1Þðan þ ibnÞPnðcos bÞPnðcos hÞ: (7)

For the two scenarios considered in this paper, namely

liquid drops and solid elastic spheres in a fluid medium, the

partial wave scattering coefficients can be found from

xn ¼ �
LnjnðkaÞ � j0nðkaÞ
LnhnðkaÞ � h0nðkaÞ ; (8)

where Ln for a submerged liquid drop with density of qd and

speed of sound cd, is given by

Ln ¼
1

cd

j0n Xdð Þ
jn Xdð Þ

; (9)

where Xd¼ ka/�cd , �cd ¼ cd/cf, �qd ¼qd/qf, and cd¼ �cd�qd is the

drop-to-host acoustic impedance ratio. Also in the case of a

submerged elastic sphere of density qs, and Lame’s constants

k and l, Ln is given by24,27

Ln ¼
1

2ka

X2
T

�qs

XLj0n XLð Þ
XLj0n XLð Þ � jn XLð Þ

� 2nðnþ 1Þjn XTð Þ
ðnþ 2Þðn� 1Þjn XTð Þ þ X2

Tj00n XTð Þ

X2
L

0:5X2
T=X2

L � 1
� �

jn XLð Þ � j
00
n XLð Þ

XLj0n XLð Þ � jn XLð Þ
�

2nðnþ 1Þ jn XTð Þ � XTj0n XTð Þ
� �

ðnþ 2Þðn� 1Þjn XTð Þ þ X2
Tj00n XTð Þ

; (10)

where XL,T¼ ka/�cL;T , �qs¼ qs/qf is the density ratio, �cL;T

¼ cL,T/cf are the longitudinal and transverse speed of sound

ratios, with cL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞ=qs

p
the longitudinal wave speed

and cT ¼
ffiffiffiffiffiffiffiffiffiffi
l=qs

p
the transverse wave speed. The ratio of the

speeds of transverse and compressional waves can be defined

using Poisson’s ratio (�) through cT/cL¼ [2þ 2�/(1� 2�)]-1/2.

III. NUMERICAL RESULTS AND DISCUSSIONS

The emergence of negative axial radiation forces due to

diffraction-free acoustic beams, like ZOBBs, is an interest-

ing topic and has many practical implications. However,

what is perhaps more important than the emergence of NRFs

itself, is the underlying physics of such phenomenon and the

issue of predictability of such negative axial radiation forces,

i.e., predicting the ka - b range over which the axial force

reveres. Because ZOBBs do not produce NRFs on acousti-

cally rigid/soft particles (i.e., perfectly reflective) and the

axial force due to beam’s gradient is zero, the answer to this

question must be sought in the dynamic characteristics of

particles. A set of MATLAB codes have been developed to

calculate the acoustic radiation force and form-function for

liquid and solid elastic spheres. The radiation force and

form-function results have been validated against the

available results for plane progressive wave and ZOBB.3–5,25

The computations have been performed on a dual-core com-

puter with truncation constant of Nmax¼ 50 to assure the

convergence of the simulations in the chosen ka-bandwidth.

To properly detect the NRFs and also the eigenfrequencies

of the particle, small wavenumber increments have been

used. The NRF survey simulations, i.e., Figs. 3(a) and 4, are

performed with a wavenumber increment of Dka¼ 10�2,

and the results in other figures are obtained using a wave-

number increment of Dka¼ 10�3.

The dynamics of an acoustically penetrable object can-

not be fully addressed without studying the complex-valued

eigenfrequencies of the system. A conventional way for

examining the complex eigenfrequencies of an acoustic scat-

tering problem is to plot the form-function modulus, here

jFðka; h ¼ pÞj, over the two-dimensional complex plane of

ka.25 The complex eigenfrequencies can be defined by

Xn;l ¼ an;l � 1
2

iCn;l, where n¼ 0,1,2,… specifies the funda-

mental frequency and l¼ 1,2,3,…, identifies the overtones

associated with the fundamental mode of the vibration the

members of which appear in all the partial waves, shifting to

higher frequencies from one partial wave to the next.24–30

The quantity Cn;l shows the distance of the resonance to the

real axis, and Cn;lð Þ�1 is a measure of the lifetime of the
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resonance. More detailed discussions about the above-

mentioned vibrational modes and their lifetime can be found

in the literature.24–30

In the case of solid elastic materials, these eigenfrequen-

cies (poles), generally, fall into two main categories depend-

ing on whether their phase velocities lie close to the elastic

bulk wave speeds in the solid, i.e., Rayleigh (l¼ 1) and

Whispering-gallery type modes l¼ 2, 3,…, or to the acoustic

wave speed in the fluid, i.e., Franz-type creeping modes. The

modes in the first category are due to the resonances of inter-

nal waves and usually close to the real frequency axis (i.e.,

slightly attenuated), and therefore their effects are more visi-

ble in form-function spectra, whereas the Franz creeping

modes spin the surface of the sphere’s circumference with

successively increasing integer numbers of wavelength and

are highly attenuated and thus their effects are hard to detect.

In what follows, the Rayleigh and Whispering-gallery modes

of nth vibrational mode and lth order for solid elastic objects

will be denoted by Rnl, and the Franz modes by Fnl. The

poles lie only in the fourth quadrant Re(ka)> 0, and

Im(ka)< 0. It is important to note that in the case of liquid

spheres, particles do not support Rayleigh modes, and all the

poles near the Im(ka)¼ 0 axis are the Whispering-gallery

modes. To avoid confusion, however, we shall use the “R”

notation to denote both the Rayleigh and Whispering-gallery

modes for both liquid and solid elastic spheres. An example

is provided in Fig. 2 for a droplet in water with �qd ¼ 1.26,

and �cd ¼ 1.28, for the first four vibrational modes n¼ 0–3

(poles shown as dark regions). The Whispering-gallery

modes are those closer to the real axis (marked by R), while

the first round of the Franz creeping modes (marked by F),

are further down, with much greater imaginary part Cn;lð Þ.

A. NRFs on liquid drops

The axial radiation force and complex eigenfrequencies

calculations have been performed for a large number of

liquid-liquid cases within the density ratio range of 0.3< �qd

< 2, and speed of sound ratio range of 0.4< �cd < 1.4. The

host medium in these simulations is water (qf¼ 1000 kg m3,

cf¼ 1480 ms�1). Figure 3(a) provides results for the feasibil-

ity of producing NRFs on liquid drops using ZOBB based on

their mechanical properties, i.e., �cd and �qd. The NRF survey

has been performed over 0.01< ka< 15 (with wavenumber

increment of Dka¼ 0.01) and 0�< b< 90� and the colored

qd/qf-cd/cf area in Fig. 3(a) shows where negative radiation

forces can be achieved. Regarding the possibility of the

emergence of NRFs on liquid cases of practical importance

(0< �qd < 3), numerical analysis has shown that NRFs due to

a ZOBB generally occur if �cd < 1.46, except for gas-liquid

cases where �qd � 0 [Fig. 3(a)]. Concerning the number of

the NRF islands over 0.01< ka< 15 for liquid drops, the

speed of sound ratio �cd ¼ 1 is found to be a critical value,

above which (1< �cd < 1.46) there exists only one dominant

NRF island, e.g., a glycerol-like drop in water (�cd ¼ 1.28,

�qd ¼ 1.26) (ignoring solubility), see Fig. 3(b1), and below

which multiple NRF islands appear, e.g., chloroform drop in

water (�cd ¼ 0.67, �qd ¼ 1.49), see Fig. 3(b2). It must be men-

tioned that the materials mentioned here are chosen solely

based on their speed of sound and density ratios to provide a

comprehensive numerical study and the effects of their other

mechanical and chemical properties such as solubility or

reactivity are not considered.

It is also important to note that in addition to the typical

NRF islands, similar to those shown in Fig. 3(b) (and Fig. 7

of Marston3), there is also a category of very low amplitude

NRF islands at low frequencies (ka< 0.5), reported by

Marston.6 Using a low frequency approximation, i.e., domi-

nated by the monopole and dipole terms, Marston showed

that the exerted radiation force due to a ZOBB can be

expressed as3

YP;LF ¼
2ka

1þ 2�qd

� �2

G2 þ 2

9
1� �qdð Þ2P2 cos bð Þ

	 

cos b;

(11)

where G ¼ �qd � 1þ 2�qdð Þ=3�qd

� �
�c2

d . Because cosb is posi-

tive over 0�<b< 90�, for Yp to be negative, the term in the

square brackets must be negative. It can be readily shown,

after some algebra, that the latter condition is equivalent to

cos b<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 9G2= 1� �qdð Þ2
h i

=3

r
. In a limiting case, when

G¼ 0 [shown in Fig. 3(a) by dashed line], the latter condi-

tion reduces to cosb<
ffiffiffiffiffiffiffiffi
1=3

p
, i.e., 54.73�< b< 90�, as per

Marston.3 The region over which YP,LF, Eq. (11), is negative

is also shown in Fig. 3(a). Although the negative YP,LF

(marked with Y�P;LF) and the negative Yp,n regions (marked

with Y�P ) overlap over some �qd - �cd areas, numerical inspec-

tions have shown that the low frequency NRFs are of very

small amplitude and lead to much larger NRFs at higher fre-

quencies. An example of such a case was presented and dis-

cussed by Marston.3

FIG. 2. (Color online) Complex-

valued eigenfrequencies for scattering

by a droplet immersed in water sphere

in water with qd/qf¼ 1.26, and

cd/cf¼ 1.28 for the first four modes

(n¼ 0–3). The Whispering-gallery

modes are shown by “R” and Franz

modes by “F.”
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Studying the partial-wave radiation force contributions

(Yp,n), in ka - b contour plot format, and complex eigenfre-

quency contours at each mode (n) using the form-function

components (Fn), Eq. (7), enables us to track the advent of

each NRF island and relate it to the dynamics of the object.

The comparison of the NRF results (modal and total) and the

corresponding complex eigenfrequencies for droplets with

speed of sound ratio within the range of 1< �cd < 1.46 has

led to the conclusion that the only dominant NRF island, for

instance, a glycerol-like drop in water (ignoring solubility),

occurs at the first eigenfrequency, R01, see for example Figs.

2 and 3b1. As we slowly decrease the speed of sound ratio

toward the critical value �cd ¼ 1, the size and amplitude of

the R01 island progressively decreases and will completely

disappear within the range of 0.9< �cd < 1.0. But, instead,

some new NRF islands emerge at higher frequencies (rela-

tive to a0,1). These new islands, which appear at high conical

angles, are found to be caused by the odd-numbered poles

and their frequencies coincide with the Rn1 (n¼ 1, 3, 5,…)

frequencies. For droplets with lower speed of sound ratios,

0.4< �cd < 0.9, a second row of NRF islands will also occur

at the even-numbered poles Rn1 (n¼ 2, 4, 6,…), at smaller

conical angles (marked with �Rn1), see Fig. 3(b2). Thus for

a drop with given mechanical properties (�cd and �qd), one

can easily find the exact ka position of the NRF islands using

the eigenfrequencies of the particle. It is also important to

note that the condition developed by Zhang and Marston,6

i.e., hwi> cos(b), where hwi ¼ Y1=Qsca, and in the case of

ZOBBs, Y1 and Qsca are given by

Y1 ¼
2

ka

� �2X1
n¼0

2ðananþ1 þ bnbnþ1Þ
� �

ðnþ 1Þ

� Pnðcos bÞPnþ1ðcos bÞ; (12a)

Qsca ¼
2

ka

� �2X
n¼0

jxnj2
� �

2nþ 1ð Þ Pnðcos bÞ½ �2; (12b)

can also accurately predict the ka - b location of the NRF

islands, but it requires numerical calculation of the radiation

force component hwi. However, the eigenfrequency-based

condition developed here shows that the advent of NRFs is

related to the eigenfrequencies of the system and that the ka
location of the NRF can be predicted without calculating the

radiation force.

Finally, the ka range of different NRF islands have also

been studied, and it has been observed that they depend on

the width of the corresponding resonance Cn;lð Þ, i.e., inver-

sely related to the decay times (ringing) of the excited reso-

nance, given by Dtn;l ¼ a= cf Cn;lð Þ. It is worth mentioning

here that there is usually a mismatch between the real-valued

resonance frequencies (in vacuo) obtained from form-

function spectra and the complex-valued singularities

obtained from complex-ka plane (under fluid loading). The

issue of the dependence of distance of the complex singular-

ity from the real axis 1
2
Cn;l

� �
on the ratio of fluid to solid

density has been investigated by several authors.29,31 Our nu-

merical assessment for fluids of practical interest has shown

that this mismatch can be up to about 0.1an,l, while that for

solid elastic spheres is much less.

B. NRFs on elastic spheres

In this section, we shall investigate the physical mecha-

nisms of the emergence of NRFs on solid elastic spheres

using ZOBBs. To understand the underlying mechanism,

ka�b NRF islands and eigenfrequencies have been calcu-

lated for more than 25 solid elastic materials with different

densities, bulk, and rigidity moduli. In these simulations, the

host medium is water (qf¼ 997 kg/m3 and cf¼ 1484 m/s).

Figure 4 provides results for the feasibility of producing

NRFs using ZOBB based on their mechanical properties,

i.e., �cL, �cT , and �qs. The NRF survey is performed over

0.01< ka< 15 (with wavenumber increment of Dka¼ 0.01)

and 0�<b< 90�. For materials with Poisson’s ratio of �� 0,

i.e., little lateral expansion when compressed, the transver-

se-to-longitudinal wave speeds ratio is maximum �cT=�cL

¼ 0.707, while for almost incompressible materials (� � 0.5),

the shear wave speed tends to zero. Regarding the possibility

of the emergence of NRFs on solid spheres with density ratio

of �qs > 2, our numerical investigations have shown that the

emergence and the number of the NRF islands depend

FIG. 3. (Color online) (a) Diagram for

the possibility of the emergence of

negative radiation forces on liquid

droplets with different density and

speed of sound ratios over 0.01< ka
	 15 and 0� <b< 90�. The outer col-

ored region Y�Pð Þ corresponds to when

a ZOBB can produce NRF over

0.01< ka	 15, and the inner colored

region corresponds to the low frequency

NRFs Y�P;LF

� �
, given by Eq. (11). The

G¼ 0 line is also shown as dashed

line. (b1) NRF islands for a drop with

�cd ¼ 1.28, �qd ¼ 1.26 (glycerollike,

ignoring the solubility); (b2) NRF

islands for a drop with �cd ¼ 0.67,
�qd ¼ 1.49 in water (like chloroform)

and the corresponding eigenfrequencies.
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primarily on the shear wave speed ratio (nT) and have led to

the 0.35< �cT < 2.2 criterion (see Fig. 4), which can also be

expressed as 0.12�qs <l/K< 4.84�qs, where K is the modulus

of bulk elasticity of the host fluid. It has to be mentioned that

for materials with �cT close to the lower limit (such as poly-
mers) or upper limit (such as beryllium, stiff silica, and

molybdenum) of the preceding condition, NRF islands may

only occur over very narrow ka ranges, which may be

impractical to use. For most polymers of practical use, with

density ratio range of 0.7< �qs < 1.3, relative to water, such

as nylon, polyethylene, NRFs occurs over multiple nar-

row-ka islands, with large b ranges. The scattering of ZOBB

by a poly(methylmethacrylate) (PMMA) sphere and the

emergence of NRF islands have been studied by Marston.4,15

For materials with �cT > 2.2, there are no proper NRF islands

or they occur over very narrow frequency bands, such as

beryllium, stiff silica, and molybdenum.

As mentioned earlier, materials of almost �¼ 0.5

(nearly incompressible) have negligible shear wave velocity

and large cL/cT as a result. This implies that there is only a

compressional wave within the particle, similar to an ideal

liquid drop with qd¼qs and cd¼ cL. Therefore the NRF

islands pattern of such materials will be very similar to the

equivalent liquid case. This also implies that for such materi-

als one can find the �cL - �qs condition for the emergence of

NRFs using Fig. 3(a). The discussion provided in Sec. III. A

regarding the low frequency NRF and the G¼ 0 locus

[see Eq. (11)] can also be used for the determination of the

�cL � �qs areas for such materials.

In the rest of this section, discussions will be provided

based on �cT regions defined earlier. As mentioned earlier,

the inspection of the resonances of the particles can help us

relate the NRFs to the structural characteristics of the parti-

cle and predict the NRF frequencies. To make the discussion

easier to follow, the ka - b NRF islands for eight elastic

materials with different mechanical properties are provided

in Fig. 5. As seen in Fig. 5, for elastic spheres with

2< �cT < 2.2, such as aluminum, steel, and titanium, there

exists only one dominant NRF island within the considered

frequency band. The inspection of the modal radiation force

contributions (Yp,n), and the corresponding eigenfrequencies

of the particle (Xn,l) has shown that this dominant NRF

island occurs at the Rayleigh mode R21 (spheroidal mode) of

the particle. The backscattered form-function results for

these materials show a significant dip over the NRF frequen-

cies, see Fig. 6 (the aluminum spectrum), as per Marston.3,6

The spheroidal R21 mode has the lowest frequency for a free

elastic sphere and corresponds to the prolate-to-oblate sphe-

roidal motion of the particle. The formation of a strong dip

in the backscattering form-function spectrum at R21 is a

well-studied matter.26 Although the suppression of

back-scattered sound field for solid elastic spheres with

2< �cT < 2.2, such as aluminum, over the NRF frequency

band has been mentioned before,3,8 the relation between the

NRF island and the R21 mode has not been discussed.

For relatively soft metal spheres with 1.1< �cT < 2, such

as copper, platinum, tin, brass, and silver, multiple NRF

islands can be found over the considered ka - b domain, see

Fig. 5. The numerical evaluation of the exerted radiation

force has shown that as the transverse speed of sound ratio

decreases below about �cT ¼ 2, the R21-NRF islands gradually

disappear and instead some new NRF islands will emerge,

excited by the higher-order Rayleigh modes. The lowest fre-

quency island for such materials is due to the R31 Rayleigh

mode with the higher-order Rayleigh mode NRFs appearing

at higher frequencies, Fig. 5. The results for the cases

considered in this study have also shown that the

Whispering-gallery modes, such as R32 and R42, may also

cause NRFs at frequencies greater than that of R51. It is

important to note that the high-order Rayleigh or

Whispering-gallery modes may not cause a noticeable mini-

mum in the backscattering form-function spectrum due to

the large conical angle of the ZOBB. Some examples are

provided in Fig. 6 for the form-function of a submerged cop-

per and zinc spheres illuminated by ZOBB with b¼ 85� and

the frequency bands that NRFs occur are shown by thick

lines. The issue of occurrence of form-function minima at

resonance frequencies has been discussed in Williams and

Marston,28 and it has been shown that the resonances could

cause either peaks or depressions in the backscattering

depending on whether the specular reflection is in phase or

out of phase with the guided-wave contribution. In the case

of scattering of ZOBBs, it has been shown by Martson15

that the backscattering may be reduced or increased

depending on properties of the resonance and of the specu-

lar contribution and that the conical angle can be chosen

such that the excitation of a given guided wave is

suppressed.

Last, as demonstrated earlier for the liquid sphere cases,

the ka ranges of the NRF islands for elastic spheres have

also been found to be related to the width of the excited reso-

nance Cn;lð Þ. As an example, the ka ranges of the R21-NRF

for glass, aluminum, and iron spheres are found to be,

respectively, 4.84< ka< 5.54 (Dka¼ 0.7), 4.72< ka< 5.22

(Dka¼ 0.5), and 5.47< ka< 5.68 (Dka¼ 0.21) (see Fig. 5),

FIG. 4. (Color online) Diagram showing the possibility of the emergence of

negative radiation forces on solid elastic particles, at different density and

speed ratios (�qs, �cL;T ). The dark regions correspond to when a ZOBB can

produce negative radiation force. The possibility of emergence negative

radiation forces is explored over 0.01< ka	 15.
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and their resonance widths are, respectively, C2;1 � 0.98,

0.78, and 0.27. Also, the Rayleigh NRFs have been found to

have larger ka ranges than the Whispering-gallery NRFs;

this is consistent with the prior studies concerning the width

of the Rayleigh and Whispering-gallery resonances.27 A

detailed discussion on the issue of resonance width and its

dependence on the ratio of fluid to solid density can be found

in Marston29 and Norris.31

C. Conical angle range

The second step for the development of a ZOBB tractor

is to find the effective conical angle range (/b). Because we

have established that in the case of ZOBBs, the emergence

of NRFs depends on the location of the eigenfrequencies of

the system, finding the conical angle range becomes some-

what easier. It can be readily shown that at a particular com-

plex eigenfrequency of the system, say the eigenfrequency

for a given (n, l), the nth partial wave scattering coefficient

is much larger than other scattering coefficients, i.e.,

jxnj 
 jxmj, where m¼ 0, 1, 2,…, and m 6¼ n. As seen in Eq.

(6) and also the Y1 radiation force component in Eq. (12), the

nth partial wave scattering coefficient xn, enters into two

modal radiation force components, i.e., Yp,n-1, and Yp,n.

Because, at the nth eigenfrequency jxnj 
 jxmj (m 6¼ n),

to find the effective conical angle range (/b), it is suffi-

cient to only focus on the Yp,n-1, and Yp,n radiation force

components rather than the whole radiation force equation,

Yp. By doing so, one can establish a condition for /b based

on the nonparaxiality parameters, Pq(cos b)Pqþ1(cos b),

involved in Yp,n-1, and Yp,n. Figure 7 shows the behavior of

the nonparaxiality parameter, Pn(cos b)Pnþ1(cos b) over

b¼ 0�–90� for n¼ 0–6. The method explained in the pre-

ceding text has been used for all the cases considered in

Secs. III A and III B, and the outcomes are listed in the fol-

lowing text.

FIG. 5. (Color online) Negative radiation force islands for elastic spheres in water. (a) Glass [qs¼ 2.32 g/cm3, cL¼ 5640 m/s, cT¼ 3280 m/s], (b) aluminum

[2.7, 6420, 3040], (c) titanium [4.5, 6070, 3125], (d) zinc [7.1, 4210, 2440], (e) steel [7.9, 5790, 3100], (f) brass [8.6, 4700, 2110], (g) copper [8.93, 5010,

2270], and (h) silver [10.4, 3650, 1610].

FIG. 6. (Color online) Back-scattering form-function for aluminum

[2.7 gr/cm3, 6420 m/s, 3040 m/s], zinc [7.1, 4210, 2440] and copper [8.93,

5010, 2270] spheres suspended in water illuminated by a ZOBB with

b¼ 85�. The thick lines show where the radiation force becomes negative.
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(1) The conical angle range (/b) for odd-numbered

islands R2t-1,1 (t¼ 1, 2,…) can be determined from

P2t-1(cosb)P2t(cosb)< 0. The negative nonparaxiality

regions are shown by thick lines in Fig. 7. According to this

criterion, the /b for R11, R31, and R51 are roughly

[54�–90�], [70�–90�], and [76�–90�], respectively; this

agrees well with the results in Figs. 3b2 and 5. The conical

angle range for the secondary odd-numbered islands

(�R2t-1,1), appeared in the case of drops with �cd < 1, are

given by the second to the last solution range of /b condi-

tion, shown in Fig. 7 by circles.

(2) The conical angle range (/b) for even-numbered

islands R2t (t¼ 0, 1, 2,…) for solid elastic cases and drops

with �cd > 1 (i.e., one dominant R01 island) are found to be

determined by P2tþ 1(cos b)P2tþ2(cos b)< 0, due to the inter-

action of the attractive Yp,2tþ1 and repulsive Yp,2t radiation

force components. As the comparison of Figs. 2 and 5 and 7

suggests /b for R01, R21, and R41 are roughly [54�–90�],
[70�–90�], and [76�–90�], which are consistent with the pre-

ceding condition. The even-numbered islands for liquid

cases with �cd < 1, on the other hand, are found to be given

by the P2t(cos b)P2tþ1(cos b)< 0 condition, see for example

the comparison of R21 and R41 in Fig. 3-b2 and the nonparax-

iality results in Fig. 7 for n¼ 2 and 4. For solid elastic cases,

the agreement is usually 1� or 2� off due to the modal

interferences.

The preceding two eigenfrequency-based conditions for

/b have also been checked against the results available in

other studies and have shown excellent agreement.

As mentioned by Marston,6 and also reviewed in the

preceding text, there is also a category of very low frequency

NRFs the conical angle range (/b) of which must also be

considered. In the case of liquid drops, this type of low

frequency NRFs lead to a larger NRF island (R01 or R11) at

higher frequencies (see for example Fig. 8 of Marston3), and

its conical angle range is also the same as the associated

higher frequency NRF island, which is given by

P1(cos b)P2(cos b)< 0, i.e., /b¼ [54.73�–90�]. Also the

preceding discussion shows that if one knows the

eigenfrequencies of the particle under consideration, the con-

dition developed by Zhang and Marston,6 hwi> cos(b), at

the nth mode, can be further simplified to only include the

significant components, as

Y1 �
2

ka

� �2 Xn

q¼n�1

2 qþ 1ð ÞRe xqx�qþ1

� �
� Pq cos bð ÞPqþ1 cos bð Þ; (13a)

Qsca �
2

ka

� �2

jxnj2 2nþ 1ð Þ Pnðcos bÞ½ �2: (13b)

Finally, equating the b derivate of the angular part of

the modal radiation force components to zero, one can show

that the magnitude of the realized NFR within the Rn1 island

peaks where Pnþ1(cos bmax)þPn(cos bmax)¼ 0. Using the

eigenfrequency-based method proposed in Secs. III, one can

find the ka location of the NRF islands, their non-paraxiality

range (/b) and also the optimum conical angle bmax.

This will help to tune the beam to exert an attractive

force on a particle, with known mechanical and structural

properties without a need to calculate the acoustic radiation

force.

IV. CONCLUSION

The problem of emergence of negative axial radiation

forces on acoustically penetrable spheres due to a zero-order

Bessel beam has been revisited from a structural dynamic

perspective. Significant progress has been made in under-

standing of the feasibility, predictability, and underlying

physics of such phenomena. Our investigations have shown

that the most dominant negative radiation force islands in

the case of liquid drops are due to the R01 or R11 eigenfre-

quencies, while that for solid elastic spheres are caused by

the R21 and R31 resonances. A new method has also been

proposed for the prediction of the beam nonparaxiality range

over which the axial radiation force reverses. The approach

proposed in this study can also be used to understand the

emergence of negative radiation forces on shells with differ-

ent mechanical properties.
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