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ABSTRACT- Acoustic manipulation of porous spherical shells, widely used as drug delivery 

carriers and magnetic resonance imaging contrast agents, is investigated analytically. The 

technique used for this purpose is based on the application of high-order Bessel beams for 

as a single-beam acoustic manipulation device, using which particles lying on the axis of the 

beam can be pulled toward the beam source. The exerted acoustic radiation force is 

calculated using the standard partial-wave series method and the wave propagation within 

the porous media is modeled using Biot’s theory of poroelasticity. Numerical simulations 

are performed for porous aluminum and silica shells of different thicknesses and porosities. 

Results have shown that manipulation of low-porosity shells is possible using Bessel beams 

with large conical angles, over a number of broadband frequency ranges; while that for 

highly porous shells generally occurs over some narrowband frequency domains at much 

smaller conical angles.  
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INTRODUCTION 

While there has been a great deal of research directed toward acoustic handling of 

rigid, elastic, and porous solid particles and shells by means of sonic beams (Marston 2006, 

2007, 2009; Mitri 2008, 2009a, 2009b; Azarpeyvand 2012a), almost no pertinent investigation 

can be found for porous shells. Acquiring knowledge about the interaction of acoustic fields 

with spherical and cylindrical porous shells is of great importance since they are 

continuously finding new applications in various engineering and medical fields. For 

instance, periodically arranged cylindrical porous shells can be used as sonic crystal 

structures to suppress sound propagation for some frequency bands (Sanchez-Dehesa et al. 

2011; Umnova et al. 2005). In micro and nano scales, porous shells have found numerous 

applications in modern medicine, pharmacology, biotechnology and chemistry. Porous 

shells are now widely used as drug delivery carriers (Slowing et al. 2008; Cheng et al. 2009; 

Andersson et al. 2004; Lai et al. 2003; Radu et al. 2004; Mal et al. 2003; Zhao et al. 2008), 

magnetic resonance imaging (MRI) contrast agents (Gao et al. 2008; Campbell et al. 2011; 

Davis 2002), etc. In the context of drug delivery carriers, the inner cavity of such particles 

can store large amounts of drugs, and the encapsulating porous shells provides delivery 

pathway for drug molecules diffusion. The porous shelled drug carriers are also shown to 

be mechanically more stable than some other drug carriers, such as those made of 

polymers, which have revealed a naturally burst release behavior (Jing et al. 2011). 

Another promising application area for porous shells is in MRI contrast agents, used as a 

coating for high-spin, but toxic or hazardous metals. Numerous core/porous-shell 

combinations have been tested, among which some, such as zeolite- or clay-enclosed 

Gadolinium complexes, magnetite/silica core-shell (Mag@SiO2) or FePt@Fe2O3 yolk-shell 
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nanoparticles, have shown encouraging results (Balkus et al. 1991; Balkus and Shi 1996a; 

Balkus and Shi 1996b). 

The ability of contact-free handling, trapping and precise transporting of small 

suspended objects is essential in many fields of science and technology, such as 

bioengineering, chemical engineering, pharmaceutical sciences, etc. For manipulation of a 

suspended particle, a force must be applied on its body. This force can be produced 

optically, electrokinetically, hydrodynamically, or acoustically. In the latter case, 

manipulation can be achieved in two different manners, using either a standing-wave field 

or one single focused beam (Yamakoushi and Noguchi 1998; Liu and Hu 2009; Yasuda et al. 

1995, Haake and Dual 2004; Wu 1991; van West 2007). In the standing-wave method, 

particles are subject to the mechanical force of a standing acoustic wave, generated by one 

transducer (and one reflector) or more ultrasonic transducers (van West 2007; Vandaele et 

al. 2005). In this paper, however, we shall confine our attention to the application of the 

second technique. In the single-beam technique, as the name implies, only one highly 

focused ultrasonic transducer is required, and particle handling becomes possible by 

producing a negative axial force, toward the source. It was shown by Chen and Apfel (1997) 

and Marston (2006, 2007, 2009) that for some material properties and beam types the 

acoustic radiation force for a spherical or cylindrical particle can change from repulsion to 

attraction. This, however, occurs only at certain frequencies and beam operating conditions. 

Although, much research has been conducted on the viability of using single acoustic beam 

devices, particularly Bessel beams, for handling of particles with different mechanical 

properties in various media, the research in this area has remained limited to very simple 

cases and has not yet led to an adequate understanding of the mechanism of particle 



5 
 

manipulation when more complex particles are of concern (Marston 2006, 2007, 2009; Mitri 

2008, 2009a, 2009b; Azarpeyvand 2012a).  

As demonstrated above, despite the growing attention now being given to different 

aspects of the application of porous shells, their dynamical behavior when illuminated by 

an acoustic beam has received very little research attention. In this study, we intend to 

extend the previous investigations by Marston (2006, 2007, 2009), Mitri (2008, 2009a, 2009b) 

and Azarpeyvand (2012a) to the more realistic case of porous shells. The rest of the paper 

proceeds as follows: The next section is dedicated to the mathematical modeling of the 

problem. The formulation of a helicoidal Bessel beam is presented and the radiation force 

formulations are derived. Biot’s theory of motion in poroelastic media is presented and the 

relevant parameters are defined. Numerical results and discussions are presented for 

hollow aluminum and silica spheres with different shell thicknesses and porosities.  

 

MATHEMATICAL FORMULATION 

Let us consider a porous spherical shell with outer radius of a and inner radius of b 

(     ). The particle is positioned on the beam axis and is submerged into and filled with 

linearly compressible, irrotational, nonviscous fluids. The density and the sound speed in 

the outer medium are denoted by    and  , and those in the core medium by    and     

respectively. The shell is illuminated by a helicoidal Bessel beam, radiating at frequency 

  (     ), with a conical (or half-cone) angle of  . A schematic of the problem is shown in 

Figure 1. In what follows, the Roman numerals I, II, and III designate, respectively, the 

surrounding medium, the porous shell medium, and the inner inclusion medium. 
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The incident Bessel beam, propagating in free-space and in the positive   direction, can 

be expressed in cylindrical coordinates (     ), as (Hernández-Figueroa et al. 2008): 

                                       (1) 

where    is the incident field amplitude,         and         are the longitudinal 

and traverse wavenumber components of the incident field, with     ⁄ , and        is the 

Bessel function of order   (Abramowitz and Stegun 1972). The plane wave field can be 

restored by setting     and    , while the beam vanishes if     and    . It is 

interesting to note that an axially symmetric Bessel beam is essentially the result of the 

superposition of plane waves whose wave vectors lay on the surface of a cone having the 

propagation axis as its symmetry axis and an angle equal to   (conical angle) (Hernández-

Figueroa et al. 2008). General intrinsic properties of Bessel beams, such as self-healing, 

diffraction-free, or phase singularity, and angular momentum for higher order Bessel 

beams, have been explained in (Azarpeyvand 2012a, 2012b; Hernández-Figueroa et al. 

2008). 

To obtain a closed-form solution to the problem using partial wave expansion method, 

it is necessary to re-express the incident field, Eq. (1), in the coordinate system of the 

particle. Using a standard wave transformation technique (Stratton 1941), one can rewrite 

the incident sound field in the spherical coordinate system        , 

                 
    ∑                  

            

 

   

 

 (2) 

http://www.dmo.fee.unicamp.br/~hugo/
http://www.dmo.fee.unicamp.br/~hugo/
http://www.dmo.fee.unicamp.br/~hugo/
http://www.dmo.fee.unicamp.br/~hugo/
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with              
  

       
    

       . In the above equation        is the spherical Bessel 

function of order  , and   
      is the associated Legendre function (Abramowitz and Stegun 

1972). 

  The reflected sound wave, propagating radially outwards, may be represented in 

terms of a series of spherical Hankel functions and Legendre polynomials, as  

               
    ∑                     

            

 

   

 

 (3) 

where                     is the spherical Hankel function of the first kind of order  , 

and    and     are the spherical Bessel function of the first and second kind, respectively. 

The unknown scattering coefficients    have to be determined by imposing appropriate 

boundary conditions at particle’s inner and outer surfaces. This will be dealt with later. 

As the incident wave interacts with the shell, part of the incident sound energy will be 

transmitted into the particle. In the case of a poroelastic medium, there exist two bulk 

compressional waves, known as the fast and slow compressional waves and one shear 

wave (Bourbie et al. 1987). Thus, the wave field within the porous shell can be described as, 

     
    

           
    ∑     [       (   )        (   )]     
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    ∑     [                       ]     
             

 

   

 

 (5) 
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    ∑     [                       ]     

            

 

   

  

 (6) 

where   ,    and    are the fast, slow and shear wavenumbers, respectively, which will be 

derived later. Finally, since the core medium (III) is assumed to be an inviscid compressible 

fluid, the transmitted sound field in this medium can be characterized by a single scalar 

potential, as 

                 
    ∑        

  
   

         
             

 

   

 

 (7) 

where       ⁄ .  

The wave propagation in a fluid-saturated porous media can be studied using Biot’s 

theory, which itself is constructed using the equations of linear elasticity, Navier-Stokes 

equations, and Darcy’s law for flow of fluid through the porous matrixes. Consider a 

homogenous, isotropic, porous solid of density     with porosity (pore volume fraction)   . 

The solid frame is saturated with an incompressible Newtonian fluid of density     and 

saturating fluid viscosity  . For such a two-component material two vectors may be defined 

to describe the displacement of the skeletal frame (u), and the fluid (U). In simple words, a 

poroelastic problem consists of four constitutive relations, stress (   ), strain (   ), pore 

pressure (  ), and increment fluid content ( ), given by (Bourbie et al. 1987) 

    (        )         , (8-1) 

          , (8-2) 
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                (8-3) 

                (8-4) 

where   is the shear modulus of the skeletal frame in vacuum. The parameter   gives the 

quantity of fluid that enters or leaves unit volume attached to the skeletal frame, and 

                 being the dilatations of the solid and fluid phases, respectively, and 

        
  

 
,      

  

  
,   (

     

  
 

  

   
)
  

  (9) 

where    is the bulk modulus of the material constituting the elastic matrix,    is the bulk 

modulus of the dry skeleton (the explicit description will be given later in section III),     is 

the bulk modulus of saturating fluid, and the bulk modulus of the closed system is given by 

   

  (
 
  

 
 
   

)  
 
  

 
 
  

  

  
(
 
  

 
 
   

)  
 
  

(
 
  

 
 
  

)
  

 (10) 

Combining Eqs. (8-1) through (8-4) with Darcy’s law for flow through a porous 

medium, a pair of coupled displacement equations of motion can be obtained that govern 

the rotational and dilatational motions in poroelastic media (Deresiewicz 1960),   

                                             , (11-1) 

                                        , (11-2) 

where the subscript t denotes the time derivative, and  

                        
    (12) 
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in which     and    denote Lame’s moduli of the material, Q is a measure of the coupling 

between the volume change of the solid and of the liquid, and R, a measure of the pressure 

which must be exerted on the fluid to force a given volume of it into the aggregate with the 

total volume remaining constant (Deresiewicz 1960; Allard and Atalla 2009). The 

dynamical mass coefficients are defined as, 

                      (13-1) 

                     (13-2) 

              (13-3) 

where    is the tortuosity of the porous medium,    is the density of the fluid-saturated 

material, i.e.                  . In the equations of motion, (11), the parameter   is 

the viscosity coupling coefficient between both phases, defined as (Allard and Atalla 2009, 

Hasheminejad and Badsar 2004) 

      
  

  

 
       (14) 

The quantity   
     corresponds to the ratio of the total frictional force between fluid and 

solid, per unit volume of bulk material, and per unit average relative velocity in the steady-

state flow (Poiseuille flow, that is at zero frequency), and   characterizes the absolute 

permeability of the porous medium. The frequency dependent correction      is a 

measure of the deviation from Poiseuille-flow, (Allard and Atalla 2009, Azarpeyvand 2012a) 

      (   
   

       

     
 )

   

  (15) 

with the viscous characteristic length defined as    √        .  
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It is more convenient to solve Eqs. (11) by representing the velocity fields,   and   in 

terms of scalar and vector potentials. Four potentials are used, the scalar potentials   and 

  for the compressional waves in the solid and fluid medium, respectively, and two vectors 

potentials        , representing the transverse wave contributions in solid and fluid 

media. These potentials relate to   and   through (Zimmerman and Stern 1993), 

       ⋀    (16-1) 

           (16-2) 

 Insertion of the above field decomposition equations, (16), into equations of motion 

(11), the following pair of Helmholtz equations can be obtained for the compressional and 

shear wave components, (Allard and Atalla 2009; Zimmerman and Stern 1993) 

(     
 )          {   }   (17) 

      
     ,  (18) 

where the fast and slow wavenumbers (    ) and shear wave-number (  ) are defined as, 

    
  

  

        
[  ̃     ̃      ̃   √ ], (19) 

  
  

  

 
(
 ̃   ̃    ̃  

 

 ̃  
)  (20) 

in which  

     ̃     ̃      ̃   
            ̃   ̃    ̃  

    (21) 

where the modified mass density functions are defined by  ̃              . 
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 Using the displacement representation, Eqs. (16-1) and (16-2), and the coupled 

displacement equations of motion, Eqs. (11-1) and (11-2), one can easily show that the 

total sound field due to compressional components in the fluid and solid parts are given by: 

         (22) 

             (23) 

where  

     
  ̃     ̃         

 [     ]

  ̃     ̃    
. (24) 

It can be readily shown that the shear wave component in the fluid is related to that of the 

solid frame through   
 ̃  

 ̃  
 . 

In order to determine the eight unknown scattering coefficients involved in the 

modeling, Eqs. (3-7), eight boundary conditions must exist (Bourbie et al. 1987). The 

following boundary conditions must be satisfied on both the outer (   ) and the inner 

(   ) surfaces of the shell: 

(1)       , that is to show  the compatibility of the normal stress with the acoustic 

pressure in the surrounding medium,  

(2)      , i.e. vanishing of the tangential stress component,  

(3)     
   (    

     
)           

, which implies the continuity of the normal 

component of filtration velocity (subscript t designates the time derivative). Here,    

is the ambient fluid particle displacement.   
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(4)         (    ), indicating the consistency of the pressure drop and the normal 

component of filtration velocity. Here,    is the interface hydraulic permeability and can 

vary from zero (sealed interface or no flow) to infinity (open interface or zero pressure 

drop). The value of the interface permeability (  ), for both the inner and outer surfaces, 

is assumed to be close to zero, i.e., almost sealed interface. 

 

The strain-displacement relations in spherical coordinate are (Kausel 2006), 
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    .  (25) 

The pressure and stress components in poroelastic medium are also given by (Bourbie et al. 

1987) 

         
         

   , 

         
        

      
   

  
  

     
 

 
(
   

  
  

   

  
   ),  (26) 

where                        and                   .  

 Finally, substituting Eqs. (2-7) into the above four boundary conditions for the inner 

and outer surfaces, and using the field equations (25), and (26), we obtain a set of eight 
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linear equations for each vibrational mode (   ), at a given frequency, which can then be 

cast into a matrix form as  [ ][ ]  [ ], where [ ]    is the matrix of coefficients, given by  
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, (27) 

and the matrix of the unknown parameters [ ]    and the incident field contribution [ ]    

are also written as 

   

[
 
 
 
 
 
 
 
  

  

  

  
  

  
  
  ]

 
 
 
 
 
 
 

      

[
 
 
 
 
 
 
 
 
      

    

     
    

     
    

     
    

 
 
 
 ]

 
 
 
 
 
 
 
 
 

  (28) 

where       ,  with l={I, II, f, s, t}, and the auxiliary functions used in the above matrixes 

( , and  ) are defined in Appendix A. The unknown scattering coefficients can then be 

readily calculated using [ ]  [ ]  [ ]. Once the known coefficients have been determined, 

relevant acoustic quantities, such as pressure, particle velocity, intensity, or acoustic 

radiation force can be computed. 
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The acoustic radiation force acting on a particle can be calculated by performing an 

integration of the excess of pressure over the surface of the object. The average force 

vector is expressed as (Hasegawa 1979; Hasegawa et al. 1981) 

   〈∫ [ (   ̂     ̂)   
 

 
| |  ̂  

 

     
  ̂]

 

  〉   

 (29) 

where   is the boundary at its equilibrium position,   is the first-order fluid particle 

velocity at the surface (i.e.     ),    and    are, respectively, the normal and tangential 

components of the fluid particle velocity, and    is real part of the total velocity potential at 

the boundary,   (           ). A detailed derivation of the force vector and the radiation 

force function can be found in (Hasegawa 1979; Hasegawa et al. 1981). Subsequently, the 

axial radiation force    is found to be given by (Mitri 2009b) 

                      

  (30) 

where    is the cross-sectional area (   ),    
 

 
   |  |

  is the characteristic energy 

density, and  the radiation force function on the surface of the target sphere is given by 

(Mitri 2009b) 
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 )]    
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where      denotes the Gamma function (Abramowitz and Stegun 1972), and the scattering 

coefficient components (  
    

 ) are defined as   
           and   

        , where 

   have been obtained through [ ]  [ ]  [ ]. 

 

 

NUMERICAL RESULTS AND DISCUSSIONS 

In order to gain a better understanding of the performance of the proposed acoustic 

manipulation device and the dynamical behavior of a porous shell when exposed to a 

helicoidal Bessel beam, some numerical examples are provided. Due to the large number of 

parameters involved in the present model, we shall restrict our attention to the emergence 

of negative radiation force (NRF), due to interaction with Bessel beam of     (zeroth-

order) and      (first spinning mode), acting on a spherical aluminum shells with the 

outer radius     cm. Simulations are performed for four shell thickness ratios (     ), 

    (no void), 0.3, 0.6, and 0.95, and three  porosities,      (solid), 0.3, 0.9 (almost a 

decoupled two-phase system). We have chosen a relatively large particle to avoid thermal 

and viscous losses. In addition to aluminum, discussions are also provided for silica due to 

its wide range of applications and extensive use in drug delivery, gene transfection, and 

bio-sensing. The mechanical properties of aluminum and silica, required for our model, are 

presented in Table 1. The surrounding ambient medium and the inclusion medium are 

assumed to be water at atmospheric pressure and 300 kelvin, (         kg/m3, 

          m/s). A Matlab code is developed for treating the boundary conditions and 

to calculate the unknown scattering coefficients and the radiation force at selected beam 

half-cone angles ( ) and incident wave frequencies (       ). The computations are 
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performed on a dual-core personal computer with truncation constant of Nmax=30 to assure 

the convergence of the simulation at high frequencies.  

The mechanical properties of porous materials can change with porosity. The porosity 

dependence of some of the parameters used in Biot’s model, such as the bulk and shear 

moduli and tortuosity, are provided here. It is assumed that the dependence of tortuosity 

on porosity is given by (Berryman 1980),  

      (  
 

  
)   (32) 

such that      as     , and       as     . In Eq. (32),   is a variable calculated 

from a microscopic model of a frame moving in a fluid and is here taken as ¼. Furthermore, 

the porosity dependency of the skeletal frame moduli (Young’s modulus,   , bulk 

modulus,     , and rigidity modulus,   ) can be expressed in terms of material volume 

fraction, (    ), and Young’s modulus of the solid material of the frame,   , as (Wagh et al. 

1991) 

  

  
       

   (33-1) 

   
 

 
        ⁄    (33-2) 

   
 

 
          (33-3) 

where   is constant and   denotes the Poisson ratio of the frame (approximately constant 

regardless of porosity). The value of the empirically determined exponent   depends on the 

geometrical structure of the solid matrix, and lies within the range of     to about 4, 

where      holds for any straight tubular pores (honeycomb structures),      for 

homogenous and isotropic cellular open-cell foams (such as aluminium foal), and     for 

close-cell foams (Scheffler and Colombo 2005; Ashby 1983; Gibson and Ashby 1982). In 

this study the value of the exponent   is set to be 2.  
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It has been shown before by Marston (2006, 2007, 2009), Mitri (2008, 2009a, 2009b) for 

liquid and elastic spherical objects, and more recently by Azarpeyvand (2012a) for 

poroelastic spheres that Bessel beams can produce negative axial forces on spherical 

particles if operated over some specific      regions, referred to as the negative radiation 

force (NRF) islands. To understand the emergence of such negative forces, the radiation 

force (  ), Eq. (31), has been evaluated over a wide range of radiation frequencies, 

         , and half-cone angles,         . The dark islands seen in figures 2 

through 7 show the regions where the radiation force reverses in direction and becomes 

negative. Such negative forces can pull the particle toward the source. It is worth 

mentioning that the results presented here for a non-hollow aluminum spheres and porous 

aluminum spheres (   ) in Figs. 2-a through 7-a are in excellent agreement with those 

presented in (Azarpeyvand 2012a), which shows the overall validity of the model.   

Presented in Figs. 2 through 4 are the axial radiation force caused by a Bessel beam of 

zeroth-order (   ). Results demonstrate how the negative radiation force regions in the 

     plane change by varying the shell thickness at a given porosity. Figure 2 presents 

results for a non-porous aluminum shell with different thicknesses. An inspection of Figure 

2 reveals that the particle manipulation can be accomplished in both broadband (over a 

wide range of frequencies) and narrowband ways (at resonance frequencies), depending 

on the geometrical and mechanical properties of the particle. Similar to the statements of 

Marston (2006, 2007, 2009), Mitri (2008, 2009a, 2009b), and Azarpeyvand (2012a) the only 

NRF island for a solid aluminum particle (i.e.    ,     ) appears at low 

frequencies,           , and high conical angles          , i.e. small longitudinal 

wavenumbers (   ), see Figure 2a. Results also show that increasing the inner-to-outer 

radius ratio ( ), i.e. the size of the inner void, leads to the emergence of some new NRF 

islands with wider effective conical angle ranges. The effective conical angle for a thin solid 
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(non-porous) aluminum shell of        has been found to be around           , see 

Figure 2-d.  

Figure 3 shows the results of NRF islands for a spherical shell with low porosity 

of        , due to the interaction with a zeroth-order Bessel beam. A comparison of Figs. 2 

and 3 shows that increasing the porosity of thick shells (     and    ) to          results 

in the shift of the dominant NRF island to lower frequencies (see Figures 3-a and 3-b), and 

the emergence of some high-frequency narrowband NRF islands for thinner shells (      

and     ), see Figs. 3-c and 3-d. Figure 4 presents results of the emergence of NRFs on a 

highly porous object (      ), in a zeroth-order Bessel beam. Results for shells 

with      , Figs. 4-b through 4-d, reveal the emergence of some harmonic, high amplitude 

NRF islands at low frequencies,       , while that for a highly porous sphere, Fig. 4-a, 

still occurs over some broadband islands. The effective conical angle ranges for highly 

porous shells have been found to be around          , i.e. large longitudinal 

wavenumbers. The most striking observation here is the possibility of the occurrence of 

NRFs using a plane progressive wave, i.e.     and     . This implies that for highly 

porous spherical shells, even a simple acoustic plane wave can cause negative axial forces. 

This is a new finding and had not been mentioned before in the literature and may have 

practical applications.   

The results for acoustics handling of elastic and porous aluminum shells using a 

helicoidal Bessel beam of      (first spinning mode), are presented in Figs. 5-7. Presented 

in Fig. 5 are the results for NRF islands for a non-porous aluminum shell. It can be seen that 

the number of NRF islands increases compared to the case of a zeroth-order Bessel beam. 

Inspection of the results for a low porosity shell (Fig. 6) and a solid shell (Fig. 5) has shown 

considerable changes to the frequencies of the dominant NRF islands for shells with a small 

void (    and    ) and the emergence of multiple high-amplitude narrowband NRF 
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islands at high frequencies for thinner shells (      and     ). Similar to what observed 

before for the case of an ordinary Bessel beam (   ), results for highly porous 

shells,  
 
    , have shown that multiple harmonic low-frequency tonal NRF islands can 

be obtained with small effective conical angles of about         , i.e. large longitudinal 

wavenumber (   ).  

In addition to aluminum, a series of simulations have also been performed for stiff 

silica shells illuminated by zeroth-order and first-order Bessel beams. Here, we shall only 

outline the main conclusions of these simulations. Results have shown that zeroth-order 

Bessel beams cannot produce NRF on solid and low porosity (      ) thick silica shells 

(     ), as per Azarpeyvand (2012a). A broadband NRF island, however, emerges at low 

frequencies for solid and low porosity shells with       over           , and its 

frequency range increases with  , reaching               for very thin shells (      ). 

The multiple narrowband NRFs, observed before for aluminum cases, here for stiff silica 

may only occur for very thin (     ) and highly-porous shells  
 
    . Results have also 

revealed that the sensitivity of the NRF islands to the inner void and its surface condition is 

less for stiff materials, such as silica and that the number and the shape of the NRF islands 

for silica shells show very little change over        .  
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CONCLUSION 

Acoustic manipulation of porous shells using an ultrasound helicoidal Bessel beam 

has been considered. The exerted acoustic radiation force due to a zeroth-order and first 

order Bessel beams are calculated in an exact manner. Results have been provided for 

aluminum and stiff silica shells, at different porosities. Results have shown the feasibility of 

exerting negative radiation forces on porous shells at some specific frequency and beam 

conical angles ranges. It has also been shown that under some special circumstances a 

plane progressive sound field can also produce negative radiation force on thin highly 

porous shells, which is a new result and may have many practical applications. 
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Appendix A 

The auxiliary functions used in the coefficient matrixes, Eqs. (27) and (28), for convenience, 

are defined here: 
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where   {     }, and the parameter   designates the boundary condition on the outer 

(   ), or on the inner surface (   ). If    ,    ,  ̅   ,  ̅   ,          , and 

           with i={I, II, f, s, t}, and if     ,    ,  ̅    ,  ̅                and  

          ,  with i={I, II, f, s, t} 
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CAPTIONS 

 

Figure 1- An acoustic Bessel beam incident on a porous spherical shell. 

Figure 2- Negative radiation force regions;     , solid aluminum shell (    ). 

Figure 3- Negative radiation force regions;     , porous aluminum shell (      ). 

Figure 4- Negative radiation force regions;     , porous aluminum shell (      ). 

Figure 5- Negative radiation force regions;     , solid aluminum shell (     . 

Figure 6- Negative radiation force regions;     , porous aluminum shell (      ). 

Figure 7- Negative radiation force regions;     , porous aluminum shell (      ). 

 


