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Abstract

An integrated approach to truth-gaps and epistemic uncertainty is described, based
on probability distributions defined over a set of three-valued truth models. This com-
bines the explicit representation of borderline cases with both semantic and stochastic
uncertainty, in order to define measures of subjective belief in vague propositions.
Within this framework we investigate bridges between probability theory and fuzzi-
ness in a propositional logic setting. In particular, when the underlying truth model
is from Kleene’s three-valued logic then we provide a complete characterisation of
compositional min-max fuzzy truth degrees. For classical and supervaluationist truth
models we find partial bridges, with min and max combination rules only recoverable
on a fragment of the language. Across all of these different types of truth valuations,
min-max operators are resultant in those case in which there is only uncertainty about
the relative sharpness or vagueness of the interpretation of the language.

Keywords Vagueness, Truth-gaps, Probability, Fuzziness.

1 Introduction

From its inception fuzzy logic has largely been seen as a direct competitor to probability

as a theory of uncertainty. This perceived conflict has motivated several vigorous critiques

of fuzzy theory by Bayesian statisticians including Lindley [35], Cheeseman [2], [3] and,

Laviolette and Seaman [26], amongst others. As particularly emphasised by Cooke [6], a

central theme of many of these critiques is that of operational semantics. Consider, for

example, a witness to a robbery describing the suspect to a police officer. If she says that

‘the suspect is short’ with fuzzy truth degree 0.6, then what does she mean? What exactly

can the police officer infer from the value 0.6? The benchmark in this context is generally

taken to be the work of de Finetti [7] who, inspired by the operationalism movement in

physics, proposed betting behaviour as an operational semantics for subjective probability

(See Paris [40] for an exposition). It is certainly the case that de Finetti’s results lend

weight to the claim that probability is the optimal calculus for measures of uncertainty,
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since agents adopting any other type of measure would be subject to Dutch books 1. In

other words, to quote Lindley [35], we would seem to be forced to concede that ‘the only

satisfactory description of uncertainty is probability’.

Yet this argument is not quite as compelling as it might at first seem. Although widely

accepted, de Finetti’s betting model does make certain assumptions which are open to

question. For example, in the formulation it is assumed that the buying and selling prices

of a bet are the same. However, Walley [52] introduces a more general framework of

coherent gambles which does not make such an assumption and naturally results in lower

and upper probabilities as measures of subjective belief. Furthermore, Paris [41] observes

that bets are inherently defined relative to an underlying truth-model. In the case of

a Tarskian (or classical) truth-model then to avoid Dutch books the resulting measure

of subjective belief must be a probability measure on the set of sentences of the relevant

language i.e. on those sentences about which bets are offered. In addition, this turns out to

be equivalent to defining a probability distribution on the set of possible truth-valuations

of the language, and then taking the belief value of a sentence to be the probability of

those valuations for which it is true. Indeed, Paris [41] has shown that if, more generally,

the outcome of bets are dependent on a truth-valuation selected from a set of binary

functions B, then the avoidance of Dutch bets requires that belief measures be similarly

defined in terms of probability distributions over B. However, depending on the nature

of these binary functions B, then the resulting measure may not be a probability measure

over the sentences of the language. This latter point is important since it will allow us to

give a probabilistic interpretation to the fully truth-functional min-max calculus of fuzzy

logic, with an associated betting semantics, but where probabilities are defined over a set

of non-Tarskian truth-models.

We claim that non-Tarskian truth-valuations are particularly relevant when we allow

vague propositions into our language. To make this case we must first identify some impor-

tant characteristics of vagueness in natural language. Both Lindley [35] and Cheeseman

[3] argue that quantifying subjective belief in vague propositions such as ‘the suspect is

short’ presents no significant difficulty to probability theory. More specifically, Cheeseman

[3] proposes that vagueness should be understood as uncertainty concerning the under-

lying interpretation of the language, e.g. uncertainty about what is the exact definition

of short, and consequently is probabilistic in nature. The idea that uncertainty about

meaning should be explicitly quantified is clearly an important and rather neglected one.

To a great extent language is learned empirically through interactions with others and the

environment, as well as through exposure to social media such as the written word. Con-

sequently, the association of words and meanings, is not only naturally dynamic but also

an emergent phenomenon. There is no central authority or oracle to interrogate about the

1willingly accepting a sequence of bets which are sure to result in an overall loss, irrespective of the
true state of the world
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correct boundaries of vague categories. Instead, individual agents only have data about

how others have used these categories in similar contexts. Subjective uncertainty must

surely then be inherent to any such complex system.

Lawry and Tang [31] refer to uncertainty about meaning as semantic uncertainty and

contrast it with stochastic uncertainty which refers to uncertainty about the state of the

world. For example, in order for our robbery witness to assess her level of belief in the

proposition ‘the suspect is short’, she would need to take into account both her stochastic

uncertainty about the height of the suspect, and her semantic uncertainty about the loca-

tion of the height boundary that divides short from not short. We argue in Lawry [27] that

semantic uncertainty is effectively epistemic in nature and can be treated probabilistically.

This viewpoint is broadly in keeping with that of Lassiter [25] and consistent with both

the random set theory and likelihood interpretations of fuzzy membership functions as

described in [11]. Now if we accept that the underlying truth-model should be Tarskian

even for vague propositions, then this epistemic view of semantic uncertainty brings us

close to Williamson’s epistemic theory of vagueness [54]. In this paper, however, we will

argue that there is more to vagueness than only semantic uncertainty and therefore that

a more flexible truth theory may be appropriate when evaluating vague propositions.

Vagueness is a multifaceted phenomenon. For instance, Keefe and Smith [22] identify

‘three interrelated features’ of vague predicates; 1) borderline cases 2) lack of well-defined

extensions or boundaries, and 3) susceptibility to sorites paradoxes. Arguably 2) relates to

semantic uncertainty as outlined above and is amenable to probabilistic treatment. The

sorites paradoxes in 3) concern sequences of indistinguishable elements where the first

element in the sequence belongs to a certain class and the last to its negation. A classical

model then requires drawing an arbitrary boundary between the class and its negation

which by necessity then allocates indistinguishable elements to opposite classes. We will

not address this aspect of vagueness in this current paper except to the extent that is

related to and influenced by features 1) and 2), and we would point interested readers

towards the extensive literature on the topic, an excellent overview of which is given in

Williamson [54]. Instead, we aim to describe and justify a model of subjective belief for

vague propositions in which feature 1) plays a central role. More specifically, we will

assume a three-valued truth model in which borderline cases naturally occur as a result

of vague predicates being only partially (or incompletely) defined.

In the sequel we propose an integrated approach to truth-gaps and epistemic uncer-

tainty based on probability distributions defined over a finite set of three-valued truth

models for a propositional language. This will combine the explicit representation of bor-

derline cases with a quantification of both semantic and stochastic uncertainty, so as to

define measures of subjective belief over the sentences of a language containing vague

propositions. As well as suggesting a general framework for the treatment of both vague-

ness and uncertainty, this approach will provide an number of bridges, in the sense of



[10], between probability theory and fuzzy logic, including a complete characterisation of

truth-functional min-max fuzzy logic [55]. Given the broad scope of both subjects our

bridges are by necessity narrow ones. For example, we have as yet made no attempt to

investigate the wide variety of truth-functional calculi developed by fuzzy logicians [19].

Instead, the proposed bridges will only be with Zadeh’s original min-max calculus [55].

Despite this limitation we would argue that the proposed probabilistic semantics for fuzzy

logics goes some way to answering the interpretational questions posed in [2], [3] [6], [26]

and [35] .

An outline of the paper is as follows: Section 2 introduces valuation pairs as a generic

three-valued truth model and then focuses on Kleene’s three-valued logic as a particular

case. Section 3 describes the lower and upper measures of subjective belief which naturally

result from defining probability distributions over Kleene valuation pairs. In section 4 we

propose a notion of truth degree as the mid-point of the lower and upper measures defined

in section 3. Furthermore, we show that truth degrees defined in this way, characterise min-

max fuzzy truth degrees in the case when uncertainty only concerns the level of vagueness

of the underlying interpretation of the language. In section 5 we outline a betting semantics

for truth degrees exploiting Paris’ [41] generalization of de Finetti’s famous result. We

then extend our proposed framework to other truth models and, in particular, in section

6 we investigate bridges between fuzzy logic and probabilities defined over both Tarski

(classical) and supervaluationist truth models. Finally, section 7 presents some discussion

and conclusions. Overall, the work presented builds on and exploits the general framework

for subject belief in the presence of vagueness described in [29], [30], [31], [32] and [33].

2 Truth-Gaps in a Propositional Language

In the literature two main approaches to modelling truth-gaps have been proposed; three-

valued logic [23] and supervaluationism [16]. Here we will introduce a generic form of truth

valuation for propositional languages which is sufficiently flexible to allow us to represent

both these types of models in their simplest form. This will enable us to study both

approaches using the same basic notation, thus making it easier to identify and discuss

relationships and differences between them. We also claim that the proposed notion of

valuation pair is an intuitive way to represent truth-gaps, which when combined with

probability, naturally leads to lower and upper subjective belief measures on the sentences

of the language.

Let L be a language of propositional logic with connectives ∧, ∨ and ¬ and propo-

sitional variables P = {p1, . . . , pn}. Let SL denote the sentences of L as generated re-

cursively from the propositional variables by application of the three connectives, and let

LL = P ∪ {¬p : p ∈ P} denote the literals of L. A valuation pair on SL then consists

of two binary functions v and v representing lower and upper truth values. The underly-



ing idea is that v represents the strong criterion of absolutely true while v represents the

weaker criteria of not absolutely false.

Definition 1. Valuation Pairs

A valuation pair is a pair of functions ~v = (v, v) where v : SL → {0, 1} and v : SL →

{0, 1} such that v ≤ v. Furthermore, ∀θ, ϕ ∈ SL, if v(θ) = v(θ) = α and v(ϕ) = v(ϕ) = β

then v(¬θ) = v(¬θ) = 1 − α, v(θ ∧ ϕ) = v(θ ∧ ϕ) = min(α, β) and v(θ ∨ ϕ) = v(θ ∨ ϕ) =

max(α, β).

Notice that we can also think of a valuation pair as a three-valued mapping with

~v(θ) having possible values t = (1, 1), b = (0, 1) and f = (0, 0), standing for absolutely

true, borderline and absolutely false respectively. We will use this three-valued notation

interchangeably with the lower and upper valuation notation throughout this paper. The

second part of definition 1 is motivated by the intuition that if we restrict ourselves to

the non-vague (crisp) sentences of L then valuation pairs should have the same properties

as classical valuations. Indeed, classical valuations can be viewed as a special case of

valuation pairs where for every sentence θ ∈ SL, v(θ) = v(θ), i.e. as valuations for which

the truth value b does not occur.

In accordance with [39], we might think of a sentence being absolutely true as meaning

that it can be uncontroversially asserted without any risk of censure, while being not

absolutely false only means that it is acceptable to assert i.e. one can get away with such

an assertion. Recall, our example of a witness describing the suspect as being short. If

she was to testify to this in a court of law then depending on the actual height of the

suspect her statement may be deemed as clearly true or clearly false, in which latter case

the witness could be accused of perjury. However, there will also be an intermediate height

range for which, while there may be doubt and differing opinions concerning the use of

the description short, it would not be deemed as definitely inappropriate and hence the

witness would not be viewed as committing perjury. In other words, for certain height

values of the suspect, it may be acceptable to assert the statement p=‘the suspect is short’,

even though this statement would not be viewed as being absolutely true. One possible

model of the predicate short exhibiting such truth-gaps could be as follows: Let h be

the height of the suspect and suppose that short is defined in terms of lower and upper

thresholds h ≤ h on heights. We might also think of this as a partial interpretation of

the predicate short generated as an abstraction from independent consideration of certain

clearly positive and clearly negative examples. In this case p is absolutely true if h ≤ h,

absolutely false if h > h and borderline if h < h ≤ h (see figure 1).

It is important to note that in this model truth-gaps corresponding to different lower

and upper truth valuations are not the result of epistemic uncertainty concerning the

state of the world, but are rather due to inherent flexibility in the underlying language

conventions. In other words, a truth-gap (or middle truth value in three-valued logic) does



Figure 1: An interpretation of the predicate short incorporating a truth-gap.

not represent an uncertain epistemic state [5]. For example, given absolute certainty about

the suspect’s height h, the proposition p may then be known to be borderline because of

the inherent flexibility (or vagueness) in the definition of the concept short i.e. because

h < h ≤ h. The potential confusion resulting from applying many-valued logic to model

epistemic uncertainty is highlighted by Dubois in [12]. Here we emphasize the truth-value

status of the intermediate case by the use of the term borderline rather than ‘uncertain’

or ‘unknown’ as originally suggested by Kleene [23].

Initially, we will focus on valuation pairs which capture Kleene’s three-valued logic

[23], and then return in section 6 to investigate supervaluations within this framework.

Definition 2. Kleene Valuation Pairs

A Kleene valuation pair on L is a valuation pair ~v = (v, v) where ∀θ, ϕ ∈ SL the following

hold:

• v(¬θ) = 1 − v(θ) and v(¬θ) = 1 − v(θ)

• v(θ ∧ ϕ) = min(v(θ), v(ϕ)) and v(θ ∧ ϕ) = min(v(θ), v(ϕ))

• v(θ ∨ ϕ) = max(v(θ), v(ϕ)) and v(θ ∨ ϕ) = max(v(θ), v(ϕ))

Let Vk denote the set of all Kleene valuation pairs on L.

From definition 2 we can generate truth tables for the connectives ∧, ∨ and ¬ in terms

of the truth values {t,b, f} identical to those of Kleene’s logic [23] (see table 1)2.

¬

t f

b b

f t

∧ t b f

t t b f

b b b f

f f f f

∨ t b f

t t t t

b t b b

f t b f

Table 1: Truth tables from Kleene’s strong three-valued logic.

Kleene’s logic has been proposed as an appropriate formalism for truth gaps by a

number of authors including Shapiro [45], Soames [47] and Tye [49]. In some respects

it is a rather conservative calculus which tends to allocate borderline status to sentences

more readily than, say, a supervaluation approach. In particular, it permits borderline

2Recall that in valuation pair notation t = (1, 1), b = (0, 1) and f = (0, 0).



contradictions (and tautologies), since from table 1 we can see that ~v(θ ∧ ¬θ) = b (~v(θ ∨

¬θ) = b) exactly when ~v(θ) = b. Such a feature is contentious, with some arguing that a

contradiction θ ∧ ¬θ should always be deemed absolutely false, irrespective of the truth-

value of θ. For instance, as we shall see in section 6, supervaluations preserve all classical

contradictions, tautologies and equivalences. However, since we are modelling truth values

rather than epistemic states [5], the validity or otherwise of borderline contradictions is

rather unclear. This is because truth models simply represent conventions governing how

the underlying language is interpreted, and as such they have the status of primitives. In

particular, for the propositional language L the properties we choose for valuation pairs

effectively codify our understanding of the connectives ∧, ∨ and ¬, in a three valued

context. We could of course ask which type of valuation provides the best model of

vagueness in natural language. This question remains firmly open, due to the fact that

there have been very few empirical studies directly addressing issues such as borderline

contradictions. One such study, described by Ripley [43], involves an experiment in which

the participants are asked to state their level of agreement with contradictions of the

form ‘the circle is near the square and it isn’t near the square’, when presented with a

sequence of images, in which a circle and square are shown at various distances from each

other along a line. Whilst the results are somewhat inconclusive Ripley does find evidence

to suggest an increased willingness amongst the participants to accept contradictions in

borderline cases.

2.1 A Positive and Negative Characterisation of Kleene Valuations

In this sub-section we consider a characterisation of Kleene valuation pairs in terms of pos-

itive and negative propositions as represented by the sets of absolutely true propositional

variables and absolutely true negated propositional variables respectively. More formally,

a Kleene valuation pair ~v can be characterised by an orthopair3 (P,N) ∈ 2P × 2P where

P = {pi ∈ P : v(pi) = 1} and N = {pi ∈ P : v(¬pi) = 1}. Notice, that from definition 2 it

holds immediately that P ∩N = ∅. The next result shows how the value of ~v across SL

can be determined directly from its associated orthopairs (P,N). The following mapping

between sentences of L and sets of pairs, forms the basis of our proposed characterisation.

Definition 3. λ-mapping

Let λ : SL → 22P×2P be defined recursively as follows: ∀θ, ϕ ∈ SL

• λ(pi) = {(F,G) ∈ 2P × 2P : pi ∈ F}

• λ(θ ∧ ϕ) = λ(θ) ∩ λ(ϕ)

• λ(θ ∨ ϕ) = λ(θ) ∪ λ(ϕ)

3An orthopair is simply a pair of sets (F, G) such that F ∩ G = ∅ [4].



• λ(¬θ) = {(Gc, F c) : (F,G) ∈ λ(θ)}c

Notice that the λ-mapping in definition 3 is not restricted solely to orthopairs but

also includes pairs of sets of propositional variables with non-empty intersection. As

described in [29], such sets characterize a more general class of binary function pairs (v1, v2)

which satisfy the duality and min-max combination rules of definition 2 but without the

requirement that v1 ≤ v2
4. This class of function pairs clearly includes Kleene valuation

pairs as a special case. Consequently, many of the results in [29] carry across to the current

context including the following characterization theorem.

Theorem 4. [29] For a Kleene valuation pair ~v ∈ Vk characterised by orthopair (P,N)

it holds that ∀θ ∈ SL, v(θ) = 1 if and only if (P,N) ∈ λ(θ) and v(θ) = 1 if and only if

(P,N) ∈ λ(¬θ)c.

Example 5. Let pi, pj ∈ P then

λ(pi) = {(F,G) : pi ∈ F}, λ(¬pj) = {(F,G) : pj ∈ G} and λ(pi ∧ ¬pj) = {(F,G) : pi ∈

F, pj ∈ G}. Hence, v(pi) = 1 iff pi ∈ P and v(pi) = 1 iff pi 6∈ N . Similarly, v(¬pj) = 1 iff

pj ∈ N and v(¬pj) = 1 iff pj 6∈ P . Furthermore, v(pi ∧ ¬pj) = 1 iff pi ∈ P and pj ∈ N ,

and v(pi ∧ ¬pj) = 1 iff pi 6∈ N and pj 6∈ P .

2.2 Semantic Precision: A Vagueness Ordering on Valuation Pairs

We now define semantic precision as a natural partial ordering on valuation pairs. This

concerns the situation in which one valuation pairs admits more borderline cases than

another but where otherwise their truth values agree. More formally, valuation pair ~v1 is

less semantically precise than ~v2, denoted ~v1 � ~v2, if they disagree only for some set of

sentences of L, which being identified as either absolutely true or absolutely false by ~v2,

are classified as being borderline cases by ~v1. In other words, ~v1 is less semantically precise

than ~v2 if all of the absolutely true and absolutely false valuations of ~v1 are preserved by

~v2. Hence, one might think of � as ordering valuation pairs according to their relative

vagueness. Shapiro [45] proposed essentially the same ordering of interpretations which

he refers to as sharpening i.e. ~v1 � ~v2 means that ~v2 extends or sharpens ~v1.

Definition 6. Semantic Precision

~v1 � ~v2 if and only if ∀θ ∈ SL, v1(θ) ≤ v2(θ) and v1(θ) ≥ v2(θ)
5.

Theorem 7. [29] ∀~v1, ~v2 ∈ Vk, where ~v1 and ~v2 are characterised by orthopairs (P1, N1)

and (P2, N2) respectively, it holds that; ~v1 � ~v2 if and only if P1 ⊆ P2 and N1 ⊆ N2.

4We are referring here to the more general class of pairs of functions (v1, v2) where v1 : SL → {0, 1},
v2 : SL → {0, 1} and ∀θ, ϕ ∈ SL, v1(¬θ) = 1 − v2(θ), v2(¬θ) = 1 − v1(θ), v1(θ ∧ ϕ) = min(v1(θ), v1(ϕ)),
v2(θ∧ϕ) = min(v2(θ), v2(ϕ)), v1(θ∨ϕ) = max(v1(θ), v1(ϕ)) and v2(θ∨ϕ) = max(v2(θ), v2(ϕ)), but where
it is not required that v1 ≤ v2. In this case (v1, v2) can take four values corresponding to t = (1, 1),
b = (0, 1), i = (1, 0) and f = (0, 0). The truth tables for these four truth values are then those of Belnap’s
four-valued logic [1].

5Alternatively, using three-valued notation ~v1 � ~v2 if and only if ∀θ ∈ SL, ~v1(θ) = t ⇒ ~v2(θ) = t
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Figure 2: A sequence of valuation pairs ~v1 � ~v2 � ~v3 as characterised by increasingly
vague interpretations of the predicates short and young.

Figure 2 shows three valuation pairs relevant to the crime reporting example described

in section 1, each based on different interpretations of the predicates short and young. Here

we now have two propositions corresponding to p1 =‘the suspect is short’ and p2 =‘the

suspect is young’. The predicates short and young are defined by lower and upper thresh-

olds on height and age respectively, thus identifying clear t, b and f intervals for each

predicate, as indicated in figure 2. The height h and age y of the suspect are then shown

as being constant across the three valuations. Working down the three interpretations

the definitions of both predicates become increasingly vague in the sense that the size of

each borderline interval is increasing. In orthopair notation the three valuation pairs are

~v1 = (∅, ∅), ~v2 = (∅, {p2}) and ~v3 = ({p1}, {p2}) respectively. As such they satisfy the

nestedness condition of theorem 7 and hence, ~v1 � ~v2 � ~v3.

3 Probability in the Context of a Three-Valued Truth Model

Within the proposed three-valued framework, we take the view that uncertainty concerning

the sentences of L effectively corresponds to uncertainty as to which is the correct valuation

pair for L. A betting argument in favour of this assumption is explored in section 5. As

discussed in the introduction, we propose a probabilistic treatment of both semantic and

stochastic uncertainty in the context of an underlying three-valued truth model. For

example, consider the three-valued interpretation of the predicate short as shown in figure

1. In this case semantic uncertainty manifests itself in terms of uncertainty about the exact

values of the thresholds h and h, whilst stochastic uncertainty would be about the suspect’s

height h. Treating both types of uncertainty as being epistemic in nature, and defining

a joint probability distribution over h, h and h, together with other similar variables

arising in relation to other vague predicates, would then naturally result in a probability

distribution over the valuation pairs of L. This integrated treatment of both semantic

and stochastic uncertainty is also consistent with the ideas of Lassiter [25] who proposes

a joint probability distribution over states of the world and language interpretations, and

then outlines a treatment of Sorites based on this approach.



Viewing semantic uncertainty as being epistemic in nature requires that agents make

the assumption that there is a correct underlying interpretation of the language L, but

about which they may be uncertain. This is a weaker version of the epistemic theory of

vagueness as expounded by Timothy Williamson [54] and which we refer to as the epis-

temic stance [27]. Williamson’s theory assumes that for a vague predicate there is a precise

but unknown boundary between it and its negation. In contrast the epistemic stance cor-

responds to the more pragmatic view that individuals, when faced with decision problems

about what to assert, find it useful as part of a decision making strategy to simply assume

that there is an underlying correct interpretation of L. In other words, when deciding

what to assert agents behave as if the epistemic theory is correct. Another difference

between the epistemic theory and our current approach is that the former assumes that

the underlying truth model is classical, while here we assume a three-valued model which

can exhibit truth-gaps.

In the following definition we assume that uncertainty is quantified by a probability

measure w on the set of Kleene valuation pairs Vk of L.

Definition 8. Kleene Belief Pairs [29]

Let w be a probability distribution defined on Vk so that w(~v) is the agent’s subjective

belief that ~v is the true valuation pair for L. Then ~µ = (µ, µ) is a Kleene belief pair where

∀θ ∈ SL,

µ(θ) = w({~v : v(θ) = 1}) and µ(θ) = w({~v : v(θ) = 1})

Alternatively,

µ(θ) = w({~v : ~v(θ) = t}) and µ(θ) = w({~v : ~v(θ) 6= f})

Note that here and in the sequel we abuse notation slightly and use the same symbol w to

stand for both a probability distribution on Vk and the probability measure on 2Vk which

it then induces.

In this formulation it also trivially holds that:

w({~v : ~v(θ) = f}) = µ(¬θ) and w({~v : ~v(θ) = b}) = µ(θ) − µ(θ)

The following theorem highlights a number of properties of Kleene belief pairs, includ-

ing additivity. This latter property in particular, distinguishes Kleene belief pairs from

Dempster-Shafer belief and plausibility measures [44] on SL which are not, in general,

additive.

Theorem 9. For all θ, ϕ ∈ SL, the following hold [33], [53]:

• µ(θ) ≤ µ(θ)



• µ(¬θ) = 1 − µ(θ) and µ(¬θ) = 1 − µ(θ).

• µ(θ ∨ ϕ) = µ(θ) + µ(ϕ) − µ(θ ∧ ϕ) and µ(θ ∨ ϕ) = µ(θ) + µ(ϕ) − µ(θ ∧ ϕ)

4 Truth Degrees as Mid-Points

We now introduce an additional type of uncertainty measure on SL arising from the

definition of a probability distribution on Vk, which we will refer to as truth degrees. These

are defined as the mid-point, or average, of the lower and upper Kleine belief measures

given in definition 8.

Definition 10. Truth Degrees

Let (µ, µ) be a Kleene belief pair on L as given in definition 8, then the corresponding

truth degree td : SL → [0, 1] is defined as the mid-point of µ and µ so that ∀θ ∈ SL;

td(θ) =
µ(θ) + µ(θ)

2

Notice that by definitions 8 and 10, td(θ) corresponds to sum of the probability that

~v(θ) = t and a half of the probability that ~v(θ) = b;

td(θ) = w({~v : ~v(θ) = t}) +
w({~v : ~v(θ) = b})

2
and

td(¬θ) = w({~v : ~v(θ) = f}) +
w({~v : ~v(θ) = b})

2

In other words, td(θ) is determined by reallocating the probability of b evenly between t

and f . Also, notice that by theorem 9 truth degrees satisfy the following two properties:

∀θ, ϕ ∈ SL,

• td(¬θ) = 1 − td(θ)

• td(θ ∨ ϕ) = td(θ) + td(ϕ) − td(θ ∧ ϕ)

These properties are also satisfied by probability measures on SL (see Paris [40] for an

exposition), but unlike probability, truth degrees do not always give values 0 and 1 to

classical contradictions and tautologies 6. In fact, it holds that:

td(θ ∧ ¬θ) =
w({~v : ~v(θ ∧ ¬θ) = b})

2
=
w({~v : ~v(θ) = b})

2
=
µ(θ) − µ(θ)

2

Hence, if the agent has non-zero belief that θ is a borderline sentence, i.e. µ(θ) > µ(θ),

then they will allocate non-zero truth degree to θ∧¬θ, with an upper bound of 0.5 if they

6It is also the case that truth degree do not necessarily give the same value to classically equivalent
sentences, but only to sentences which are equivalent in Kleene’s logic



are certain of the borderline status of θ. Similarly, if the agent is certain that θ is t, i.e.

µ(θ) = µ(θ) = 1, then td(θ) = 1, whilst if they are certain that θ is f , i.e. µ(θ) = µ(θ) = 0,

then td(θ) = 0. Hence, truth degree values of 0, 1
2 and 1 all correspond to states of total

epistemic certainty.

It should be noted that we are somewhat reluctant to use the term truth degree for

the mid-point measure in definition 10. In fact, our main motivation for doing so is to

emphasise a link with fuzzy logic [55], the details of which we will describe below. However,

to a certain extent the term is inappropriate since from definition 10 we can see that truth

degrees are subjective measures of belief defined in the context of a three-valued truth

model, and not truth values on a [0, 1] scale, as in the case of infinite valued logics [19].

This status as subjective belief will be made even more apparent when we consider a

betting semantics for truth degrees in section 5.

Kleene belief pairs and truth degrees have been independently proposed by Williams

[53] using a different but equivalent notation. Given a Kleene valuation, Williams proposes

three distinct loadings in the form of binary and tertiary mappings defined on SL; these

are Kleene loading corresponding to v, LP loading corresponding to v and symmetric

loading corresponding to v+v
2

7. Assuming a probability distribution on Vk, [53] defines

three measures on SL by taking the expected value of the different loadings across Vk,

these then corresponding to µ, µ and td respectively. In the light of this correspondence,

[53] also states a version of theorem 9.

We now introduce fuzzy truth degrees as corresponding to a fully truth-functional

(compositional) measure on SL, with the same min-max combination rules as were orig-

inally proposed by Zadeh [55] for fuzzy membership functions. We will then show that

fuzzy truth degrees are a special case of mid-point truth degrees as given in definition 10,

but where the agent’s only uncertainty concerns the correct level of vagueness (semantic

precision) appropriate for the interpretation of L.

Definition 11. Fuzzy Truth Degree

A fuzzy truth degree on L is a function ζ : SL → [0, 1] satisfying ∀θ, ϕ ∈ SL:

• ζ(¬θ) = 1 − ζ(θ)

• ζ(θ ∧ ϕ) = min(ζ(θ), ζ(ϕ))

• ζ(θ ∨ ϕ) = max(ζ(θ), ζ(ϕ))

Theorem 12. Let w be a probability distribution on Vk such that {~v : w(~v) > 0} =

{~v1, . . . , ~vm} where ~v1 � . . . � ~vm and let (µ, µ) be the associated Kleene belief pair on L.

Also, let td : SL → [0, 1] be the truth-degree generated from (µ, µ) according to definition

10. Then in this case td is a fuzzy truth degree on L as given in definition 11.

7LP stands for ‘logic of paradox’ and symmetric refers to symmetric logic (see Priest [42] for an
overview).



Proof. We define binary functions bi : SL → {0, 1} for i = 1, . . . , 2m such that: ∀θ ∈ SL

bi(θ) =

{

vi(θ) : i ≤ m

v2m+1−i(θ) : i > m

Now since ~v1 � . . . � ~vm it follows that b1 ≤ b2 ≤ . . . ≤ b2m. Also, if we define ∀θ ∈ SL,

iθ = min{i : bi(θ) = 1} then {bi : bi(θ) = 1} = {bi : i ≥ iθ}
8. We now define a probability

distribution w′ on {b1, . . . , b2m} according to:

w′(bi) =

{

w(~vi)
2 : i ≤ m

w(~v2m+1−i)
2 : i > m

From this we have that:

td(θ) =
w({~v : v(θ) = 1})

2
+
w({~v : v(θ) = 1})

2
= w′(bi : i ≤ m, bi(θ) = 1) + w′(bi : i > m, bi(θ) = 1)

= w′(bi : bi(θ) = 1) =
2m
∑

i=iθ

w′(bi)

Now for θ, ϕ ∈ SL we consider the following cases:

• td(¬θ): As already noted above, it follows trivially from definition 10 and theorem

9 that td(¬θ) = 1 − td(θ).

• td(θ ∧ ϕ): By definition 2 we have that ∀i, bi(θ ∧ ϕ) = min(bi(θ), bi(ϕ)), hence

iθ∧ϕ = min{i : bi(θ ∧ ϕ) = 1} = min{i : min(bi(θ), bi(ϕ)) = 1} = min{i : bi(θ) =

1 and bi(ϕ) = 1} = max(min{i : bi(θ) = 1},min{i : bi(ϕ) = 1}) = max(iθ, iϕ).

Therefore,

td(θ ∧ ϕ) =

2m
∑

i=iθ∧ϕ

w′(bi) =

2m
∑

i=max(iθ,iϕ)

w′(bi)

= min(
2m
∑

i=iθ

w′(bi),
2m
∑

i=iϕ

w′(bi)) = min(td(θ), td(ϕ))

• td(θ ∨ ϕ): By definition 2 we have that ∀i, bi(θ ∨ ϕ) = max(bi(θ), bi(ϕ)), hence

iθ∨ϕ = min(iθ, iϕ). Therefore,

td(θ ∨ ϕ) =
2m
∑

i=iθ∨ϕ

w′(bi) =
2m
∑

i=min(iθ,iϕ)

w′(bi)

= max(
2m
∑

i=iθ

w′(bi),
2m
∑

i=iϕ

w′(bi)) = max(td(θ), td(ϕ))

8In the case that {bi : bi(θ) = 1} = ∅ then for notational convenience we take, iθ = 2m+1. Subsequently,
we then apply the convention that if j > 2m then

∑2m

i=j w′(bi) = 0



Theorem 13. Let td : SL → [0, 1] be a fuzzy truth degree on L generated as in theorem

12. Then ∀θ ∈ SL;

µ(θ) = max(0, 2td(θ) − 1) and µ(θ) = min(1, 2td(θ))

Proof. For θ ∈ SL we consider the following two cases:

• td(θ) ≤ 1
2 : Now notice that by definition of w′ it holds that w′({bm+1, . . . , b2m}) = 1

2 .

Hence, since td(θ) ≤ 1
2 then it follows that iθ ≥ m+ 1. Therefore;

µ(θ) = w({~v : v(θ) = 1}) = 2w′({bi : i > m, bi(θ) = 1})

= 2w′({bi : bi(θ) = 1}) since iθ ≥ m+ 1 = 2td(θ)

• td(θ) > 1
2 : In this case iθ ≤ m by the above argument. From this it follows that:

bi(θ) = 1,∀i > m⇒ vi(θ) = 1 for i = 1, . . . ,m⇒ µ(θ) = 1

Hence, ∀θ ∈ SL, µ(θ) = min(1, 2td(θ)) as required. Then by duality:

µ(θ) = 1 − µ(¬θ) = 1 − min(1, 2td(¬θ)) = 1 − min(1, 2(1 − td(θ)))

= max(0, 2td(θ) − 1)

The following corollary first appeared as a theorem in Lawry and Gonzalez [29], where

it has a more direct proof. It is natural to include it here, however, as a consequence of

theorems 12 and 13. As already noted elsewhere, e.g. in [29] and [31], it provides a clear

bridge between Kleene belief pairs and interval-valued fuzzy logic [56].

Corollary 14. Let w be a probability distribution on Vk such that {~v : w(~v) > 0} =

{~v1, . . . , ~vm} where ~v1 � . . . � ~vm and let (µ, µ) be the associated Kleene belief pair on L.

Then ∀θ, ϕ ∈ SL;

µ(θ ∧ ϕ) = min(µ(θ), µ(ϕ)), µ(θ ∧ ϕ) = min(µ(θ), µ(ϕ)) and

µ(θ ∨ ϕ) = max(µ(θ), µ(ϕ)), µ(θ ∨ ϕ) = max(µ(θ), µ(ϕ))

Proof. By theorems 12 and 13 we have that ∀θ, ϕ ∈ SL;

µ(θ ∧ ϕ) = max(0, 2td(θ ∧ ϕ) − 1) = max(0, 2 min(td(θ), td(ϕ)) − 1)

= min(max(0, 2td(θ) − 1),max(0, 2td(ϕ) − 1)) = min(µ(θ), µ(ϕ))

The remaining cases then follow similarly.



In the context of theorem 12 we can, in fact, now say something stronger about the

relationship between Kleene belief measures and min-max fuzzy logic. Not only is it

true that a special case of mid-point truth degrees (definition 10) are fuzzy truth degrees

(definition 11), but also as we will show below, mid-point truth degrees which have w

non-zero only on a sequence of increasingly sharp valuations, actually provide a complete

characterisation of compositional fuzzy truth degrees.

Lemma 15. Let ζ : SL → [0, 1] be a fuzzy truth degree, as given in definition 11, and

let w be a probability distribution on Vk such that {~v : w(~v) > 0} = {~v1, . . . , ~vm} where

~v1 � . . . � ~vm. Then ∀θ ∈ SL, ζ(θ) = td(θ) if and only if ∀l ∈ LL (i.e. for all literals of

L), µ(l) = max(0, 2ζ(l) − 1).

Proof. (⇒) if ∀θ ∈ SL, td(θ) = ζ(θ) then it follows trivially that ∀l ∈ LL, µ(l) =

max(0, 2ζ(l) − 1) by theorem 13.

(⇐) ∀p ∈ P we consider two cases:

1) ζ(p) 6= 1
2 : In this case, then by definition 11 either ζ(p) > 1

2 or ζ(¬p) > 1
2 . Let

l ∈ {p,¬p} be such that ζ(l) > 1
2 . Now µ(l) = max(0, 2ζ(l) − 1) = 2ζ(l) − 1 > 0.

Also, by theorem 13 µ(l) = max(0, 2td(l)− 1). Hence, max(0, 2td(l)− 1) = 2ζ(l)− 1

⇒ 2td(l) − 1 = 2ζ(l) − 1 ⇒ td(l) = ζ(l) ⇒ td(¬l) = ζ(¬l) by definition 11 and the

general properties of mid-point truth degrees as described in the first part of this

section. Hence, td(p) = ζ(p) and td(¬p) = ζ(¬p).

2) ζ(p) = ζ(¬p) = 1
2 : In this case µ(p) = max(0, 2ζ(p) − 1) = 0. Also, by theorem

13 we have that µ(p) = max(0, 2td(p) − 1). Therefore, max(0, 2td(p) − 1) = 0 ⇒

td(p) ≤ 1
2 . Similarly, µ(¬p) = max(0, 2ζ(¬p) − 1) = 0 and by theorem 13 we have

that µ(¬p) = max(0, 2td(¬p)−1). Therefore, max(0, 2td(¬p)−1) = 0 ⇒ td(¬p) ≤ 1
2 .

Hence, since td(¬p) = 1 − td(p) it follows immediately that td(p) = td(¬p) = 1
2 .

From this argument we have that ∀l ∈ LL, td(l) = ζ(l). Hence, given the truth-

functionality of both td and ζ following from theorem 12 and definition 11 respectively,

we have that ∀θ ∈ SL, td(θ) = ζ(θ), as required.

Theorem 16. For any fuzzy truth degree ζ : SL → [0, 1] on L, as given in definition

11, there is a unique sequence ~v1 � . . . � ~vm of Kleene valuation pairs on L and an

associated probability distribution w on Vk for which {~v : w(~v) > 0} = {~v1, . . . , ~vm}, such

that ∀θ ∈ SL;

ζ(θ) = td(θ) =
µ(θ) + µ(θ)

2

Proof. Using the orthopair notation for valuation pairs, then given any pair (P,N) we can

naturally generate a set of literals F = P ∪ {¬p : p ∈ N}. Since (P,N) is an orthopair



so that P ∩N = ∅, it immediately follows that ∀p ∈ P, {p,¬p} 6⊆ F . Furthermore, given

only F we can identify (P,N) by taking P = {p : p ∈ F} and N = {p : ¬p ∈ F}. Hence,

the set F = {F ⊆ LL : ∀p ∈ P, {p,¬p} 6⊆ F} of subsets of literals, provides an alternative

characterisation of the set of orthopairs and consequently, by theorem 4, of Vk. Also, note

that by theorem 4, it follows that ∀l ∈ LL, v(l) = 1 if and only if l ∈ F .

By the above argument and theorem 7 it follows that any probability distribution w

satisfying the required properties (i.e non-zero only on a sequence of valuations totally

ordered by �) is characterised by a nested sequence of subsets of literals {Fi : i} such

that Fi ∈ F and Fi ⊆ Fi+1, together with weights wi ∈ [0, 1] for which
∑

iwi = 1. More

specifically, Fi is a characterisation of valuation pair ~vi and wi = w(~vi). Furthermore,

given such a characterisation, we have that ∀l ∈ LL;

µ(l) =
∑

Fi:l∈Fi

wi

Notice that a sequence of this form together with an associated set of weights defines a

consonant (or nested) random set on F and, by the above equation, µ : LL → [0, 1] is

then the corresponding single point coverage function.

Now let {l : ζ(l) > 1
2} = {l1, . . . , lm−1} ordered such that ζ(li−1) ≥ ζ(li) for i =

2, . . . ,m− 1. Since ζ(l) > 1
2 ⇒ ζ(¬l) < 1

2 it follows that the set {l1, . . . , lm−1} ∈ F as are

all its subsets. Given the above characterisation and lemma 15 it follows that the result

holds if and only if there exists a nested sequence {Fi : i} where Fi ⊆ Fi+1 ⊆ {l1, . . . , lm−1}

with associated weights wi where
∑

iwi = 1 and for which
∑

Fi:lj∈Fi

wi = 2ζ(lj) − 1 for j = 1, . . . ,m− 1

Now from a well-known result according to which a consonant random set can be recovered

from its single point coverage function (see theorem 2 in [18] or alternatively [24] and [8]

for a more straightforward treatment of the finite case), it follows that the above set of

equations has a solution given by:

Fm = {l1, . . . , lm−1}, . . . , Fi = {l1, . . . , li−1}, . . . , F2 = {l1}, F1 = ∅

and

wm = 2ζ(lm) − 1, . . . , wi = (2ζ(li−1) − 1) − (2ζ(li) − 1) = 2(ζ(li−1) − ζ(li))

, . . . , w1 = 1 − (2ζ(l1) − 1) = 2(1 − ζ(l1))

Furthermore, this solution is known to be unique once terms where wi = 0 are removed.

The corresponding orthopairs representation can then be recovered as outlined above.9

9It is possible that wi = 0 for some i ∈ {1, . . . , m}. For example, this could occur if ζ(li) = ζ(li−1)
or if ζ(l1) = 1. In this case, the resulting distribution w will be such that the length of the sequence of
valuation pairs for which w(~v) > 0 will be strictly less that m (rather than equal to m). However, since in
the statement of the theorem m is simply a variable taking integer values greater than or equal to 1, then
this does not effect the result.



The proof of theorem 16 includes an algorithm for determining w and ~v1 � . . . � ~vm

given fuzzy truth degree values on the propositional variables of L. This algorithm is now

illustrated in the following example.

Example 17. Let L have propositional variables P = {p1, p2, p3, p4, p5, p6}. Let ζ be a

fuzzy truth-degree on L for which:

ζ(p1) = 0.6, ζ(p2) = 0.7, ζ(p3) = 0.85, ζ(p4) = 0.1, ζ(p5) = 0.2, ζ(p6) = 0.35

Now considering those literals l for which ζ(l) > 1
2 we have:

ζ(p1) = 0.6, ζ(p2) = 0.7, ζ(p3) = 0.85, ζ(¬p4) = 0.9, ζ(¬p5) = 0.8, ζ(¬p6) = 0.65

Resulting in the ordering:

ζ(¬p4) > ζ(p3) > ζ(¬p5) > ζ(p2) > ζ(¬p6) > ζ(p1)

This gives us the following sequence of orthopairs with associated probabilities:

F7 = {¬p4, p3,¬p5, p2,¬p6, p1} 7→ (P7, N7) = ({p3, p2, p1}, {p4, p5, p6}) : w7 = 2(0.6) − 1 = 0.2

F6 = {¬p4, p3,¬p5, p2,¬p6} 7→ (P6, N6) = ({p3, p2}, {p4, p5, p6}) : w6 = 2(0.65 − 0.6) = 0.1

F5 = {¬p4, p3,¬p5, p2} 7→ (P5, N5) = ({p3, p2}, {p4, p5}) : w5 = 2(0.7 − 0.65) = 0.1

F4 = {¬p4, p3,¬p5} 7→ (P4, N4) = ({p3}, {p4, p5}) : w4 = 2(0.8 − 0.7) = 0.2

F3 = {¬p4, p3} 7→ (P3, N3) = ({p3}, {p4}) : w3 = 2(0.85 − 0.8) = 0.1

F2 = {¬p4} 7→ (P2, N2) = (∅, {p4}) : w2 = 2(0.9 − 0.85) = 0.1

F1 = ∅ 7→ (P1, N1) = (∅, ∅) : w1 = 2(1 − 0.9) = 0.2

Notice that (P7, N7) corresponds to a classical valuation since N7 = P c
7 , whilst (P1, N1)

corresponds to a fully vague model in which all sentences are borderline cases.

The general relationship between fuzzy truth degrees and the probabilities of t, b and

f can be summarised as shown in figure 3. More specifically, the probability of each of the

three truth values is a (piecewise) linear function of fuzzy truth degree as follows10:

• For td(θ) ≤ 1
2 : In this case w({~v : ~v(θ) = t}) = 0, w({~v : ~v(θ) = b}) = 2td(θ), and

w({~v : ~v(θ) = f}) = 1 − 2td(θ)

• For td(θ) > 1
2 : In this case w({~v : ~v(θ) = t}) = 2td(θ) − 1, w({~v : ~v(θ) = b}) =

2(1 − td(θ)) and w({~v : ~v(θ) = f}) = 0

10Given theorems 12 and 16 showing that fuzzy truth degrees are a special case of mid-point truth
degrees, we will from now on also use the notation td when discussing the former.
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Figure 3: Plot showing the relationship between the fuzzy truth degree td(θ) and the
probabilities w({~v : ~v(θ) = f}) (denoted w(θ; f)), w({~v : ~v(θ) = b}) (denoted w(θ;b)) and
w({~v : ~v(θ) = t}) (denoted w(θ; t))

In other words, if td(θ) ∈ (0, 0.5) then it is certain that θ is not absolutely true, but

uncertain whether θ is borderline or absolutely false. Similarly, if td(θ) ∈ (0.5, 1) then it is

certain that θ is not absolutely false, but uncertain whether θ is borderline or absolutely

true. Given this we can begin to address issues like that of the police officer wondering

what she can infer from a witness asserting that ‘the suspect is short’ with truth degree

0.6. We now see from figure 3 that such an assertion can be interpreted as the witness

believing the suspect to be absolutely short with probability 0.2, and borderline short with

probability 0.8.

5 A Betting Semantics for Truth Degrees

In this section we discuss a possible betting semantics for Kleene belief pairs and truth

degrees taking as the point of departure de Finetti’s operational semantics for subjective

probability [7]. By way of background we first give an overview of Paris’ generalization

of de Finetti’s framework and state the main result from [41]. We will then exploit this

result when considering bets under a three-valued truth model.

Let B be a finite set of binary functions from SL into {0, 1} representing the set of

possible truth states. In de Finetti’s original formulation B was the set of Tarski valuations

on L. However, in Paris’ generalization it is not restricted in this way. A bet on sentence

θ ∈ SL, requiring stake s ∈ R, and with odds α ∈ [0, 1], denoted by (s, α, θ), is then



defined as follows:

• pay s× α pounds.

• if b(θ) = 1 then receive s pounds.

• if b(θ) = 0 then receive 0 pounds.

where b ∈ B corresponds to the true state of the world. Notice that we permit s < 0

which is interpreted as the agent selling rather than buying the bet. Now suppose an

agent accepts a set of bets (si, αi, θi) for i = 1, . . . , t, then her overall gain will be:

t
∑

i=1

si(b(θi) − αi)

Furthermore, this set of bets is referred to as a Dutch book if the above expression is

negative for every function b ∈ B. In other words, a Dutch book is a set of bets which, if

accepted, would result in a sure loss no matter what the true state of the world turns out

to be.

We now define an agent’s subjective belief in a sentence θ, denoted B(θ), to be the

odds for which she will accept the bet (s,B(θ), θ) for any stake s ∈ R. In the light of this

definition Paris [41] proves the following result:

Theorem 18. There is no Dutch book acceptable to an agent adopting belief measure B,

if and only if there exists a probability distribution w on B such that ∀θ ∈ SL;

B(θ) = w({b : b(θ) = 1})

Notice that if B is the set of Tarski valuations on L then theorem 18 means that in

order to avoid Dutch bets, B must be a probability measure on SL.

Having set the scene we can now return to consider bets assuming an underlying

three-valued truth model. In order to adapt the generalized de Finetti approach to this

context we must decide how to deal with borderline outcomes. In otherwords, how is

the bet (s, α, θ) decided if the truth value of θ is b? One approach would be to agree

that the agent only wins s if θ is absolutely true and wins 0 otherwise. These type of

bets, termed lower bets, are discussed in detail in Lawry and Tang [31]. Notice that by

taking B = {v : ~v ∈ Vk} and applying theorem 18, it follows that in order for an agent

to avoid Dutch books consisting of lower bets then she must adopt Kleene lower belief

measures on SL as her measures of subjective belief. There is then also a dual notion of

upper bets in which a win occurs if and only if θ is not absolutely false. This time taking

B = {v : ~v ∈ Vk}, theorem 18 then forces a rational agent to adopt Kleene upper belief

measures.



In order to provide a betting interpretation of truth degrees we now propose an alter-

native approach to dealing with borderline outcomes, which we will refer to as decider bets.

The essential idea behind these bets is that winning or loosing in the case of a borderline

outcome is determined on the basis of the truth-value of some fixed and inherently crisp

proposition q ∈ P i.e. this being the decider. In other words, a bet (s, α, θ) now takes the

following form:

• Pay s× α pounds.

• If ~v(θ) = t then receive s pounds.

• If ~v(θ) = f then receive 0 pounds.

• If ~v(θ) = b then,

– if ~v(q) = t then receive s pounds, else

– if ~v(q) = f then receive 0 pounds.

where ~v ∈ Vk(q) and Vk(q) = {~v ∈ Vk : ~v(q) 6= b} is the set of all possible truth states .

Decider bets can then be reformulated in terms of a certain class of binary functions

B defined as follows: ∀~v ∈ Vk(q), let b~v : SL → {0, 1} be such that ∀θ ∈ SL;

b~v(θ) =

{

1 : ~v(θ) = t or (~v(θ) = b and ~v(q) = t)

0 : otherwise

Alternatively, taking v(q) = v(q) = v(q) then:

b~v(θ) = max(v(θ),min(v(θ), v(q)))

We then take:

B = {b~v : ~v ∈ Vk(q)}

Hence, the true state of the world generates a particular element b ∈ B and we can then

reformulate the decider bets so that they now fit within Paris’s formulation. Consequently,

a rational agent must define her belief measure B in terms of a probability distribution w

on this particular set of binary functions B as given in theorem 18. The following result

now shows that each valuation pair in Vk(q) identifies a unique element of B.

Theorem 19. For ~v1, ~v2 ∈ Vk(q) if ~v1 6= ~v2 then b~v1
6= b~v2

Proof. Notice that b~v(q) = v(q) and hence we need only consider the case where ~v1(q) =

~v2(q) since otherwise the result follows trivially i.e. by taking θ = q.

Suppose that ~v1(q) = ~v2(q) = t and w.l.o.g consider the following cases: ∃θ ∈ SL such

that



• ~v1(θ) = t and ~v2(θ) = f : In this case b~v1
(θ) = 1 and b~v2

(θ) = 0. Hence, b~v1
6= b~v2

.

• ~v1(θ) = f and ~v2(θ) = b: In this case b~v1
(θ) = 0 and b~v2

(θ) = 1. Hence, b~v1
6= b~v2

.

• ~v1(θ) = t and ~v2(θ) = b: Notice in this case that b~v1
(θ) = b~v2

(θ) = 1. However,

by duality ~v1(¬θ) = f and ~v2(¬θ) = b and hence from above b~v1
(¬θ) = 0 and

b~v2
(¬θ) = 1. Therefore, b~v1

6= b~v2
.

Further suppose that ~v1(q) = ~v2(q) = f and w.l.o.g consider the following cases: ∃θ ∈ SL

such that

• ~v1(θ) = t and ~v2(θ) = f : In this case b~v1
(θ) = 1 and b~v2

(θ) = 0. Hence, b~v1
6= b~v2

.

• ~v1(θ) = t and ~v2(θ) = b: In this case b~v1
(θ) = 1 and b~v2

(θ) = 0. Hence, b~v1
6= b~v2

.

• ~v1(θ) = f and ~v2(θ) = b: Notice in this case that b~v1
(θ) = b~v2

(θ) = 0. However,

by duality ~v1(¬θ) = t and ~v2(¬θ) = b and hence from above b~v1
(¬θ) = 1 and

b~v2
(¬θ) = 0. Therefore, b~v1

6= b~v2
.

From theorem 19 we see that w on B naturally generates a probability distribution

on Vk(q), also denoted w, such that w(~v) = w(b~v). Hence, for the agent to avoid Dutch

books consisting of decider bets, B must satisfy that for all θ ∈ SL;

B(θ) = w({b~v : b~v(θ) = 1}) = w({~v : b~v(θ) = 1})

= w({~v : ~v(θ) = t}) + w({~v : ~v(θ) = b, ~v(q) = t})

Now for B(θ) to correspond to a truth degree value of θ as given by definition 10 requires

that;

w({~v : ~v(θ) = b, ~v(q) = t}) = w({~v : ~v(θ) = b, ~v(q) = f}) =
w({~v : ~v(θ) = b})

2

One scenario in which this assumption could be valid is as follows: Let L′ denote L

restricted to the propositional variables P −{q}, and SL′ be the sentences of L′. Then we

assume that q is chosen so as to be independent of the sentences in SL′ and furthermore,

such that the agent’s belief in q being true is 1
2 . By independent, we mean that for any

sentence θ ∈ SL′ the truth value of q, i.e. ~v(q), is independent of the truth value of θ, i.e.

~v(θ). Hence, we are assuming that w on Vk(q) satisfies the following: ∀θ ∈ SL′

w(~v(q)|~v(θ)) = w(~v(q)) and w(~v(q) = t) = w(~v(q) = f) =
1

2

For example, q might refer to the outcome from tossing a certain fair coin as being a head,

whilst P − {q} could be propositions referring to characteristics of the next person, call

them x, to walk through a door e.g. x is tall, x is handsome, x is blonde etc.



Example 20. Let L be such that P = {p1, p2, p3, p4, q} and let Vk(q) be the set of all

Kleene valuation pairs on L for which ~v(q) 6= b. Let w be the probability distribution on

Vk(q) defined in orthopairs notation as follows:

({p1, q}, ∅) : 0.1, ({p1}, {q}) : 0.1, ({p1, p2, q}, ∅) : 0.15, ({p1, p2}, {q}) : 0.15,

({p1, p2, q}, {p3}) : 0.2, ({p1, p2}, {p3, q}) : 0.2,

({p1, p2, q}, {p3, p4}) : 0.05, ({p1, p2}, {p3, p4, q}) : 0.05

In this case all of the above conditions are satisfied. For example, consider θ = p2 ∧¬p3 ∈

SL′, then the following holds:

w(~v(q) = t|~v(p2 ∧ ¬p3) = b) = w(~v(q) = f |~v(p2 ∧ ¬p3) = b) =
1

2
= w(~v(q) = t)

To see this notice that the only valuation pairs with non-zero probability for which ~v(p2 ∧

¬p3) = b are the following;

({p1, q}, ∅), ({p1}, {q}), ({p1, p2, q}, ∅), ({p1, p2}, {q})

Amongst this subset of valuations the probability is then split evenly between those for

which ~v(q) = t and those for which ~v(q) = f . Furthermore, notice that if we restrict

ourselves to sentences in SL′ then the corresponding marginal distribution for valuation

pairs on L′ is as follows:

({p1}, ∅) : 0.2, ({p1, p2}, ∅) : 0.3, ({p1, p2}, {p3}) : 0.4, ({p1, p2}, {p3, p4}) : 0.1

Furthermore, note that the above valuation pairs with non-zero probability form a nested

sequence as required in theorem 7 and hence the truth degree generated by w according to

definition 10, corresponds to a fuzzy truth degree (definition 11) when restricted to SL′.

6 Truth Degrees in a Classical or Supervaluation Frame-

work

As discussed in section 2 Kleene valuations pairs are only one of several possible models

to account of truth-gaps in a propositional language. Furthermore, the fact that, amongst

other features, they permit borderline contradictions, makes them controversial. Indeed,

we might also view such a liberal allocation of borderline status in the light of a more

general failure to represent penumbral connections. Fine [16] introduced the notion of

penumbral connections as corresponding to ‘logical relations [that] holds between indef-

inite sentences’. As can be seen from table 1 the Kleene three-valued truth tables are

conservative, in that both the conjunction and the disjunction of two borderline sentences

are always also borderline cases. This property ultimately means that many penumbral

connections simply cannot be captured within the Kleene framework. On the other hand,



as discussed in [31], supervaluations are better able to represent absolute relationships be-

tween borderline sentences. In particular, θ∧¬θ is always absolutely false in the superval-

uationist model irrespective of the truth value of θ. As noted in section 2, supervaluations

on a propositional language can also be expressed within the valuation pair notation. In

subsection 6.2 we will investigate supervaluation pairs together with their associated belief

pairs and truth degrees, and describe their relationships to min-max fuzzy logic.

Before discussing supervaluations we will initially, in subsection 6.1, investigate fuzzi-

ness when assuming a purely classical (Tarskian) truth model. This is consistent with

Lindley’s [35] and Cheeseman’s [3] claims that vagueness can be captured entirely within

classical probability theory. From the perspective of the earlier discussion in section 1, in

this case we will be equating vagueness with semantic uncertainty and denying the exis-

tence of explicit borderline cases. Instead, a borderline case of a predicate will simply be

interpreted as one in which the probability of the predicate and its negation holding are

both close to 0.5. In fact, the assumption of an underlying classical truth model is common

to many of the proposed probabilistic semantics for fuzziness including [20], [27], [37], [46]

and [48]. Here we will show that under certain circumstances the classical probabilistic

version of truth degrees, i.e. probability measures on SL, can be consistent with fuzzy

truth degrees but only on a restricted subset of the sentences of L.

6.1 Truth Degrees and Sequences of Tarski Valuations

Let Vc denote the set of classical or Tarski valuations on L. We also define SL+ as the

sentences of L generated recursively from the propositional variables by application of the

connectives ∧ and ∨ only, and similarly we let SL− denote the sentences of L generated

recursively from the negated propositional variables by application of ∧ and ∨ only. Here

we can think of SL+ as the set of entirely positive sentences and SL− as the set of entirely

negative sentences of L respectively. Note that the class of sentences SL+ ∪ SL−, whilst

restricted, is nonetheless important for applications e.g. data base querying and rule-

based systems. We now introduce a partial ordering on Vc which has some similarity to

the semantic precision ordering on valuation pairs.

Definition 21. Ordering on Vc

For v1, v2 ∈ Vc, v1 E v2 iff ∀p ∈ P, v1(p) = 1 ⇒ v2(p) = 1.

Theorem 22. For v1, v2 ∈ Vc, if v1 E v2 then;

(i) ∀ψ ∈ SL+, v1(ψ) ≤ v2(ψ).

(ii) ∀ψ ∈ SL−, v2(ψ) ≤ v1(ψ)

Proof. Part (i): We proceed by induction on the complexity of sentences in SL+. Let

SL+,0 = P and SL+,k = SL+,k−1 ∪ {θ ∧ ϕ, θ ∨ ϕ : θ, ϕ ∈ SL+,k−1} for k ≥ 1. Now if



ψ = pi ∈ SL+,0 = P then v1(pi) ≤ v2(pi) by definition 21. If ψ ∈ SL+,k then either

ψ ∈ SL+,k−1 in which case the result follows trivially or there exist θ, ϕ ∈ SL+,k−1 and

one of the following holds:

• ψ = θ∧ϕ: In this case v1(ψ) = min(v1(θ), v1(ϕ)) ≤ min(v2(θ), v2(ϕ)) (by induction)

= v2(ψ).

• ψ = θ∨ϕ: In this case v1(ψ) = max(v1(θ), v1(ϕ)) ≤ max(v2(θ), v2(ϕ)) (by induction)

= v2(ψ).

Part (ii): Let SL−,0 = {¬pi : pi ∈ P} and SL−,k = SL−,k−1∪{θ∧ϕ, θ∨ϕ : θ, ϕ ∈ SL−,k−1}

for k ≥ 1. Now if ψ = ¬pi ∈ SL−,0 then v2(¬pi) = 1 ⇒ v2(pi) = 0 ⇒ v1(pi) = 0, since

v1 E v2, ⇒ v1(¬pi) = 1 as required. The inductive steps then mirror those of part (i).

Hence, from definition 21 and theorem 22 we see if v1 E v2 then v2 has a greater

tendency than v1 to classify positive sentences as being true, and a lesser tendency to

classify negative sentences as being true. This is in contrast to the semantic precision

ordering on Kleene valuations, where ~v1 � ~v2 means that ~v2 has a greater tendency that

~v1 to classify any of the sentences of L as being true.

Definition 23. Given v1, . . . , vm ∈ Vc forming a sequence v1 E v2 E . . . E vm then

∀θ ∈ SL, let lθ = min{i : vi(θ) = 1} and let uθ = max{i : vi(θ) = 1}

Theorem 24. Given v1, . . . , vm ∈ Vc forming a sequence v1 E v2 E . . . E vm then:

(i) ∀θ, ϕ ∈ SL+, lθ∧ϕ = max(lθ, lϕ) and lθ∨ϕ = min(lθ, lϕ)

(ii) ∀θ, ϕ ∈ SL−, uθ∧ϕ = min(uθ, uϕ) and uθ∨ϕ = max(uθ, uϕ)

Proof. Part (i): By theorem 22 we have that ∀θ ∈ SL+, {i : vi(θ) = 1} = {lθ, . . . ,m} and

hence,

{i : vi(θ ∧ ϕ) = 1} = {i : vi(θ) = 1} ∩ {i : vi(ϕ) = 1} = {lθ, . . . ,m} ∩ {lϕ, . . . ,m}

= {max(lθ, lϕ), . . . ,m} ⇒ lθ∧ϕ = max(lθ, lϕ)

as required.

Similarly,

{i : vi(θ ∨ ϕ) = 1} = {i : vi(θ) = 1} ∪ {i : vi(ϕ) = 1} = {lθ, . . . ,m} ∪ {lϕ, . . . ,m}

= {min(lθ, lϕ), . . . ,m} ⇒ lθ∨ϕ = min(lθ, lϕ)

as required.

Part (ii): By theorem 22 we have that ∀θ ∈ SL−, {i : vi(θ) = 1} = {1, . . . , uθ}. Hence,

{i : vi(θ ∧ ϕ) = 1} = {i : vi(θ) = 1} ∩ {i : vi(ϕ) = 1} = {1, . . . , uθ} ∩ {1, . . . , uϕ}

= {1, . . . ,min(uθ, uϕ)} ⇒ uθ∧ϕ = min(uθ, uϕ)



as required. Also,

{i : vi(θ ∨ ϕ) = 1} = {i : vi(θ) = 1} ∪ {i : vi(ϕ) = 1} = {1, . . . , uθ} ∪ {1, . . . , uϕ}

= {1, . . . ,max(uθ, uϕ)} ⇒ uθ∨ϕ = max(uθ, uϕ)

as required.

Since for classical valuations there are no borderline cases then given a probability

distribution w on Vc, truth degrees are simply defined such that ∀θ ∈ SL;

td(θ) = w({v : v(θ) = 1})

In this case td is just a probability measure on SL.

Theorem 25. Let w be a probability distribution on Vc such that {v : w(v) > 0} =

{v1, . . . , vm} where v1 E v2 E . . . E vm. Then ∀θ, ϕ ∈ SL+(SL−) the following hold:

td(θ ∧ ϕ) = min(td(θ), td(ϕ)) and td(θ ∨ ϕ) = max(td(θ), td(ϕ))

where td(θ) = w({v : v(θ) = 1})

Proof. Consider θ, ϕ ∈ SL+ then by theorem 24 it follows that:

td(θ ∧ ϕ) = w({vi : vi(θ ∧ ϕ) = 1}) =
m

∑

r=lθ∧ϕ

w(vr) =
m

∑

r=max(lθ,lϕ)

w(vr)

= min(
m

∑

r=lθ

w(vr),
m

∑

r=lϕ

w(vr)) = min(td(θ), td(ϕ))

as required. Also,

td(θ ∨ ϕ) = w({i : vi(θ ∨ ϕ) = 1}) =
m

∑

r=lθ∨ϕ

w(vr) =
m

∑

r=min(lθ,lϕ)

w(vr)

= max(

m
∑

r=lθ

w(vr),

m
∑

r=lϕ

w(vr)) = max(td(θ), td(ϕ))

as required.

Now consider θ, ϕ ∈ SL− the by theorem 24 we have that:

td(θ ∧ ϕ) = w({vi : vi(θ ∧ ϕ) = 1}) =

uθ∧ϕ
∑

i=1

w(vr) =

min(uθ,uϕ)
∑

i=1

w(vr)

= min(

uθ
∑

i=1

w(vr),

uϕ
∑

i=1

w(vr)) = min(td(θ), td(ϕ))



as required. Also,

td(θ ∨ ϕ) = w({vi : vi(θ ∨ ϕ) = 1}) =

uθ∨ϕ
∑

i=1

w(vr) =

max(uθ,uϕ)
∑

i=1

w(vr)

= max(

uθ
∑

i=1

w(vr),

uϕ
∑

i=1

w(vr)) = max(td(θ), td(ϕ))

as required.

One example where we can find sequences of classical valuations as in theorem 25,

relates to a prototype theory interpretation of categories as introduced in [28]. Suppose

that the propositions P correspond to the formula {Q1(x), . . . , Qn(x)} where {Qi : i =

1, . . . , n} are unary predicates and x is particular example. Furthermore, suppose that the

interpretation of these predicates is as follows: Given an underlying universe Ω on which

is defined a pseudo-distance metric d, then for any element x ∈ Ω, Qi(x) holds if and only

if d(x, ai) ≤ ǫ where ai ∈ Ω is the prototype for Qi and ǫ ∈ R
+ is a distance threshold.

Hence, for a fixed threshold value ǫ this model naturally generates a classical valuation vǫ

on L such that; ∀pi ∈ P

vǫ(pi) = 1 if and only if d(x, ai) ≤ ǫ

In other words, pi is true if and only if x is sufficiently similar to the prototype ai. Hence,

a sequence of increasing thresholds ǫ1 < ǫ2 < . . . < ǫm naturally generates a sequence

of classical valuations on L such that vǫ1 E vǫ2 E . . . E vǫm . One can then envisage a

scenario in which an agent’s uncertainty is only regarding the value of the threshold ǫ. If

they were then to define a probability distribution on ǫ this would result in a corresponding

distribution w on Vc, non-zero only on a sequence of valuations as in theorem 25.

6.2 Truth Degrees and Supervaluation Pairs

Supervaluationism was proposed as a theory of vagueness by Fine [16] (see also Williamson

[54] for an exposition). In this approach it is assumed that vague predicates have different

admissible crisp interpretations, referred to as precisifications. For example, the predicate

short may admit a range of admissible threshold values on height, each defining a different

precisification. The simplest formulation of supervaluationism in a propositional logic

language is in terms of a set of admissible classical valuations. This approach naturally

leads to a valuation pair representation as follows:

Definition 26. Supervaluation Pairs [31]

A supervaluation pair is defined as follows: For Π ⊆ Vc let ∀θ ∈ SL;

v(θ) = min{v(θ) : v ∈ Π} and v(θ) = max{v(θ) : v ∈ Π}



Let Vs denote the set of all supervaluation pairs on L.11

Lawry and Tang [31] show that supervaluation pairs are characterised by the following

four properties: ∀θ, ϕ ∈ SL;

• Duality: v(¬θ) = 1 − v(θ) and v(¬θ) = 1 − v(θ)

• Tautology preservation: If θ is a classical tautology then ~v(θ) = t.

• Equivalence: If θ and ϕ are classically equivalent then ~v(θ) = ~v(ϕ).

• Maximum upper: v(θ ∨ ϕ) = max(v(θ), v(ϕ)).

Notice that by duality and tautology preservation any classical contradiction θ ∧ ¬θ is

absolutely false no matter what the truth value of θ. Also, by duality and maximal upper

we have that:

v(θ ∧ ϕ) = min(v(θ), v(ϕ))

In general, however, for supervaluation pairs it only holds that:

v(θ ∨ ϕ) ≥ max(v(θ), v(ϕ)) and v(θ ∧ ϕ) ≤ min(v(θ), v(ϕ))

In comparison to the Kleene valuation pair operators (definition 2) this means that super-

valuation pairs have a lesser tendancy to propagate borderline truth values.

We now introduce a particular sub-class of supervaluation pairs on L referred to as

bounded supervaluation pairs.

Definition 27. Bounding Valuations

Let ~v ∈ Vs be a supervaluation pair characterised by the set of admissible classical valua-

tions Π ⊆ Vc. Then let v∗, v
∗ ∈ Vc be classical valuations such that:

∀pi ∈ P, v∗(pi) = min{v(pi) : v ∈ Π} and v∗(pi) = max{v(pi) : v ∈ Π}

Definition 28. Bounded Supervaluation pairs [31]

~v ∈ Vs is a bounded supervaluation pair if and only if {v∗, v
∗} ⊆ Π. Let Vbs denote the

set of all bounded supervaluation pairs on L.

One way to motivate bounded supervaluation pairs is to consider disjunctions and

conjunctions of the borderline propositions. For ~v ∈ Vs let B denote the set of borderline

propositional variables i.e. B = {pi : ~v(pi) = b}. Now if v∗ 6∈ Π then ~v(
∨

pi∈B pi) = t

and if v∗ 6∈ Π then ~v(
∧

pi∈B pi) = f . These would seem to be rather strong properties

11For any supervaluation pair ~v ∈ Vs there is a unique defining set of admissible classical valuations
given by Π = {v ∈ Vc : v(αv) = 1} where αv =

∧

pi:v(pi)=1 pi ∧
∧

pi:v(pi)=0 ¬pi.



for borderline cases12. Hence, the restriction to bounded supervaluation pairs means

that for the borderline propositions there will be at least one admissible valuation in

which they are all true, and at least one in which they are all false. This ensures that

~v(
∨

pi∈B pi) = ~v(
∧

pi∈B pi) = b.

The following theorem from [31] shows that bounded supervaluation pairs obey all the

Kleene valuation pairs conjunction and disjunction operators when restricted to either

the set of entirely positive sentences SL+ or the set of entirely negative sentences SL−.

This result will be a foundation of the bridge we will build between the supervaluationist

framework and fuzzy logic.

Theorem 29. For ~v ∈ Vbs then ∀θ, ϕ ∈ SL+(SL−) it holds that:

v(θ ∧ ϕ) = min(v(θ), v(ϕ)) and v(θ ∨ ϕ) = max(v(θ), v(ϕ))

The notion of semantic precision is clearly also relevant in a supervaluationist frame-

work and definition 6 can be naturally extended so as to generate a vagueness ordering,

also denoted �, on Vs. In this case it immediately follows that for ~v1, ~v2 ∈ Vs, if ~v1 � ~v2

then v1∗ E v2∗ and v∗2 E v∗1, since by definition 27 it holds that ∀~v ∈ Vs and ∀pi ∈ P,

v∗(pi) = v(pi) and v∗(pi) = v(pi). Furthermore, we have the following characterisation of

the � ordering on Vs taken from [31].

Theorem 30. [31] For ~v1, ~v2 ∈ Vs, ~v1 � ~v2 if and only if Π1 ⊆ Π2.

In the following theorem we now show that, for bounded supervaluation pairs, there

is a close relationship between the lower and upper valuations and the bounding classical

valuations (definition 27) on SL+ and SL−.

Theorem 31. If ~v ∈ Vbs then:

(i) ∀ψ ∈ SL+, v(ψ) = v∗(ψ) and v(ψ) = v∗(ψ)

(ii) ∀ψ ∈ SL−, v(ψ) = v∗(ψ) and v(ψ) = v∗(ψ)

Proof. Part (i): Proceed by induction on the complexity of sentences. For ψ = pi ∈

SL+,0 = P then by definition 27 v(pi) = min{v(pi) : v ∈ Π} = v∗(pi) and v(pi) =

max{v(pi) : v ∈ Π} = v∗(pi). If ψ ∈ SL+,k then either ψ ∈ SL+,k−1 in which case the

result follows trivially or there exists θ, ϕ ∈ SL+,k−1 for which one of the following holds:

• ψ = θ∧ϕ: In this case v(ψ) = v(θ∧ϕ) = min(v(θ), v(ϕ)) by the properties of super-

valuation pairs as outlined above [31] = min(v∗(θ), v∗(ϕ)) by induction = v∗(θ∧ϕ) =

12As an example of an unbounded supervaluation pair assume P = {p1, p2} and let Π = {v1, v2} where
v1(p1 ∧ ¬p2) = 1 and v2(¬p1 ∧ p2) = 1. Then v∗ is such that v∗(¬p1 ∧ ¬p2) = 1 and v∗ is such that
v∗(p1 ∧ p2) = 1. Clearly in this case {v∗, v

∗} ∩ Π = ∅.



v∗(ψ) by the properties of Tarski valuations. Also v(ψ) = v(θ∧ϕ) = min(v(θ), v(ϕ))

by theorem 29 = min(v∗(θ), v∗(ϕ)) by induction = v∗(θ ∧ϕ) = v∗(ψ) by the proper-

ties of Tarski valuations.

• ψ = θ ∨ ϕ: In this case v(ψ) = v(θ ∨ ϕ) = max(v(θ), v(ϕ)) by theorem 29 =

max(v∗(θ), v∗(ϕ)) by induction v∗(θ ∨ ϕ) = v∗(ψ) by the properties of Tarski valua-

tions. Also, v(ψ) = v(θ ∨ ϕ) = max(v(θ), v(ϕ)) by the properties of supervaluation

pairs as outlined above [31] = max(v ∗ (θ), v∗(ϕ)) by induction = v∗(θ ∨ ϕ) = v∗(ψ)

by the properties of Tarski valuations.

Part (ii): Proceed by induction on the complexity of sentences. For ψ = ¬pi ∈ SL−,0

then by definition 27 we have that ∀v ∈ Π, v(pi) ≤ v∗(pi) ⇒ 1 − v(pi) ≥ 1 − v∗(pi) ⇒

v(¬pi) ≥ v∗(¬pi). Hence, v∗(¬pi) = min{v(¬pi) : v ∈ Π} = v(¬pi). Also, ∀v ∈ Π,

∀pi ∈ P, v(pi) ≥ v∗(pi) ⇒ 1 − v(pi) ≤ 1 − v∗(pi) ⇒ v(¬pi) ≤ v∗(¬pi). Hence, v∗(¬pi) =

max{v(¬pi) : v ∈ Π} = v(¬pi). The inductive steps then mirror those of part (i).

If adopting the epistemic approach to uncertainty described in section 3 then a su-

pervaluationist agent would represent her beliefs in terms of a probability distribution on

Vs. Similarly to Kleene belief pairs (definition 8) this naturally results in lower and upper

belief measures on the sentences of L of the form: ∀θ ∈ SL;

µ(θ) = w({~v ∈ Vs : v(θ) = 1}) and µ(θ) = w({~v ∈ Vs : v(θ) = 1})

In this case we refer to (µ, µ) as a supervaluation belief pair or a bounded supervaluation

belief pair if w is non-zero only on Vbs. It is straightforward to show that the lower and

upper measures comprising a supervaluation belief pair are respectively Dempster-Shafer

belief and plausibility measures on SL [44]. To see this notice that (µ, µ) can be rewritten

in Shafer’s well-know mass function notation in the following manner. Let m : 2Vc → [0, 1]

be such that if Π ⊆ Vc is the set of admissible valuations for ~v then m(Π) = w(~v).

Furthermore, if for θ ∈ SL we let Π(θ) = {v ∈ Vc : v(θ) = 1} then it holds that:

µ(θ) =
∑

Π⊆Π(θ)

m(Π) and µ(θ) =
∑

Π∩Π(θ) 6=∅

m(Π)

The idea of linking Dempster-Shafer theory to an underlying truth model dates back

to Jaffray [21], who proposed a betting semantics for belief functions based on, in our

notation, the lower supervaluation v. Jaffray’s associated Dutch book theorem is then a

special case of Paris’s general result [41], and the type of bets proposed are equivalent to

lower bets [31], as described in section 5, but in a supervaluationist rather than a Kleene

setting. The relationship between supervaluationism and Dempster-Shafer theory has also

been noted by Field [15], who defines probability measures over the sentences of a modal

logic language with an operator D denoting ‘determinate’. In this setting the belief value

of a sentence θ corresponds to the probability of Dθ.



In contrast to Kleene belief pairs (theorem 9), supervaluation belief pairs are not in

general additive, and instead the lower measure is super-additive and the upper measure

is sub-additive. In [31], however, bounded supervaluation belief pairs are shown to be

equivalent to Kleene belief pairs when restricted entirely to the sentences in SL+ ∪ SL−.

Furthermore, for sentences outside this class, the bounded supervaluation pairs are more

precise than the corresponding Kleene belief pairs, in that they allocate lower probability

values to borderline cases.

We can now adapt definition 10 in order to introduce truth degrees as corresponding

to the mid-point of supervaluation belief pairs. For truth degrees of this kind generated

from bounded supervaluation belief pairs, there is a close relationship with probability

measures on SL as shown in the following theorem.

Theorem 32. Let w be a probability distribution on Vbs then there exists a probability

distribution w′ on Vc with an associated probability measure P on SL given by ∀θ ∈

SL, P (θ) = w′({v ∈ V : v(θ) = 1}), such that ∀θ ∈ SL+ ∪ SL−,

P (θ) = td(θ) =
µ(θ) + µ(θ)

2
where

µ(θ) = w({~v ∈ Vbs : v(θ) = 1}) and µ(θ) = w({~v ∈ Vbs : v(θ) = 1})

Proof. Let {~v ∈ Vbs : w(~v) > 0} = {~v1, . . . , ~vm} and then define w′ on Vc such that:

∀v ∈ Vc,

w′(v) =
∑

i:vi∗=v

w(~vi)

2
+

∑

i:v∗
i =v

w(~vi)

2

Now for θ ∈ SL+ it holds that:

td(θ) =
µ(θ) + µ(θ)

2
=
w({~vi : vi(θ) = 1})

2
+
w({~vi : vi(θ) = 1})

2

=
w({~vi : vi∗(θ) = 1})

2
+
w({~vi : v∗i (θ) = 1})

2
by theorem 31

= w′({v : v(θ) = 1}) = P (θ)

Similarly, for θ ∈ SL− it holds that:

td(θ) =
µ(θ) + µ(θ)

2
=
w({~vi : vi(θ) = 1})

2
+
w({~vi : vi(θ) = 1})

2

=
w({~vi : v∗i (θ) = 1})

2
+
w({~vi : vi∗(θ) = 1})

2
by theorem 31

= w′({v : v(θ) = 1}) = P (θ)

as required.

Hence, theorem 32 shows that the truth degree generated from a bounded supervalu-

ation belief pair corresponds to a probability measure on SL+ ∪ SL−. Furthermore, we

have the following corollary:



Corollary 33. Let w be a probability distribution on Vbs such that {~v : w(~v) > 0} =

{~v1 . . . , ~vm} where ~v1 � . . . � ~vm then the credibility measure defined by

td(θ) =
µ(θ) + µ(θ)

2

satisfies the following: ∀θ, ϕ ∈ SL+(SL−);

td(θ ∧ ϕ) = min(td(θ), td(ϕ)) and td(θ ∨ ϕ) = max(td(θ), td(ϕ))

Proof. Since ~v1 � . . . � ~vk then it follows that:

v1∗ E v2∗ E . . . E vk∗ E v∗k E v∗k−1 E . . . E v∗1

Define w′ on {v1∗, . . . , vk∗, v
∗
k, . . . , v

∗
1} as in the proof of theorem 32 then the result follows

immediately from theorem 25.

Example 34. Consider a language L with propositional variables P = {p1, p2, p3, p4, p5}.

We now define the Tarski valuations v(i) ∈ Vc for i = 1, . . . 6 as given in the following

table:

p1 p2 p3 p4 p5

v(1) 0 0 0 0 0

v(2) 1 1 0 0 0

v(3) 0 0 1 1 0

v(4) 0 0 0 0 1

v(5) 0 0 1 1 1

v(6) 1 1 1 1 1

Based on these classical valuations, we now define supervaluation pairs ~v1, . . . , ~v4 as char-

acterised by the following sets of admissible valuations:

Π1 = {v(1), v(2), v(3), v(4), v(5), v(6)}, Π2 = {v(1), v(3), v(4), v(5)},

Π3 = {v(1), v(4)}, Π4 = {v(4)}

In addition, we define a probability distribution on supervaluation pairs such that w(~v1) =

0.5, w(~v2) = 0.3, w(~v3) = 0.1 and w(~v4) = 0.1. Now notice that ~v1, . . . , ~v4 are bounded

supervaluation pairs which have the following bounding classical valuations:

v1∗ = v(1), v2∗ = v(1), v3∗ = v(1), v4∗ = v(4), v∗4 = v(4), v∗3 = v(4), v∗2 = v(5), v∗1 = v(6)

Hence, the conditions of theorem 32 are satisfied and we can define the following probability

distribution w′ on Vc:

w′(v(1)) =
w(~v1)

2
+
w(~v2)

2
+
w(~v3)

2
= 0.25 + 0.15 + 0.05 = 0.45

w′(v(4)) =
w(~v4)

2
+
w(~v4)

2
+
w(~v3)

2
= 0.05 + 0.05 + 0.05 = 0.15

w′(v(5)) =
w(~v2)

2
= 0.15, w′(v(6)) =

w(~v1)

2
= 0.25



In this case for ¬p2 ∨ ¬p3 ∈ SL−, we have that:

P (¬p2 ∨ ¬p3) = w′(v(1)) + w′(v(4)) + w′(v(5)) = 0.45 + 0.15 + 0.15 = 0.75

Also,

µ(¬p2 ∨ ¬p3) = w(~v2) + w(~v3) + w(~v4) = 0.5 and

µ(¬p2 ∨ ¬p3) = w(~v1) + w(~v2) + w(~v3) + w(~v4) = 1 therefore

td(¬p2 ∨ ¬p3) =
0.5 + 1

2
= 0.75

On the other hand for ¬p1 ∧ p5 6∈ SL+ ∪ SL−, we have that:

P (¬p1 ∧ p5) = w′(v(4)) + w′(v(5)) = 0.15 + 0.15 = 0.3

But,

µ(¬p1 ∧ p5) = w(v(4)) = 0.1 and µ(¬p1 ∧ p5) = w(~v1) + w(~v2) + w(~v3) + w(~v4) = 1

therefore td(¬p1 ∧ p5) =
0.1 + 1

2
= 0.55

In addition, notice that ~v1 � ~v2 � ~v3 � ~v4, and hence the conditions of corollary 33 are

satisfied so that, for example, we have the following:

µ(¬p2) = 0.5, µ(¬p2) = 1 ⇒ td(¬p2) = 0.75

µ(¬p3) = 0.2, µ(¬p3) = 1 ⇒ td(¬p3) = 0.6

Hence,

max(td(¬p2), td(¬p3)) = max(0.75, 0.6) = 0.75 = td(¬p2 ∨ ¬p3)

In general, supervaluation belief pairs in which w is non-zero only on a sequence of

increasingly sharp valuations, fall within the scope of possibility theory [9]. More specifi-

cally, in such cases the lower and upper beliefs are, respectively, necessity and possibility

measures on SL. This is clear if we adopt the mass function notation outlined above, since

by theorem 30 the mass will now only be non-zero on a nested sequence of sets of classical

valuations Πm ⊆ Πm−1 ⊆ . . . ⊆ Π1, where Πi is the set of admissible valuations for ~vi.

In this case truth degrees are credibility measures as first proposed by Dubois and Prade

[9] and later developed at some length by Liu and Liu [36]. The additional assumption

of boundedness required in theorem 32 and corollary 33 does not seem to be typical in

possibility theory.

7 Conclusions

In this paper we have identified clear links between probability theory in a three-value truth

setting and min-max fuzzy logic. The most complete bridge is formed when the underlying



truth model is Kleene’s three-valued logic. In this case fully compositional fuzzy truth

degrees as defined on a finite propositional language, can be completely characterised in

terms of probability distributions of Kleene valuation pairs. In a classical (Tarski) or a

supervaluationist context, the min-max calculus for truth degrees can be recaptured only

on the language fragments SL+ and SL−. Across all of these truth models the min-

max operators result when there is a natural semantic precision ordering on the truth

valuations, and in particular when the only uncertainty is about the relative vagueness or

sharpness of the interpretation of L. The latter, however, is a strong assumption and is

likely not to hold in many of the contexts in which an agent must allocate subjective belief

to sentences involving vague propositions. Indeed, we would go so far as to claim that if

truth degrees are interpreted probabilistically then truth-functionality will only arise as a

result of strong assumptions which are in turn only ever likely to be applicable in relatively

restricted contexts. In order to model more complex scenarios than those consistent with a

fully compositional calculus, there is then a case for the integrated study of vagueness and

uncertainty within a richer and less restrictive representational framework. This would be

a new direction distinct from the formal study of fuzzy logics as truth-functional systems

[19] and which would have a quite different motivation.

A number of authors have highlighted the somewhat confusing relationship between

fuzziness and vagueness. For example, Zadeh [57] is adamant that they are completely dis-

tinct phenomena. Dubois [13] emphasises the differences between gradualness and vague-

ness, where a gradual predicate induces a partial ordering on the underlying conceptual

domain, whilst vagueness is epitomised by explicit borderline cases. In contrast, we adopt

a broader more encompassing view of vagueness as a multifaceted phenomenon and where

vague predicates may exhibit any, or all, of the three main symptoms identified by Keefe

[22]. From this perspective our work has identified a clear bridge between fuzziness and

two aspects of vagueness; namely explicit borderlines and blurry (uncertain) boundaries.

In a nutshell, our proposed semantics identifies fuzziness with subjective probabilities of

vague sentences, so that truth degrees are determined by underlying probabilities of the

three truth values t, f and b as illustrated in figure 3. Furthermore, the valuation pair

framework has provided us with a common notation with which to explore probability in

both a Kleene and a supervaluationist setting; these being two widely proposed approaches

to truth-gaps in the literature on vagueness. As already mentioned above, in both theories

the relationship to min-max fuzzy logic is defined in terms of the semantic precision (or

sharpening) ordering. This ordering relates directly to the explicit borderline aspect of

vagueness, with one valuation being vaguer than another if it permits more borderline

cases.

In general, vagueness is frowned upon in science and engineering, where clarity and

semantic precision are seen as being a fundamental prerequisite to progress. A hypothesis

must be precisely formulated before it can be properly empirically tested. From this



perspective, if subjective probability is seen as being a normative theory of belief for

ideally rational agents, then there is no justification for considering its application to

vague propositions. On the other hand, given it ubiquitousness in natural language one

is stongly inclined to suspect that vagueness must have a positive role to play in complex

multi-agent communication systems. To quote Lipman [34], ”It seems rather far fetched

to conclude that we have simply tolerated a worldwide, several thousand year efficiency

loss”. Recently, Van Deemter [50] has proposed a number of communication tasks in which

vagueness can be useful. These include search, where typicality information embedded

in vague predicates can be exploited in order to reduce search times [51], and future

contingencies, referring to the use of vagueness to mitigate the risk of making promises or

forecasts. Indeed, [31] has proposed a decision model based on Kleene belief pairs which

directly exploits borderline cases so as to reduce assertion risks. In Lawry and Dubois [32]

it is proposed that vagueness has a role to play in allowing agents to reach a consensus

between them, whilst at the same time maintaining some level of internal consistency

within their own beliefs. Furthermore, [32] also proposed several consensus combination

operators for Kleene belief pairs in this context. Another positive role for vagueness, at

least in the guise of semantic uncertainty, is in language learning. In the introduction we

have already outlined a case for the explicit representation of semantic uncertainty given

the empircial nature of language learning. In this context, O’ Connor [38] shows that under

time limited conditions and for high dimensional state spaces, optimal learning methods

incorporate vagueness. Also, in agent based systems, [14] has shown how populations of

agents playing a simple language game can evolve a shared set of vague categories which are

then effective in communications. Overall then there is an emerging, although admittedly

still rather embryonic, case for the utility of vagueness in communications. From this

pragmatic viewpoint it can be perfectly rational for an agent to use vague predicates as a

descriptive and representational tool.
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