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Abstract

A general method to remove the numerical instability of partial differential equations is presented. Two equal terms
are added to and subtracted from the right-hand-side of the PDE : the first is a damping term and is treated implicitly,
the second is treated explicitly. A criterion for absolute stability is found and the scheme is shown to be convergent.
The method is applied with success to the mean curvature flow equation, the Kuramoto–Sivashinsky equation, and to
the Rayleigh–Taylor instability in a Hele-Shaw cell, including the effect of surface tension.
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1. Introduction

Many partial differential equations (PDEs) which arise in physics or engineering involve the computation of higher-
order spatial derivatives. These higher-order derivatives may have several origins, most commonly diffusion, where
the time derivative of the variable is determined by 2nd-order spatial derivatives on the right-hand-side (RHS) of
the equation. In the physics of interfaces, surface tension is often taken into account through Laplace’s law, which
introduces second or third-order spatial derivatives. If diffusion is driven by surface tension, derivatives can easily be
of fourth order, for example in surface diffusion [1].

If one advances the solution using an explicit integration scheme (RHS evaluated at the old time step), and the order
of the highest derivative is m, then for the method to be stable, the time step δt is required to scale like δxm, where δx
is the grid spacing:

δt = Cδxm. (1)

The constraint (1) on the time step is sometimes referred to as the numerical stiffness. It corresponds to the decay
time of the fastest modes present in the system, excited on the scale of the numerical grid. In most cases, however, the
physical interest lies in describing features on a scale much larger than δx. Thus, in particular if m = 2 or higher, (1)
imposes a time step much smaller than warranted by the physical time scale of interest, and renders explicit schemes
impractical.

A way of removing (1) as a constraint on the time step is to use an implicit scheme, for which the RHS is evaluated
at the yet-to-be-computed time. Of course, this assumes that the fast dynamics on the smallest scales is such that it
does not affect the large scales in the long run. Otherwise, taking large steps would be pointless. In general, taking an
implicit step involves the solution of a (nonlinear) set of equations to compute the solution at the new time step. In
the case of the linear diffusion equation with constant coefficients, this can be done very efficiently. If the transport
coefficients vary in space, or depend on the solution (quasilinear case), the method becomes more cumbersome, and
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usually requires a Newton–Raphson scheme to compute the solution at the next time step. A case which is particularly
demanding is one in which the RHS involves an integral over a nonlinear function of the solution, involving higher
derivatives. This situation is encountered frequently in free-surface problems involving surface tension [2]. In this
case, the Newton–Raphson scheme requires the inversion of a full matrix (as opposed to a band matrix in the case of
local equations), which is very costly numerically.

To cope with these challenges and to achieve stability, it has been recognized that it is sufficient to only treat the
highest order derivatives implicitly, the remainder can be treated explicitly [3]. For example, one splits up the RHS
into the sum of a lower-order nonlinear operator, and a linear operator containing the highest derivative. Then one can
first compute the nonlinear part explicitly, and then solve a linear equation to add the highest derivative. However,
such a split may be difficult or even impossible to find: the highest derivative may be contained in a nonlinear and/or
nonlocal expression.

In a seminal paper, Hou, Lowengrub, and Shelley [2] found an ingenious way to separate the stiff part from the
nonlocal, nonlinear operator accounting for surface tension in several model equations for interfacial flow. The stiff
part can be written as a linear and local operator, so that implicit treatment is feasible. The point of the present
paper is to demonstrate that while isolating the stiff part is perhaps the gold standard for assuring stability, it is by no
means necessary. Instead, any expression can be added to stabilize an explicit method, which need not be related to
the original physical equation. In order not to change the original problem, the same expression is then subtracted
(effectively adding zero). However, one (damping) part is treated implicitly, the other explicitly. Since the piece that
is added to the equation is zero in the limit of small time steps, we propose to call this procedure the “explicit-implicit
null method”, or EIN method for short.

Although this observation might seem surprising, the reason our scheme works is explained by the very nature of
implicit schemes. In an implicit scheme, a wide range of time scales below the physical scale is not resolved, while
preserving stability. As a result, a rough model of these rapidly decaying modes is entirely sufficient, without loss of
accuracy. This implies an extraordinary freedom in using higher-order derivatives to achieve stability, a fact that up to
now does not appear to have been appreciated, although the method has been implemented previously by a number of
authors on a case-by-case basis.

As far as we could tell, the first implementation of the method was proposed by Douglas and Dupont [4], to assure
stability for a nonlinear diffusion equation on a rectangle. In [5], we presented a rough sketch of the idea, and used
it to stabilize the viscous free-surface dynamics of two liquid drops during coalescence. Subsequently, similar ideas
have been implemented to stabilize the motion of a surface in the diffuse interface and level-set methods [6, 7, 8], and
for the solution of PDEs on surfaces [9].

We will see below that in order to achieve the same error than a fully implicit method, the operator used for stabi-
lization needs to be a (albeit very rough) approximation to the most negative eigenvalues of the original operator.
This relates to a strand of ideas concerned with the approximation of a complicated operator by simpler, more easily
invertible operators [10], for example using the Krylov method [11, 12].

In particular, we show that stability can always be achieved, by adding a sufficiently large stiff contribution, which is
treated implicitly. If this additional contribution has the same short-wavelength scaling as the stiff part of the original
contribution, stabilization can be achieved essentially without introducing any additional error. However, even if the
stabilizing part has a very different scaling, (for example a fourth-order operator being stabilized using a 2nd-order
operator), we show that the effectiveness of schemes can be much improved over explicit methods.

In this paper, we present the first general analysis of the method of adding and subtracting a stiff term to stabilize a
PDE. In particular, in Sections 2 and 3, we demonstrate criteria for the stability of the resulting method, and analyze
the error which is incurred. We illustrate these points with a number of explicit examples, with 2nd, 3rd, and 4th order
as the highest spatial derivative, but confining ourselves to one spatial dimension.

First, we consider axisymmetric surface diffusion (cf. Section 4), whose RHS contains a nonlinear operator which
is of 2nd order in the spatial derivatives. This equation is stabilized using a linear diffusion operator with constant
coefficients. In Section 5 we consider one of the nonlinear, non-local problems treated in [2]: the flow in a Hele-Shaw
cell with surface tension. We treat it using a negative definite third-order operator, and demonstrate that the resulting
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scheme is as effective as that proposed originally. Finally, in Section 6 we consider the Kuramoto–Sivashinsky equa-
tion, which is a well-known prototype of a stiff equation, since the highest derivative is of fourth order. To highlight
the flexibility of our method, we show that the fourth order operator can in fact be stabilized using ordinary diffusion,
albeit at the cost of a somewhat increased error.

2. The main idea

Let us illustrate our method with a nonlinear diffusion equation in one dimension:

ut = (D(u)ux)x = D′(u)u2
x + D(u)uxx, (2)

where the diffusion coefficient is some function of u. To treat (2) implicitly, one has to solve a nonlinear system of
equations for the solution at the new time step. However, realizing that instability arises from the short-wavelength
contributions, and representing u as Fourier modes w ≡ uk, effectively we have to deal with the ordinary differential
equation

dw
dt

= −D(u)k2w ≡ −aw. (3)

where a > 0.

2.1. Stability analysis of one Euler step

If one solves (3) using an explicit (forward) Euler step, then between tn and tn+1 = tn + δt one arrives at

wn+1 = wn − awnδt, (4)

where a > 0. This iteration is unstable (diverges to infinity) if |1− aδt| > 1, which means that δt must satisfy δt < 2/a.
Remembering that the largest wavenumber k scales like k ≈ δx−1, one arrives at the stability requirement

δt .
2δx2

D
,

which is the scaling (1) for the diffusion equation (m = 2) (a more precise analysis, based on the spatial discretization
of uxx, yields δt < δx2/2D as the stability constraint [13]).

To avoid the constraint on δt, in an implicit (backward) Euler step the RHS of (3) is evaluated at tn+1, leading to an
iteration which is unconditionally stable. Instead, we want to stabilize (4) by adding a new piece −bw to the RHS of
(3), and subtracting it again. If the first part is treated implicitly, and the second explicitly, (3) becomes:

wn+1 − wn

δt
= −awn − bwn+1 + bwn,

which is the iteration
wn+1 =

(
1 −

aδt
1 + bδt

)
wn ≡ ξ(δt)wn. (5)

Thus the condition for stability is |ξ(δt)| < 1 or

|1 + (b − a)δt| < |1 + bδt| . (6)

Let us assume for the moment the more general case where a = (ar + iai) ∈ C, with ar ≥ 0. Then writing b = λa, with
λ ∈ R, (6) is satisfied if :

(2λ − 1) |a|2 δt2 + 2arδt > 0, (7)

which is always true if

λ >
1
2
. (8)
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Therefore, if condition (8) is satisfied (which is b > a/2 for a real), the scheme (5) is unconditionally stable.

In analogy to this result, in [4] it was shown that the nonlinear diffusion equation (2) could be stabilized by adding
and subtracting a diffusion equation with constant coefficient D. The scheme was shown to be unconditionally stable
if

D(u) ≤
D
2
,

which corresponds exactly to the condition (8).

The error of an ordinary Euler step is E ≈ aδt2, so the cumulative error after integrating over a finite interval is
proportional to δt, making the scheme convergent. On the other hand, since wn+1 = wn + O(δt), the extra contribution
introduced by the stabilizing correction is proportional to bδt2. This means that as long as b is of the same order as a,
the error introduced is not larger than that incurred by the Euler step itself.

2.2. Richardson extrapolation

In order to achieve second-order accuracy in time, we use a scheme analyzed in detail in [14]. We compute two
different approximate solutions : the first one is w(1)

n+1 for one step δt, the second is w(2)
n+1 for two half steps of size δt/2.

Extrapolating towards δt = 0 [13], we find the following approximate solution :

wn+1 = 2w(2)
n+1 − w(1)

n+1 + O(δt3),

since the O(δt2) error terms cancel. The method is therefore of second order, in the sense that the accumulated error
scales like O(δt2). When used in conjunction with a backward Euler step, the stability properties of this method are
also very favorable [14].

The stability criterion (8) is slightly modified when using Richardson extrapolation. Using equation (5), the full
Richardson step reads :

wn+1 =

[
2ξ2

(
δt
2

)
− ξ(δt)

]
wn = ξRwn. (9)

For simplicity, assume that both a > 0 and b > 0 are real. Then |ξR| < 1 is equivalent to

b >
aδt − 4 +

√
(aδt − 2)2 + 2aδt
3δt

, (10)

which is satisfied for any δt if

b >
2a
3
, (11)

making the scheme unconditionally stable. Note that in the limit δt → ∞, the amplification factor becomes

ξR = 1 −
3a
b2

(
b −

2a
3

)
,

which remains damping as long as (11) is satisfied. This is an advantage over the popular Crank-Nicolson scheme,
for which the amplification factor approaches unity if too large a time step is taken, leading to undamped numerical
oscillations [15, 14].

To analyze the accuracy of the scheme, we compare the result of (9) to the exact solution, which is

wn+1 = wne−aδt.

Defining the error E as
wn+1 = wne−aδt + wnE, (12)

we find

E = ξR − e−aδt =
δt3

6

(
a3 − 3ba2 + 3ab2

)
+ O(δt4). (13)

Thus once more if b is of the same order as a, the error introduced by the extra stabilizing terms is not increased over
a conventional second order scheme.

To summarize, our method permits to render any explicit method unconditionally stable, and is second order accurate
in time.
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3. General method

In this section we explain the general method to be used for Partial Differential Equations (PDEs). The great advantage
of our method compared for instance to the one described in [2] is that the choice of the stabilizing terms requires
only a rough knowledge of the stiff terms in the PDE. We consider a partial differential equation of the form :

∂u
∂t

= f (u, t), (14)

where u is a function of space and time : u(x, t). The stiffness of such an equation comes from the high-order spatial
derivatives in f (u, t). Let us consider the following discrete approximation to equation (14), between time steps t and
t + δt :

un+1 − un

δt
= f (un, tn) − λD[un] + λD[un+1], (15)

where n denotes the time variable (tn = nδt) and D is a linear damping operator, with negative eigenvalues. We will
discuss other choices below, but a particular example is the diffusion operator

D[u] =
∂2u
∂x2 . (16)

In terms of the increments δu = un+1 − un, equation (15) reads :

δu
δt

= f (un, tn) + λD[δu]. (17)

This linear system of equations can be written in terms of a linear operator L = I − λδtD :

L · δu = f (un, tn) δt, (18)

and once it has been inverted, we obtain the solution u at time tn+1 :

un+1 = un +L−1 · f (un, tn) δt. (19)

The difficult part in this last step comes from the fact that solving (18) may be computationally expensive. However,
we will choose D, and therefore the linear operator L, such that this numerical procedure only requires O(N), or at
most O(N log N) operations, where N is the number of grid points.

As explained in section 2, in order to achieve second-order accuracy in time, we compute two approximate solutions :
the first one u(1)

n+1 for one step δt, the second one u(2)
n+1 for two half steps δt/2. By extrapolating towards δt = 0, we find

the following approximate solution :
un+1 = 2u(2)

n+1 − u(1)
n+1 + O(δt3),

where the O(δt2) error terms cancel. The method is therefore second order, in the sense that cumulated errors on a
number of time steps of the order of 1/δt are O(δt2).

3.1. Choice of damping operator

The crucial step of our method consists in choosing the right damping operator D. Since its only purpose is to damp
the high-order derivative on the RHS of the PDE, it does not need to be computed with great accuracy, but only needs
to have the same scaling in wavenumber than the stiff term in the PDE, as we will explain below.

We derive the scaling for the critical value of λ and for the error, both of which will be calculated more precisely for
each of the individual examples below. We look for solutions with a single Fourier mode of the form un

j = ξneikx,
where ξ(δt, k) is the amplification factor [13]. We assume that

D[eikx] = −|k|deikx, (20)
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and so d = 2 in the case of the diffusion operator. Inserting this into equation (17), we obtain after simplification :

ξ − 1
δt

=
f (ξneikx, tn)
ξneikx − λ|k|d(ξ − 1). (21)

Suppose now that the function f contains a stiff linear term, i.e. with several spatial derivatives :

f (ξneikx, tn) ∼ −Aξn|k|meikx,

where A is a positive constant. Then the amplification factor reads :

ξ(δt, k) ∼ 1 −
A|k|mδt

1 + λ|k|dδt
, (22)

and comparing to (5) we can identify:
a = A|k|m, b = λ|k|d. (23)

To investigate stability, we must consider the largest possible wave number, which is of order δx−1. This means for
both the Euler and the Richardson scheme, stability is guaranteed for

λ & Aδxd−m. (24)

Thus our first observation is that we can always stabilize an explicit method with our scheme, even if the stabilizing
operator is of lower order. We will demonstrate this explicitly when we discuss the Kuramoto–Sivashinsky equation
below. However, it is preferable to choose d = m (so that λ becomes independent of δx), since otherwise the error
increases over that of a fully implicit method. Namely, as we have seen in the previous section, the error introduced
by the stabilizing term is bδt or (bδt)2 for the Euler and Richardson schemes, respectively.

Now let ∆ be the size of the physical scale that needs to be resolved, which means we have to guarantee bδt . 1 for
k ≈ ∆−1. Thus using λ as estimated by (24), we find that the time step has to satisfy the constraint

δt .
δxm

A

(
∆

δx

)d

, (25)

to achieve reasonable accuracy on scale ∆. Now comparing to (1) there is an improvement given by the factor (∆/δx)d

on the right. If d = m, the scaling is the same as for an implicit method, for which the error is determined by the
physical scale ∆ alone.

To satisfy the condition d = m, various types of stabilizing operators D[u] need to be considered. In choosing D[u],
we also need to ensure that equation (18) can be inverted with the fewest number of numerical operations. The
following cases can be encountered :

• The simplest case is obtained when m = 2, in which case the diffusion operator (16) ensures d = m. This
operator, when discretized using centered finite differences, leads to a tridiagonal matrix and equation (18) can
be solved in O(N) operations.

• If m = 4, a fourth-order diffusion operator D[u] = −∂4u/∂x4 ensures d = m, and leads to a penta-diagonal
system that can be solved in O(N) operations.

• When m is odd, for instance m = 3, as it will be shown to be the case for Hele-Shaw flows, an mth-order spatial
derivative does not correspond to a damping operator, but to a traveling wave term (purely imaginary term in
Fourier space). In order to achieve the right scaling for |k| � 1, we use D[u] = H[∂3u/∂x3], where H is the
Hilbert transform. This expression has the correct scaling H[∂3u/∂x3] ∼ −k3, and can be inverted very easily
in Fourier space in O(N log N) operations.

In conclusion, any high-order spatial derivative in the RHS of the PDE can be stabilized using an ad hoc operator
D[u], using a number of numerical operations at most equal to O(N log N).

6



4. Mean curvature flow

4.1. Numerical scheme

Axisymmetric motion by mean curvature [16] is described by the equation :

ht =
hxx

1 + h2
x
−

1
h
, (26)

where h(x, t) is the local radius of a body of revolution. Geometrically, it describes an interface motion where the
normal velocity of the interface is proportional to the mean curvature. Physically, (26) describes the melting and
freezing of a 3He crystal, driven by surface tension [17]. Generic initial conditions lead to pinch-off in finite time
[18], and thus require high demands on the resolution and stability of the numerical method. In our example, we will
use Dirichlet boundary conditions with a periodic initial perturbation:

h(0, t) = h(L, t) = 1, h(x, 0) = 1 + 0.1 sin(2πx/L),

where L = 10. As seen in Fig. 1, this initial condition leads to pinch-off in finite time.

Owing to the second derivative on the RHS, (26) is numerically stiff. However, since there is a nonlinear term
multiplying hxx, an implicit scheme requires the solution of a nonlinear equation [19]. We will stabilize the stiff part
of the equation by adding and subtracting a term λhxx, where λ needs to be determined. The resulting equation is
discretized on a regular grid, using centered finite differences :

hn+1
j − hn

j

δt
= 4 ·

hn
j−1 − 2hn

j + hn
j+1

4δx2 + (hn
j+1 − hn

j−1)2 −
1
hn

j
− λ

hn
j−1 − 2hn

j + hn
j+1

δx2 + λ
hn+1

j−1 − 2hn+1
j + hn+1

j+1

δx2 . (27)

4.2. Von Neumann stability analysis

Using a “frozen coefficient” hypothesis, we look for perturbations to the mean profile h in the form of a single Fourier
mode:

hn
j = h( jδx, nδt) + ξneik jδx,

where ξ(δt, k) is the amplification factor [13]. Inserting this expression into equation (27) and linearizing in the
perturbation, we obtain after some simplification :

ξ − 1
δt

=
2

δx2
(
1 + h

2
x

) (cos(kδx) − 1) +
1

h
2 +

2λ
δx2 (ξ − 1) (cos(kδx) − 1) .

Using that δx � h, we can identify coefficients a and b from equation (5) :

a =
2

δx2
(
1 + h

2
x

) (1 − cos(kδx)) and b =
2λ
δx2 (1 − cos(kδx)) . (28)

We have shown that the Richardson extrapolation scheme is stable if b > 2a/3, which implies :

λ >
2

3
(
1 + h

2
x

) . (29)

For the simulation to be reported below, we take λ = 0.7, which satisfies (29) uniformly, and makes our numerical
scheme unconditionally stable. On the other hand, we confirmed that instability occurs if we choose λ ≤ 0.5, so that
(29) is violated over some parts of the solution.

The linear tridiagonal system (27) is solved for hn+1 and Richardson extrapolation is used to obtain second-order
accuracy in time. Figure 1 shows successive profiles of the interface, until a minimum height of hmin = 10−3 is
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Figure 1: Successive profiles of the interface described by (26), with λ = 0.7 > 2/3. The criterion (29) for unconditional stability is verified
uniformly. The first profile corresponds to the initial condition (t = 0); the surface is plotted every hundred time steps, the time step being adaptive.
The initial time step is δt = 3.9 × 10−4, and the final profile is at time t = 0.42, where the minimum height is 2.5 × 10−3.

reached. We have used a uniform grid with N = 2048 grid points. Since the characteristic time scale of the solution
goes to zero as pinch-off is approached, we use a simple adaptive scheme for the time step : a relative error is computed
using the two estimates of the solution for δt and δt/2; then if this error is larger than 10−5, the time step is divided by
2.

Close to pinch-off, (26) exhibits type-II self-similarity [16], characterized by the presence of logarithmic corrections
to power law scaling. However, the minimum radius hmin scales with a simple power law exponent of 1/2. To test
this, and to confirm stability of our scheme down to very small scales, we followed the solution until spatial resolution
was lost. In Fig. 2, we show a doubly logarithmic plot of hmin as a function of t0 − t, where t0 is the singularity time.
We determined t0 by extrapolating hmin(t) towards zero. The numerical solution is seen to exhibit the expected scaling
down to the smallest resolvable scales, as illustrated in the inset.

To confirm that the method is indeed second-order accurate in time, we calculated the error as the ∞−norm of the
difference between a numerical solution at a fixed time t = 0.4, obtained with time step δt = 0.4 × 2−m, m = 5 . . . 15,
and the ”exact” solution obtained with the smallest time step δtmin = 0.4 × 2−16, divided by the maximum value of the
solution :

Error =
Max j

∣∣∣ f j(δtmin) − f j(δt)
∣∣∣

Max j

∣∣∣ f j(δtmin)
∣∣∣ . (30)

As seen in Fig. 3, the error scales indeed like δt2, the same as expected for a fully implicit method, using for example
the Crank-Nicolson scheme.
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Figure 2: Minimum radius of the interface as a function of t0 − t, where t0 is the pinch-off time. The full line corresponds to (t0 − t)1/2. In the inset,
we show a closeup of near the pinch point, plotting a profile every 10 time steps (but with adaptive time step).

5. Hele-Shaw flow with surface tension

In the preceding example, a fully implicit treatment of the right hand side of (26) would at least have been feasible [19],
although our method simplifies the algorithm. By contrast, examples presented in [2] are much more challenging, in
that the RHS is both nonlinear and non-local. We focus on the particular example of Hele-Shaw interface flow, whose
spatial derivatives scale like |k|3 in Fourier space, and thus lead to a very stiff system. While it is perfectly possible
to stabilize the scheme using ordinary diffusion, according to our analysis of subsection 3.1, this would entail an
increased time truncation error. Therefore, we use the Hilbert transform to construct a stabilizing term which is of
third order in the spatial derivative, yet only takes O(N log N) operations to calculate.

5.1. Equations

We consider an interface in a vertical Hele-Shaw cell, separating two viscous fluids with the same dynamic viscosity,
with the heavier fluid on top [2]. As heavy fluid falls, small perturbations on the interface grow exponentially: this is
known as the Rayleigh-Taylor instability [20]. However, surface tension assures regularity on small scales, as seen in
Fig. 6 below. For simplicity, we assume the flow to be periodic in the horizontal direction.

The interface is discretized using marker points labeled with α, which are advected according to :

∂X(α)
∂t

= Un + T s. (31)

Here X(α) = (x, y) is the position vector, n = (−yα/sα, xα/sα) and s = (xα/sα, yα/sα) are the normal and tangential
unit vectors, respectively. Hence U = (u, v) · n and T = (u, v) · s are the normal and tangential velocities, respectively.
Since the evolution of a surface is determined only by its normal velocity, we can choose the tangential velocity of
the marker points freely, in order to keep a reasonable distribution of points and avoid point clustering. The precise
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Figure 3: The maximum error (30) of the numerical solution of (26) at t = 0.4, as a function of δt. The solid line corresponds to a quadratic
dependence, which shows that the error using Richardson extrapolation scales like δt2.

choice of the tangential velocity will be described later. For an unbounded interface, the complex velocity of marker
points labeled with α is given by the Birkhoff–Rott integral [21]:

w(α) = u(α) − iv(α) =
1

2πi
PV

∫ +∞

−∞

γ(α′, t)
z(α, t) − z(α′, t)

dα′, (32)

where z(α, t) = x + iy. Here γ is the vortex sheet strength at the interface. If the surface is periodic with period 1
(z(α + 2π) = z(α) + 1), (32) can be written as an integral over the periodic domain α ∈ [0, 2π] of the label:

u(α) − iv(α) =
1
2i

PV
∫ 2π

0
γ(α′, t) cot

[
π(z(α, t) − z(α′, t))

]
dα′, (33)

where we have used the continued fraction representation of the cotangent [22] :

π cot(πz) =
1
z

+ 2z
∞∑

k=1

1
z2 − k2 .

For two fluids of equal viscosity, the vortex sheet strength γ is given by [21] :

γ = S κα − Ryα, (34)

where κ is the mean curvature of the interface :

κ(α) =
xαyαα − yαxαα

s3
α

, with sα = (x2
α + y2

α)1/2. (35)

Here S is the non-dimensional surface tension coefficient and R is the non-dimensional gravity force. As an initial
condition, we choose the same as the one used in [2], which corresponds to a slight modulation of a flat interface:

x(α, 0) = α/2π, y(α, 0) = 0.01(cos(α) − sin(3α)). (36)
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To compute the complex Lagrangian velocity of the interface (33), we use the spectrally accurate alternate point
discretization [23] :

u j − iv j ' −
2πi
N

N−1∑
l=0

j+l odd

γl cot
[
π(z j − zl)

]
. (37)

κα and yα are computed at each time step using second-order centered finite differences, and α is defined by α( j) =

2π j/N, where j ∈ [0,N] and N is the number of points describing the periodic surface. Note that the numerical effort
of evaluating (37) requires O(N2) operations, and thus will be the limiting factor of our algorithm. For the tangential
velocity T , we use the same expression as [2], which is designed to avoid point clustering. For completeness, we
describe the procedure in the Appendix.

5.2. Third-order stabilizing operator

It follows from (33) and (34), that the Hele-Shaw dynamics contains a stiff part which scales like |k|3 in Fourier
space [2]. As a result, we need to define a third-order operator to stabilize the equations. When the interface is de-
scribed using marker points labeled with α, the most natural choice of damping operating on the Cartesian coordinates
(x(α), y(α)) is :

D
[
(x(α), y(α))

]
= (H (xααα),H (yααα)) . (38)

Here H is the Hilbert transform :

H
[
f
]
(α) =

1
π

∫ +∞

−∞

f (α′)
α − α′

dα′,

which satisfies :
H

[
eikx

]
= −i sign(k) eikx, H [1] = 0. (39)

Note that
RD

[
(x(α), y(α))

]
= DR

[
(x(α), y(α))

]
,

where R is an arbitrary rotation matrix. Thus the stabilizing terms share the same invariance under rotation as the
original problem (31).

Using the first property (39), one notes that the scaling of the operators for a single mode eikα (in x or y) is :

D[eikα] = − |k|3 eikα. (40)

Using the representation (40) in Fourier space, we can compute the stabilizing operators (38) in O(N log N) operations
with the aid of the Fast Fourier Transform [24], which leads to the following numerical algorithm.

First, the set of horizontal coordinates of the marker points has to be modified, such that x′j is periodic:

x′j = x′(α( j)) = x(α( j)) − j/N.

Now we are able to compute the discrete Fourier transform of x′j:

x̂′k =

N−1∑
j=0

x′je
−2iπ jk/N , (41)

where k = 0, . . . ,N − 1. Modes with k > N/2 correspond to negative wavenumbers of modulus N − k. The transforms
of y, as well as the velocity components u and v are defined analogously. Each of these transforms can be performed
using the Fast Fourier Transform, the velocity components at the old time step n are computed from (37).

Now the discrete version of (31) becomes, including the stabilizing terms :

x̂′n+1
k − x̂′nk
δt

= ûn
k − λk3 x̂′n+1

k + λk3 x̂′nk (42)

ŷn+1
k − ŷn

k

δt
= v̂n

k − λk3ŷn+1
k + λk3ŷn

k , (43)
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where x̂′k and ŷk are complex numbers, and k = 0, . . . ,N/2. From equations (42) and (43), x̂′n+1
k and ŷn+1

k are found
according to :

x̂′n+1
k = x̂′nk +

ûn
k δt

1 + λk3δt
(44)

ŷn+1
k = ŷn

k +
v̂n

k δt

1 + λk3δt
. (45)

For k > N/2, Fourier coefficients are found from x̂′n+1
k =

(
x̂′n+1

N−k

)∗
and ŷn+1

k =
(
ŷn+1

N−k

)∗
. Finally, the inverse Fourier

Transform of x̂′n+1
k and ŷn+1

k yields the components of x and y at the new time step:

xn+1
j =

1
N

N−1∑
k=0

x̂′n+1
k e2iπ jk/N +

j
N

(46)

yn+1
j =

1
N

N−1∑
k=0

ŷn+1
k e2iπ jk/N . (47)

The cost of this procedure represents a small effort compared to the evaluation of the velocities (37), which requires
O(N2) operations.

5.3. von Neumann stability analysis

We are considering the amplification of small short-wavelength perturbations on the interface. In view of the rotational
invariance of the system of equations, we can suppose an almost horizontal interface 0 ≤ x ≤ 1:

z j =
j

N
+ iy j,

where the y j are small and represent small perturbations. Then the linearization of (34) and (35) reads (keeping only
the highest derivative):

γn
j = S

κn
j+1 − κ

n
j−1

2δα
, κn

j = (2π)2
yn

j+1 − 2yn
j + yn

j−1

δα2 ,

and the explicit part of the equation is, using (37):

yn+1
j − yn

j

δt
=

2π
N

N−1∑
`=0

j+` odd

γn
` cot

[
π

N
( j − `)

]
. (48)

As before, we make the ansatz yn
j = ξneik jδα, which yields

γn
j = 2iξnS

(2π)2

δα3

(
cos

2πk
N
− 1

)
sin

2πk
N

eik jδα.

Finally, using the discrete form of the Hilbert transform, we obtain [25]:

ξ − 1
δt

= 2iS
(2π)3

δα3

(
cos

2πk
N
− 1

)
sin

2πk
N

Hk, (49)

where

Hk =


−i/2 1 ≤ k ≤ N/2 − 1
0 k = 0,N/2
i/2 N/2 + 1 ≤ k ≤ N − 1 .
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Thus for wavenumbers 1 ≤ k ≤ N/2 − 1, we can identify the coefficient a in equation (5) as

a = S N3
(
cos

2πk
N
− 1

)
sin

2πk
N
. (50)

On the other hand, ŷn
k = Nξn, so according to (42) and (43) we find

b = λk3. (51)

The Richardson scheme will be stable if b > 2a/3, which means that our scheme will be unconditionally stable if for
all wave numbers 1 ≤ k ≤ N/2 − 1 the condition

λ >
2S
3

N3

k3

(
cos

2πk
N
− 1

)
sin

2πk
N

(52)

is satisfied. The maximum of the right hand side of (52) is (2π)3/2, which is in fact achieved in the limit of small k, as
verified numerically below. Thus the stability criterion becomes

λ >
S (2π)3

3
≈ 82.7S . (53)

So far our calculation was based on an interface of length 1, while the markers run from 0 to 2π; this is the origin
of the factor (2π)3 = s−3

α in (53). As the interface is stretched during the computation, sα increases and the stability
constraint becomes less stringent:

λ >
S

3s3
α

. (54)

To achieve an optimal result, one could choose λ as a function of space and time, depending on the local value of sα.
For simplicity, in the computations reported below, we choose λ to be time dependent only, based on the minimum
value of sα over space, which is estimated as

sα ≈
δsminN

2π
,

where δsmin is the minimum spatial distance between grid points.

5.4. Numerical results

The spatial convergence of our method has been tested by comparing to a ”true” solution, computed using a fine grid
with N = 213. Then, the relative error to this solution is computed for the vertical velocity and the vortex sheet strength
at t = 0, for smaller values of N. A relative error of the whole code is also computed for the height of the interface at
t = 0.01. Figure 4 presents these results, plotted against the initial δx, together with a power fit, that proves the spatial
convergence to scale like δx2.

To probe the damping of any numerical instability by the scheme (44),(45), we recorded the spectra of a solution
close to a horizontal interface, with a very small perturbation added to it. The spectra are shown every 30 time steps,
starting from the initial condition. If λ is chosen slightly larger than the boundary (53), the spectrum remains flat and
free of unphysical growth for large wave numbers, as seen on the right of Fig. 5. If on the other hand λ is chosen
somewhat smaller, numerical instability first occurs toward the small wavenumber end of the spectrum, as seen on the
left of Fig. 5. This is in agreement with (52), which shows that the stability condition is first violated for small k.

Although this might seem unusual at first, the observed growth for small k is simply a result of our choice of damping,
which slightly emphasizes large wavenumbers relative to smaller ones. Had we chosen to implement (38) using finite
differencing for xααα and yααα, and only performing the Hilbert transform in Fourier space, the critical value of λ
would have been independent of k.

In Fig. 6, we compare our results to the long time run of Hele-Shaw dynamics, presented as a bench mark for the
methods developed in [2]. Our computations are shown on left at the times indicated, those of [2] are shown on
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Figure 4: Spatial truncation errors, as a function of the initial uniform δx. The “true” solution is obtained with the finest grid, with 213 points.
The red circles correspond to the relative error on the vertical velocity at t = 0, computed using equation (33). The green squares correspond to
the relative error on the vortex sheet strength γ at t = 0, computed using equation (34). The blue triangles correspond to the relative error on the
maximum value of y at t = 0.01. The solid line shows that all these relative errors scale like δx2.
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Figure 5: Evolution of the amplitude spectrum of the vertical displacement yn
j for two different values of λ : λ = 70 S on the left, λ = 85 S on the

right. The initial condition for both these computations is the same as (36), except that the initial amplitude is 10−6. The left computation becomes
unstable for t & 3 × 10−3, whereas the right one remains stable. In both cases, 1024 points have been used and the time step is δt = 3.125 × 10−5.
Spectra are shown every 30 time steps.

the right at identical times. We have chosen the same physical parameters, as well as the same spatial resolution

14



(N = 2048), and time step δt = 3.125 × 10−5. Periodic boundary conditions apply in the x-direction. No filtering
was applied to our data, and no sign of instability could be observed throughout the highly nonlinear evolution of the
interface. As a consequence of the interplay between gravitational instability and surface tension, long wavelength
perturbations are amplified first. Subsequently, the interface deforms into a highly contorted shape consisting of long
necks bounded by rounded fluid blobs. In several places, and as highlighted in the last panel, fluid necks come close
to pinch-off, and small scale structure is generated.

The results of the two computations are indistinguishable, except for the last panel, in which a closeup is shown. To
investigate the source of the remaining discrepancy, we have repeated our computation at twice and four times the
original spatial resolution, the results of which are shown in the left panel of Fig. 7. The right panel shows the original
computation by [2], with N = 2048. It is seen that to achieve convergence on the scale of the closeup, about N = 4096
grid points are needed, which yields a result close to that for N = 8192. Taking the highest resolution result as a
reference, it is seen that our numerical scheme performs at least as well as the original scheme of [2].
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Figure 6: The Rayleigh-Taylor instability of a Hele-Shaw interface with initial conditions (36), evolving according to (31), (33),(34), with parame-
ters S = 0.1, R = −50. In our computation ((a), left six panels), we have used N = 2048 points, and δt = 3.125 × 10−5. The constant λ was chosen
according to λ = 0.35 S (2π/Nδsmin)3, which satisfies the stability constraint (54). For comparison, we show the results of the original computation
[2] ((b), right six panels), obtained for the same physical parameters, and using the same number of grid points and time step. Differences between
the two calculations are visible in the closeup of the last panel only.

6. Application to Kuramoto-Sivashinsky equation

The final test of our method treats the Kuramoto–Sivashinsky equation [26], which contains fourth-order derivatives:

∂u
∂t

= −u
∂u
∂x
−
∂2u
∂x2 −

∂4u
∂x4 , (55)

where all coefficients have been normalized to unity. The second-order term acts as an energy source and has a
destabilizing effect, the nonlinear term transfers energy from low to high wavenumbers, while the fourth-order term
removes the energy on small scales. The Kuramoto–Sivashinsky equation is known to exhibit spatio-temporal chaos,
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Figure 7: Comparison between our result (a) and the result presented in [2] (b), for the bottom right panel in Fig. 6. The solid curves correspond to
N = 2048 grid points, the dashed curve to N = 4096 and the dotted curve to N = 8192.

so the main interest lies in predicting the statistical properties of solutions. An accurate method for solving (55) is
described in [27], where it is solved on the periodic domain x ∈ [0, 32π], with the initial condition :

u(x, t = 0) = cos
( x
16

) (
1 + sin

( x
16

))
. (56)

We want to use (55) to illustrate the flexibility of our method, using a lower order term to stabilize the algorithm.
Namely, we use λuxx, with λ chosen in order to counteract the effect of −uxxxx. We show that while this is certainly
not the method of choice to solve this equation, it is sufficiently accurate to represent the statistics of the solution.

6.1. Numerical scheme

Equation (55) is discretized on a regular grid, using centered finite differences :

un+1
j − un

j

δt
= −un

j

un
j+1 − un

j−1

2δx
−

un
j−1 − 2un

j + un
j+1

δx2 −
un

j−2 − 4un
j−1 + 6un

j − 4un
j+1 + un

j+2

δx4

−λ
un

j−1 − 2un
j + un

j+1

δx2 + λ
un+1

j−1 − 2un+1
j + un+1

j+1

δx2 , (57)

where λ has to be chosen such that the method is stable.

6.2. Von Neumann stability analysis and numerical results

In order to find the right value of λ for the scheme to be stable, we only need to consider the fourth-order derivative
in the equation, which is the stiff term to be stabilized. As before, inserting un

j = ξneik jδx into (57), and retaining only
−uxxxx from the Kuramoto–Sivashinsky equation, we obtain after simplification :

ξ − 1
δt

= −
2
δx4 (cos(2kδx) − 4 cos(kδx) + 3) +

2λ
δx2 (ξ − 1) (cos(kδx) − 1) . (58)
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Again, we can identify coefficients a and b from equation (5) and obtain :

a =
2
δx4 (cos(2kδx) − 4 cos(kδx) + 3) and b =

2λ
δx2 (1 − cos(kδx)) , (59)

so that unconditional stability is guaranteed if

λ >
2

3δx2

cos(2kδx) − 4 cos(kδx) + 3
1 − cos(kδx)

.

The maximum value of the right hand side occurs for the largest wave number kmax = π/δx, and the stability constraint
becomes

λ >
8

3δx2 . (60)

We have chosen λ = 3/δx2 for our computations, so stability is assured regardless of the time step. However, according
to the analysis of subsection 3.1, the fact that we are using a lower order operator for stabilization leads to a larger time
truncation error than a fully implicit second order method would have. If we use (25) for an estimate of the required
time step, we obtain

δt '
3δx4

8

(
∆

δx

)2

. (61)

(a) (b)

Figure 8: Solution of (55) with initial conditions (56). The horizontal axis represents the spatial variable, and the vertical axis time. On the left we
show our calculation with N = 512 grid points and δt = 0.014, with λ = 3/δx2. For comparison, we show the computation of [27] on the right,
which uses 128 grid points and a time step δt = 1/4.

In Fig. 8 we present a comparison of our computation (left) with the results of the high-resolution code given in [27]
(right) as a reference. This code is of fourth order in both space and time, and we have confirmed that for N = 128
and δt = 1/4, the solution is represented accurately over the entire time interval shown in the figure. Since our code
is only of second order in space, we have chosen N = 512, which gives a spatial resolution of δx ' 0.196. Estimating
the smallest relevant physical scale as ∆ ' 1 ' 5δx, (61) yields δt = 1.4 × 10−2 as the time step. Note that this is 75
times larger than the minimum explicit time step δtE = δx4/8 required to stabilize the fourth-order operator.

We have used δt = 1.4 × 10−2 to produce Fig. 8 (left). Although the two solutions eventually evolve differently, it
appears that their essential features are quite similar. It is important to reiterate that our purpose is not to compete with
the fourth-order scheme of [27], but rather to demonstrate that we can stabilize a fourth-order PDE with a second-order
operator, without destroying the statistical properties of the solution.
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7. Conclusions

In this paper, we take a new look at the problem of stiffness, which leads to numerical instability in many equations of
interest in physics. It is well established that a PDE can be split into several parts, some of which are treated explicitly,
while only the stiff part is treated implicitly [3]. However, the realization of such a split may require great ingenuity
[2], and has to be performed on a case-by-case basis. Moreover, the resulting implicit calculation may still require
elaborate techniques.

We demonstrate a way around this problem by showing that any explicit algorithm can be stabilized using expressions
foreign to the original equation. This implies a huge freedom in choosing a term which is both conceptually simple
and inexpensive to invert numerically. In particular, the stabilizing does not need to represent a differential operator,
nor does it need to have a physical meaning. Since the stiffness comes from short-wavelength modes on the scale of
the numerical grid, we only require the stabilizing part to approximate the true operator in the short wavelength limit.

We note that although in this paper we were concerned mostly with uniform grids, this is by no means necessary, as
stability criteria such as (29) or (54) are local. If the grid spacing varies, this can be accounted for by allowing λ to
vary in space as well as in time. A possibility we have not explored yet is to choose λ adaptively. At the moment, the
right choice of λ requires some analysis of the high wavenumber behavior of the equation. An appropriate algorithm
might be able to adjust to the optimal value of λ automatically, which in general will be spatially non-uniform. Finally,
the feasibility of our scheme in two space dimensions has already been demonstrated [4].

Appendix A. Choice of tangential velocity

The tangential velocity of the interface is chosen such that the ratio of the distance between two successive points to
the total length of the interface is conserved in time :

sα(α, t) = R(α)L(t) = R(α)
∫ 2π

0
sα′dα′, (A.1)

where α is a marker label, s(α, t) is the arclength, L(t) is the total length of the interface and R(α) is such that :∫ 2π

0
R(α)dα = 1.

We choose the tangential velocity such that R(α) does not change in time. Taking the time derivative of

sα =

√
x2
α + y2

α

and using the advection equation (31), one finds that

sαt = Tα − θαU, (A.2)

where θ is the angle between the local tangent and the x axis.

Integrating equation (A.2) over α and using the time-derivative of equation (A.1) together with the fact that
∫ 2π

0
Tα′dα′ = 0,

one finally obtains :

T (α, t) = T (0, t) +

∫ α

0
θα′Udα′ −

∫ α

0
R(α′)dα′

∫ 2π

0
θα′Udα′. (A.3)
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