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In this paper, the problem of estimating the shear force affecting the tip of the
cantilever in a Transverse Dynamic Force Microscope (TDFM) using a real-time
implementable sliding mode observer is addressed. The behaviour of a vertically
oriented oscillated cantilever, in close proximity to a specimen surface, facilitates
the imaging of the specimen at nano-metre scale. Distance changes between the
cantilever tip and the specimen can be inferred from the oscillation amplitudes, but
also from the shear force acting at the tip. Thus, the problem of accurately estimating
the shear force is of significance when specimen images and mechanical properties
need to be obtained at submolecular precision. A low order dynamic model of the
cantilever is derived using the method of lines, for the purpose of estimating the shear
force. Based on this model, an estimator using sliding mode techniques is presented
to reconstruct the unknown shear force, from only tip position measurements and
knowledge of the excitation signal applied to the top of the cantilever. Comparisons
to methods assuming a quasi-static harmonic balance are made. C 2015 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons
Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4931595]

Atomic Force Microscopy (AFM) has become a widespread and important technique for the
study of nano-scale specimens since its inception in 1986 by Binnig et al.1 Broadly speaking,
an AFM can provide high resolution images in different settings including ambient, aqueous and
vacuum environments. This makes it especially suitable for the investigation of biological speci-
mens under physiological conditions. A key component in most AFMs is a micro-cantilever. The
interaction between the tip of the cantilever and the sample creates bending/shear moments on the
cantilever, which can be indirectly measured via a laser based sensor system. This is then used
to create a high resolution topographical image via a raster scan over the specimen surface. In
standard AFMs, the cantilever is mounted horizontally and the devices are operated in a contact1

or intermittent-contact mode.2,3 In contrast, the Transverse Dynamic Force Microscope (TDFM) at
Bristol addresses the problem of non-contact imaging of a sample. This is important for certain
types of biological specimens. Under ambient room conditions, any sample will be covered by an
ordered, thin water layer; hence, recorded changes in the cantilever resonant dynamics measure the
short-range lateral forces between an oscillating vertically oriented cantilever (VOC) and a surface.
It has been demonstrated that the visco-elastic response of the ordered water layer between the tip
and the surface results in a contrast mechanism4–7 for cantilever-specimen distance detection. The
“snap-to-contact” behaviour is experienced by conventional AFMs. This is due to the gradient of the
surface attractive force being larger than the spring constant of the cantilever.8 In the TDFM, this is
prevented by the vertical orientation of the cantilever.

aCorresponding Author: G.Herrmann@bris.ac.uk
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Because of the pivotal role of the micro-cantilever, it is important to understand its dynamic
behaviour and to have knowledge of its physical parameters and characteristics. Unsurprisingly, the
problem of estimating the cantilever parameters in AFM devices has been investigated for many
years in the literature. A real-time methodology to determine the probe loss areas in a dynamic
atomic force microscopy based image was established by De et al.9 and an observer-based approach
for estimating some unknown force affecting the dynamics of a cantilever in Electric Force Micros-
copy devices was proposed by Besancon et al.10 More recently, the tip-sample interaction forces
based on a two degree of freedom mathematical model of a tapping mode AFM was investigated
by Xu et al. when the cantilever is immersed in liquid.11 However, all these results pertain to
horizontally mounted cantilever arrangements.

This paper addresses the problem of estimating the tip-sample interaction forces with a real-
time implementable sliding mode observer12–15 for the TDFM, which operates in a non-contact
scanning regime with a vertically oriented cantilever. Sliding mode observers have the advantage of
robustly detecting unknown signals with finite time convergence guarantees.13 Comparisons with a
quasi-static method (as often employed in beam analysis) are made. This approach is realized under
additional assumptions which are not required for the sliding mode observer.

A schematic of the TDFM setup is shown in Figure 1. In the TDFM, the scattered evanescent
field from the cantilever tip is gathered by a lens (B) with large numerical aperture (NA) and
transmitted to the objective lens. The objective lens then focuses the light onto the photo-diode. The
amplitude variations (both in x and y directions) and the height (z) of the cantilever tip relative
to the cover slip can be measured via the signals coming from the four sectors of the photo-diode.
(In reality the actual TDFM system is more complex and detailed than the schematic presented in
Figure 1, which only shows the main components.16) The available data for the estimation (and con-
trol) problems are the excitation signal at the top of the cantilever, the distance (z) of the cantilever
from the cover slip (the summed light intensity of all photo diode sectors) and the horizontal posi-
tion of the cantilever tip (obtained from suitably scaled light-intensity signals from the photo-diode
sectors).

Since the cantilever specimen distance cannot be directly measured, other factors should be
taken into account to construct the specimen topography. Hence, understanding the behaviour of the
shear forces helps to improve the mechanism for detecting the probe/specimen distance.

FIG. 1. Simplified schematic of the TDFM together with a scattered evanescent wave (SEW) system (adopted from Harniman
et al.,16 C [2015] IEEE. Reprinted, with permission, from T. Nguyen, S. G. Khan, C. Edwards, G. Herrmann, L. Picco,
R. Harniman, S. C. Burgess, M. Antognozzi, and M. Miles “Estimation of the shear force in transverse dynamic force
microscopy using a sliding mode observer”, in American Control Conference, 2013 (2013) pp. 5514 – 5519.).
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The dynamics of the cantilever in air, with the shear force interaction due to a thin water layer at
the tip, can be presented in the form of the partial differential equation (PDE)18,19

∂4EI(Y + αẎ )
∂ζ4 + ρSŸ = 0 (1)

with boundary conditions

Y (ζ = 0) = u(t), (2)
∂Y
∂ζ

(ζ = 0) = 0, (3)

∂2Y
∂ζ2 (ζ = L) = 0, (4)

EI
∂3Y
∂ζ3 (ζ = L) = − f (t), (5)

In the above, E is Young’s modulus, α is the internal damping constant of the cantilever, I is the
secondary moment of area, S is the cross-sectional area, ρ is the density of the probe, L is the
length of the cantilever, ζ denotes position along the probe axis, Y is the transversal displacement
at any point along the probe during vibration, Ẏ and Ÿ are the first and second derivatives of Y
with respect to time t, u(t) is the external excitation signal applied at the top of the cantilever, and
finally f (t) is the tip-sample interaction force applied at the tip of the cantilever. The aim of this
paper is to estimate the unknown shear force signal f (t), which will allow better interpretation and
understanding of the scan result.

The infinite dimensional PDE in (1) is not convenient for real-time implementation and for the
estimation methods to be applied.12–15 Given the measured tip position Y (ζ = L), the shear force
f (t) and the excitation signal u(t) , it is necessary to approximate the dynamic relationship between
those three variables via a finite dimensional ordinary differential equation (ODE). This is achieved
by the method of lines.20 The idea is to divide the cantilever probe into n − 1 equal sections and to
consider n nodes distributed along the probe. Denote Yj as the displacement at node j and δζ as the
distance between two consecutive nodes. Using a finite difference formula the boundary condition
(3) for the approximate model becomes

∂Y
∂ζ

(ζ = 0) ≈ Y2 − Y1

δζ
= 0 ⇒ Y2 = Y1. (6)

Thus, for the boundary condition (4), the relation is obtained

Yn − 2Yn−1 + Yn−2 = 0. (7)

The right hand side of (5) can be approximated as

EI
∂3Y
∂ζ3 (ζ = L) ≈ EIn

Yn − 3Yn−1 + 3Yn−2 − Yn−3

δζ3 . (8)

Equations (2), (6), (7) and (8) imply that the values of Y1, Y2, Yn, and Yn−1 are ‘known’, i.e. depend on
the dynamics of the remaining nodes. Hence, understanding the dynamics of the remaining ‘middle’
n − 4 nodes is key. From (1), the fourth partial derivative of Y with respect to the spatial variable ζ
can be approximated using finite differences as follows

∂4Yj

∂ζ4 ≈
Yj+2 − 4Yj+1 + 6Yj − 4Yj−1 + Yj−2

δζ4 (9)

for j = 3, . . . ,n − 2. Using the boundary conditions (6), (7) and (8), and the approximate model (9),
the dynamics of nodes Yj for j = 3, . . . ,n − 2 are obtained. A linear time invariant system based
on the dynamics of Yj for j = 3, . . . ,n − 2 is used. The relations between Yj, Ẏj, f , and u allow
the establishment of an ODE of order 2(n − 4). Using a matrix-vector representation, this ODE is
written as a state-space system21 with a dynamic state variable vector xp(t) of dimension 2(n − 4),
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in the form

ẋp(t) = Apxp(t) + Bpu(t) + Dp f (t)
y(t) = Cpxp(t) (10)

where the matrices Ap, Bp, Dp, and Cp are of appropriate size. Crucially, (10) is a good approxima-
tion of the PDE providing δζ is small enough. In (10) the output y(t) which represents the cantilever
tip position is taken as Yn−2 since it is assumed that Yn ≈ Yn−2 for large enough n. Furthermore the
shear force can be approximated by a linear combination of the state variables xp in (10) without the
knowledge of the derivative of Yn. Further details can be found in Nguyen et al.17

Clearly the larger the number of nodes, the more accurately (10) approximates the real PDE (1).
However the greater the number of nodes, the higher the order of the state-space and the greater the
computational burden. For this reason, a lower order (approximate) model of (10) is more desirable.
To create such a model, a broad range of methods for model order reduction, available in the sys-
tems theory literature, can be employed: see for example Refs. 22 and 23 and the references therein.
Here the ‘balanced truncation’ method by Moore,22 has been used. Hence, for design purposes, a
model of the form

ẋ(t) = Ax(t) + Bu(t) + D f (t)
y(t) = Cx(t) (11)

is used with the property that the input/ouput behaviour (u, f ) → y of (11) closely matches that of
(10). The key property of (11) compared to (10) is that the dimension of the vector x(t) is orders of
magnitude lower than xp(t). Although the elements of x(t) no longer have physical meaning, this
system is now ideal for design of the shear force estimator.

In (11) the inputs u(t) and y(t) are known and measured. However the state, x(t), and in partic-
ular the shear force, f (t), are unknown. Here a so-called sliding mode observer (see for example
Refs. 12–15 and the references therein) will be used to estimate f (t) from the known quantities y(t)
and u(t) and knowledge of the model in (11). In this paper, a design proposed in Edwards et al.12 is
employed. The sliding mode observer has the following form:

˙̂x(t) = Ax̂(t) + Bu(t) − Gey(t) − Dksgn(ey(t)) (12)

ŷ(t) = Cx̂(t) (13)

where k > 0 is a scalar gain, sgn(·) represents the signum function and the output estimation error

ey(t) = ŷ(t) − y(t) (14)

is the difference between the output of the observer ŷ(t) and the measured value y(t). The gain G
represents design freedom and must be selected to ensure the matrix (A − GC) is Hurwitz stable
(i.e. the eigenvalues of the matrix (A − GC) have negative real part, e.g. Ref. 14). It can be shown
that for an appropriate choice of G and the scalar gain k, the output estimation error ey(t) is driven
to zero in finite time and a so-called sliding motion takes place.12,14 During the sliding motion, on
average, the high frequency switching term −ksgn(ey(t)) must replicate f (t) for sliding to be main-
tained. The average value of ksgn(ey(t)) necessary to maintain sliding is known as the equivalent
injection14,24 and can be approximated by low-pass filtering the actual injection signal ksign(ey(t)).
Here a simple first-order low-pass filter for the fast-switching value of ksgn(ey(t)) is used to obtain
the estimate, f̃ (t), of the shear force from the equivalent injection. Let f̃ (t) satisfy

˙̃f (t) = −1
τ
( f̃ (t) + ksgn(ey(t))). (15)

where τ is a small positive scalar which represents the filter time constant. Since f̃ (t) approximates
the equivalent injection,24 it follows f̃ (t) ≈ f (t). Note that f̃ (t) is available in real time from (15)
and as a result, changes in the shear force f (t) can be estimated in real time. A diagram of the
observer and further explanations are presented in Figure 2.

The experiments which follow were carried out at ambient conditions, which were 20 ◦C and a
room humidity of 60%. The external excitation u(t) = d0 sin(ωt) is sinusoidal with frequency ω and
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FIG. 2. TDFM and nonlinear sliding mode observer based estimator of the shear force f given an excitation signal u(t) at
the top of the cantilever and the measured position y(t) of the tip of the cantilever. The error signal ey(t) (14) creates the
drivers for the estimator, the observer injection term ksgn(ey(t)) and Gey(t), to guarantee fast and robust convergence. The
low pass filtering of the switching observer injection ksgn(ey(t)) provides the shear force estimate f̃ (t).

amplitude d0. Furthermore, it is assumed that the tip sample interaction force at the tip can be split
into a viscous and an elastic force:18

f (t) = −ν ∂Y
∂t

(L, t) − κY (L, t) (16)

where ν is the dissipative interaction constant and κ is the elastic interaction constant. The cantilever
is made of Silicon Nitride (Si3N4) and the parameters are given as follows: Young’s modulus
E = 210 GPa, ρ = 3100 kg/m3, length L = 28 µm, width w = 2 µm, thickness tc = 200 nm. The
cantilever was brought within a distance of 10 nm to a quartz cover slip (No. 0, i.e. 85-130 µm
thick) to initially determine an excitation-to-cantilever model in free air. This yielded the necessary
data to obtain a reduced-order state space model (11). Then, fourteen data sets X1, X2, X3, . . . X14,
including input and output signals, were collected from experiments. The tip-to-surface distances
corresponding to X1, X2, X3, . . . X14 are linearly increasing for 1.5 nm to 8 nm respectively. The
top of the cantilever was excited at its resonance frequency of 352.75 kHz. The amplitude of the
excitation signal is 1.8 nm.

Using the model (11), a sliding mode estimator was designed. An example of a shear force
estimate is shown in Figure 3(a) which exhibits sinusoidal signals with the same frequency as the
excitation signal u(t). The inherent bandwidth limit of the sliding mode observer design is given
by the low pass filter time constant τ = 5µs from (15). Figure 3(b) provides the RMS values f̃e f f
(RMS - root mean square values) of the shear force estimates for each data series. It is clear that
the shear forces corresponding to the data sets recorded close to the cover slip exhibit the largest
interaction, i.e. the first data sets have the biggest amplitudes among the shear forces. It is now also
possible to estimate the elastic and viscous parameters κ and ν (e.g. using a recursive least squares
process). This introduces a further time constant of 5µs associated with the recursive least squares
process. This time constant and the filter time constant τ in (15) are independent of a quasi-static
harmonic balance assumption and are the result of well-understood linear filtering processes. It was
observed that the elastic component −κY (L, t) contributes less than 1.3 % to the overall shear force
energy so that this term can be disregarded. In contrast, the estimates of the viscous coefficient (see
Figure 3(c)) follow, within the tip-to-surface range of 2-8 nm, a generally decreasing relation. This
confirms the viscous effect of the thin water layer above the cover slip, which increases the closer
the cantilever tip is to the cover slip. Note the significant difference in magnitude change for ν and
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FIG. 3. Shear force estimate characteristics. (a)Estimate of shear force for data X1 for a cantilever/cover slip distance of
1.5 nm. (b)RMS value f̃e f f of shear force f̃ as a function of the cantilever-cover slip distance. (c)Estimate of viscous
coefficient ν as a function of the cantilever-cover slip distance.

f̃e f f . This is due to uncorrelated sensor noise in the output signal y(t) = Y (L, t). Whilst the least
squares methods for ν remain largely unaffected by this, the RMS-value f̃e f f is.

An important aspect of the sliding mode observer is its ability to work without the requirement
of harmonic excitation and measurement signals, including a steady state assumption of the overall
system under this condition. However, the TDFM adheres to these assumptions at least within some
quasi-steady state. For comparative reasons, given the sinusoidal characteristics of the excitation
u(t) and the cantilever tip position y(t), it is possible to compute the sinusoidal components of f (t),
and subsequently the viscous coefficient ν of f (t) (see Refs. 18 and 19 for a generic tapered beam
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and25 for a homogenous beam as used here). The derivation of the amplitude and phase for y(t)
in relation to u(t) is done via a real-time implementable phase-locked loop (PLL) technique.26 It is
well-known that a phase-locked loop technique has at its very best an inherent settling time of one
oscillation period (see for example Chapter 326), i.e. 2.83 µs = 1/(352.75kHz). However, realisti-
cally the pull-in process of a PLL is several multiples of one oscillation period - the direct result of a
nonlinear process of the PLL. Thus, for the estimation of the viscous component ν, the PLL relative
to the sliding mode technique provides in Figure 4 a delayed result of about 40 µs. Cantilever data

FIG. 4. Shear force estimate characteristics as function of time for sliding mode (SMO) and PLL-technique. (a)Estimate
of shear force for data varying between 1.5 nm-6.5 nm. (b)Estimate of shear force for data varying between 1.5 nm-2 nm.
(c)Estimate of shear force for data varying between 5.5 nm-6.5 nm.
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for tip-to-surface distances between 1.5 nm to 6.5 nm were used. The PLL-results for ν appear to be
‘low-pass-filtered’ in relation to the sliding mode estimate, i.e. they are of lower frequency content
and delayed. Considering the requirement for high-speed scanning and subsequent high-speed data
processing, the sliding mode observer shows an advantage over the PLL-method in terms of speed
and the basic underlying technical assumptions.

In conclusion, a constructive scheme to obtain a real time estimate of the shear forces affecting
the VOC of a TDFM has been presented. A parametric representation of the shear force presents
a scaled measure of the cantilever-specimen distance. An approximate ODE model of the canti-
lever dynamics was derived using the method of lines.20 Based on this ODE model, a reduced
order model was used to construct a sliding mode observer to estimate the unknown shear force.
Practical examples illustrate that the proposed real-time implementable scheme can reconstruct the
unknown shear forces using measurement signals subject to noise. The model confirms an increase
in viscous damping as the distance between the cantilever and the cover slip decreases. The method
shows faster response times and higher bandwidth than a phase-locked loop based technique which
operates under the assumption of a quasi-steady state balance of harmonic excitation and output
signals.
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