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Abstract 

 

We propose a method for the simulation of large ionic systems with long-range forces 

using the Monte Carlo method. This method employs a domain decomposition strategy 

for subdividing the simulation cell and parallelisation of these subdomains using a 

thread based strategy. This is thus ideally suited to modern day multi-core architectures. 

 

Evaluation of the long range interactions that is incompatible with a domain 

decomposition strategy has been replaced by the direct calculation of the Coulomb sum 

[C.J. Fennell and J.D. Gezelter, J. Chem. Phys., 124:234104, 2006.]. We compare this 

approach with that of "standard" Monte Carlo simulations that employ the Ewald 

technique. A relatively large two-body cutoff is required to reproduce the Ewald results 

accurately. Finally, as a pilot application, we demonstrate that our novel approach can 

be applied to very large simulation cells (>1 million atoms); results for enthalpies, are 

presented for a typical non-ideal oxide solid solution (MnO-MgO) as a function of 

composition and highlight the formation of nano-sized domains in the very large 

simulation cells. Well defined structures such as exsolution lamellae are not observed. 
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Introduction 

 

Oxides, both binary and ternary, such as perovskites, have an enormous range 

of useful properties, exploited in thermoelectrics, ferroelectrics, ion conductors, colossal 

magneto-resistant materials, superconductors and piezoelectrics and are candidate 

materials for further uses in energy conversion, in catalysis, as sensors, and in memory 

applications [1]. The manufacture of working devices often demands the ability to 

exercise precise control in the industrial production of these materials. Indeed, even 

atomic level definition may be required for applications such as supported 

superconductors, magnetic, optical and electronic devices. In order to exercise control 

during the fabrication process we need to understand the thermodynamic properties 

and in particular often the subsolidus structure of complex oxide systems.  Appreciation 

of cation ordering, defect clustering, exsolution processes, domain formation and 

microstructure evolution, and their consequences is crucial both in materials science 

and in mineralogy. 

The literature is awash with relevant examples of which one or two must suffice 

here.  Promising electrolytes for intermediate-temperature solid oxide fuel cells include 

CeO2, doped for example with Gd3+ [2].  Simple arguments would suggest that the ionic 

conductivity would increase steadily with dopant concentration, consistent with an 

increasing concentration of oxygen vacancies.  But the conductivity reaches a maximum 

at a concentration much before the solubility limit.  The traditional explanation is the 

formation of clusters of the dopant cations and the oxygen vacancies [3,4].  This has 

been shown to be incomplete by the experimental observation using microscopy and 

electron diffraction [5] of nano-size domains accompanied by local ordering of oxygen 

vacancies and dopant segregation, and such domains are also responsible for the 

decrease in conductivity [6].  But the detailed composition and atomistic structure of the 

domains, which vary markedly with dopant, and the underlying mechanisms responsible 

for their formation and influence on the conductivity remain unclear.  

Atomistic modelling of such systems in order to tackle these issues is particularly 

challenging. The length scales involved are such that very large numbers of atoms are 

needed in simulation cells. Indeed, as pointed out by Wang et al. [7], computer 



simulations have tended to examine the local structure of point defects and are too 

small in scale to study nano-domain structure in oxides. Typically such traditional point-

defect calculations (and thus at the dilute limit) have been carried out to establish the 

energies of associated defects, such as in recent work on Y-doped CeO2 [8] where such 

calculations were used to suggest building blocks for the construction of larger defect 

clusters.  Alternatively, the structure of a large unit cell containing a defect or defect 

cluster can be optimised (the supercell approach) [9]. But such an approach imposes an 

artificial periodicity, and only a small number of configurations (arrangements) can be 

considered. Computationally feasible supercells are still too small for microstructure 

evolution and only a few configurations can be considered.  Neither of these methods is 

readily extended to systems which require explicit consideration of a large number of 

different configurations over a large lengthscale.  We require a method to take explicit 

account of possible cluster formation and ordering automatically over such lengthscales 

for specified finite dopant concentrations, making no assumptions about local structure 

and which can also readily take into account the effects of elevated temperatures.  

In previous work we have demonstrated, for oxides and silicates, the use of 

Monte Carlo (MC) simulations for grossly disordered systems, short-range cation 

ordering, non-ideal solution solutions, phase equilibria and segregation in thin films and 

nanoparticles [10,11,12,13,14,15,16]. These are all problems where consideration solely of 

point defects is insufficient. Nevertheless to date all these simulations have utilised 

small simulation cells (typically less than a few thousand atoms) and such sizes 

prevents the analysis of long range order or the microstructure of materials. For 

example, recent simulations of oxide nanoparticles [17] were unable to show that the 

properties of the nanoparticle converge with increasing size to those of the bulk since 

the largest nanoparticles which could be studied computationally consisted only of 

approximately 22000 ions). When long-ranged forces need not be considered, such as 

in embedded-atom model simulations of metals, larger lengthscales are now becoming 

accessible; for example, Erhart et al. [18] have modelled atomistically the formation of 

copper precipitates in α-iron alloys using simulation cells of 786240 atoms.  To address 

similar problems in oxides, there is a need to extend MC simulations which take explicit 

account of long-range forces to much larger cells. 



Molecular Dynamics (MD) is an alternative technique to Monte Carlo for sampling 

configurational space. MD allows the calculation of time-dependent quantities such as 

atomic/molecular vibrations and transport coefficients, and algorithms have been 

developed so that multi-million particle simulations on many thousands of cores are 

currently routine. These very large MD simulations have largely been achieved by 

splitting the calculation (both computational and memory requirements) over many 

processors [19,20,21]. This distributed data strategy allows the simultaneous evolution of 

the simulation cell on all processors (cores). However MD timescales longer than a few 

nanoseconds remain a serious problem and the MC method is far more suitable for 

calculating thermodynamic properties (associated with, e.g. orderings, adsorption, 

partition coefficients, solvation, self-assembly, agglomeration, melting and 

crystallization, free energy differences, interfaces). Unfortunately, due to the stochastic 

nature of MC, it is not straightforward to apply the domain decomposition algorithms 

developed in MD and this problem is augmented for ionic materials such as oxides, 

where long-range interactions are necessary.  Moreover, in MC simulations it is often 

necessary to carry out a greater number of moves as the number of particles in the cell 

increases in order to maintain the same degree of sampling. 

In this paper we describe a simple protocol that can be employed to study very 

large ionic systems using MC style moves. This procedure overcomes many of the 

limitations in previous calculations and we demonstrate the methodology using a simple 

binary oxide mixture. 

 

 

Method 

 

At finite defect or trace element concentrations or in solid solutions it is 

necessary to sample effectively numerous different configurations, allowing for the 

exchange of ions at crystallographically inequivalent positions. In standard molecular 

dynamics simulations of condensed materials kinetic barriers prevent atoms or ions 

from moving through the lattice and so in almost all cases it is impossible to sample a 

statistically meaningful number of configurations within a reasonable amount of 



computational time. Similarly in Monte Carlo (MC) simulations an unfeasibly large 

number of random atom displacements are required for an appreciable number of 

exchanges. 

We have previously implemented a MC scheme to calculate the solubility of 

dopant ions in ionic materials as a function of temperature, pressure and composition 

[22]. Such MC calculations include four types of change in the system; which type of 

change is attempted at any stage is made at random. 

(i) A random displacement of an ion selected at random. To determine whether 

the change is accepted or rejected, the usual Metropolis algorithm is applied [23].The 

maximum change in the atomic displacement for each ionic species is controlled by a 

variable rmax, its magnitude is adjusted automatically during the simulation to maintain 

an acceptance/rejection ratio of approximately 0.5. 

(ii) A trial change in the cell parameters. All simulations are carried out within the 

NPT ensemble.24  The magnitude of the volume change is also chosen at random, 

within a specified amount and is governed by the variable vmax (adjusted automatically 

so that the acceptance/rejection ratio is 0.5). After each volume alteration the change in 

energy is calculated and a decision whether to accept or reject this is made according to 

the standard Metropolis scheme. In this study we adjusted only the cell volume, 

however, the procedure can be generalised (i.e., random changes in any of the lattice 

parameters). 

(iii) Exchange of the positions of two ions selected at random. In our 

demonstration calculation below, this involves swapping an Mg2+ ion and a Mn2+. The 

change in energy is determined and the exchange is accepted or rejected according to 

the usual Metropolis method. 

(iv) A trial mutation of one cation type into a second type (and vice versa) . The 

energy required for this evaluated and employed to calculate the change in chemical 

potential. 

 

∆𝜇 = −𝑘𝐵𝑇𝑙𝑛 ⟨
𝑁𝐵

𝑁𝐴+1
𝑒𝑥𝑝⁡(−∆𝑈𝐵 𝐴⁄ 𝑘𝐵⁄ 𝑇)⟩,       (1) 

 



where there are NA atoms of type A and NB of type B present in the cell and ∆𝑈𝐵 𝐴⁄ . The 

change in internal energy accompanying the mutation of the B atom into an extra atom 

A.  Note that otherwise NA and NB are kept fixed throughout the simulation; this trial 

mutation is only for calculation of the difference in chemical potential and after this the 

atom concerned reverts to its original type. Given values of Δμ over a range of 

compositions, refs. 11-13 show how thermodynamic manipulation then yields free 

energy differences as a function of composition the phase diagram and the consolute 

temperature. 

 

Key features of this simulation scheme are the explicit inclusion of the local 

environments and vibrations (relaxations) of the ions within the simulation, the ease of 

sampling many different arrangements of cations (configurations). 

 

The accuracy of any simulation is dependent on the suitability of the interatomic 

potential model chosen. As in our previous calculations we have employed the ionic 

model writing the interaction energy between any pairs of ions i and j as: 

 

𝑈𝑖𝑗 = 𝐴𝑒𝑥𝑝 (
−𝑟

𝜌
) −

𝐶

𝑟𝑖𝑗
6 +

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
         (2) 

 

The first two terms on the right hand side together form an interatomic potential of the 

Buckingham form and the potential parameters, A, ρ and C can be obtained through 

fitting to either ab initio or experimental data. For all the calculations presented in this 

paper we use the potential set developed by Lewis and Catlow [25]. We have previously 

successfully employed this potential set to study Mg1-xMnxO in bulk materials, surfaces 

and thin films [10,16]. The final term on the right-hand side is the Coulomb interaction of 

the ions which decays very slowly as a function of distance (as 1/rij).  As a result special 

methods have been developed to calculate the electrostatic potential such as the Ewald 

technique [26], in which the algorithm is restructured so that the summation is split into a 

reciprocal space and a real space summation. The reciprocal space calculation requires 

the summation over a large number of reciprocal lattice vectors and, unlike MD in which 

all the ions are moved simultaneously, impacts considerably on the parallelisation 



strategies available for large scale MC simulations. Consequently a domain 

decomposition strategy for MC has mostly been limited to systems containing only 

short-range interactions [e.g. .  We note that a non-Ewald-based 27] algorithm involving 

a local approach to the evaluation of electrostatic interactions, in which these are not 

treated as instantaneous but mediated by a diffusing and constrained electric field on an 

interpolating lattice, has been proposed by Maggs [28] and used by Rottler and Maggs 

[29] and Fahrenberger and Holm30 in MC simulations. 

 

 

More recently several alternatives have been proposed that allow the electrostatic 

contribution to the total energy to be calculated simply as a pairwise interaction [31,32,33]. 

Fennel and Gezelter, hereafter referred to as FG, have proposed the use of a damped 

and shifted potential, UFG, 

 

𝑈𝐹𝐺 = 𝑞𝑖𝑞𝑗 [
𝑒𝑟𝑓𝑐(∝ 𝑟)

𝑟
−
𝑒𝑟𝑓𝑐(∝ 𝑅𝑐)

𝑅𝑐
+ (

𝑒𝑟𝑓𝑐(∝ 𝑅𝑐)

𝑅𝑐
2 +

2 ∝

𝜋
1
2

𝑒𝑥𝑝⁡(−𝛼2𝑅𝑐
2)

𝑅𝑐
)(𝑟 − 𝑅𝑐)] , 𝑟 ≤ 𝑅𝑐 

           (3) 

where α is a damping parameter. The damping function serves to accelerate the 

convergence of the Madelung energy to the correct energy as the pairwise interaction 

cutoff (Rc) distance is increased [30]. The advent of these methods permits the 

calculation of the electrostatic terms in the same section of the program as the non-

bonded pair interactions. Vlugt et al. [31] have recently explored the application of both 

the Wolf and FG methods for the calculation of the thermodynamic properties of small 

molecules in zeolitic materials. They found that in order to reproduce the 

thermodynamic data calculated using the Ewald method to the same accuracy, Rc had 

to be as large as 20 Å [34]. Thus for MC simulations using either serial or a replicated 

data parallel calculation method, the increased cutoff gives rise to a much larger cell 

size than would be required using the Ewald method negating any computational 

advantages.  

 



We now present the parallelisation strategy for the MC simulation of multi-million atom 

simulations. The memory requirements of these simulations and the need to speed up 

the evaluation of the interaction energy of a particle (to increase the number of 

configurations sampled within a reasonable time frame) makes it necessary to split the 

calculation over a number of cores, i.e. domain decomposition is required. This can only 

be achieved in MC if the domains do not interact and each processor can work on a 

domain simultaneously. A number of strategies have been developed to prevent the 

interaction of domains [35]. All of these reduce the domains into subdomains and we 

followed the approach employed by Shim and Amar in their synchronous relaxation 

algorithm (figure 3) [36]. This method prevents domain interaction by further subdividing 

the domain into a core, “skin” and “ghost” regions (subdomains). MC moves within the 

cores are independent of moves within the adjacent cores. The skin atoms occupy 

positions where there are possible interactions with the neighbouring core atoms. The 

ghost atoms reside within neighbouring domains and are necessary to account for all 

the interactions of the core region. 

 

The size of the skin and ghost subdomains must be greater than Rc + 2rmax, where 2rmax 

is a buffer size, which we set to be 1 Å. In order to prevent two atoms in adjacent 

domains moving so that their distance is less than Rc. Communication between 

domains was undertaken with the Message Passing Interface (MPI) [37]. Because of the 

very large value of Rc in our simulations (see below) the number of ions within a domain 

could be very large (approximately 10,000 - 27,000 ions if the skin interactions are 

included). Since the calculation of all these interactions can be very time consuming we 

used OpenMP [38] within each domain.  

 

The simulation proceeds by selecting at random one of four moves. (i) an attempted 

move of all the atoms in a subdomain [39,40] followed b, (ii)y  attempts to exchange the 

types (positions) of ions within a core subdomain, (iii)  and an exchange of types 

(positions) between the core subdomain of different domains or (iv) an attempted 

change in cell volume. Within the domain decomposition framework the values of rmax 

and vmax are stored globally (for rmax an average over the cores is calculated). As they 



are computed infrequently (approximately every 100 cycles) this does not add 

significantly to computational time required for the simulation. 

 

Pilot application to solid solutions 

 

We first compare the results obtained with the FG method with a benchmark. For this 

we used the Ewald technique as implemented in the MC program DL_MONTE [41]. 

Moreover, DL_MONTE was employed to verify, where possible, the results calculated 

with the new DDMC code. It is also necessary to establish a framework in which the 

comparisons can be made. For example, it is not appropriate to use the defect energy 

of an isolated Mn2+ ion in MgO – the difference between two large quantities>> - due to 

the fluctuations in the total energy during MC simulations and more sensitive tests are 

required. We found the most useful test was the calculation of the chemical potential 

difference, Δμ, calculated using the test particle mutations described above (equation 

1). Δμ was calculated using a 4096 and 216000 atom cells for the DL_MONTE and 

domain decomposition simulations respectively (for these test calculations we used 8 

domains). For all the test simulations the temperature was set to 800 K and tThe cell 

compositions were xMn = 0.25, 0.5 and 0.75. In figure 2 we show the difference in Δμ 

calculated using the Ewald and FG methods for xMn = 0.25. The calculations were 

undertaken for three different values of Rc (12, 15 and 18 Å) and five different values of 

α (0.1, 0.2, 0.3, 0.4 and 0.5). Figure 2 demonstrates that a large value of Rc is required 

and α should be set to a value between 0.2 and 0.3. This is in agreement with the 

conclusions of references 30 and 31. In all our subsequent simulations we use an 18 Å 

cutoff and set α to 0.25. 

 

A key thermodynamic quantity behind mixing or exsolution in solids is the excess 

enthalpy of mixing (ΔHmix). Calculated values of ΔHmix using both the Ewald and FG 

methods are presented in figure 3 and are identical (within statistical uncertainty). 

 

Having demonstrated the accuracy of the FG summation, we now employ it in the 

DDMC method for the calculation of thermodynamic properties of ionic materials, using 



very large simulation cells. We have undertaken a pilot study of the MgO-MnO solid 

solution with simulation cells containing 1728000 ions. All simulations were run for 107 

cycles which included 109 attempted exchanges of positions (on average approximately 

1000 per cation). All the calculations were undertaken on an IBM idataplex using 64 

nodes and 16 cores within each node. Such large cells allow us to examine the resulting 

structures for features such as exsolution lamellae, the formation of which was 

effectively precluded by the much smaller sizes considered previously. We have 

calculated the structure over a range of temperatures, at 400, 600 and 800 K, which are 

below the critical temperature, TC, calculated from the values of Δμ and at 1400 K, 

above TC. In figure 4 we present resulting snapshots of the nano-structure of Mg1-xMnxO 

mixtures for x = 0.10, 0.25, 0.5 and 0.75 at 600 K. For the Mg2+ rich mixture (x = 0.10) 

the Mn2+ ions are often isolated (i.e. next nearest neighbours are Mg2+). However a 

significant number are associated with other Mn2+ ions to form linear chains (often only 

a single atom in width) in the [110] direction.  As the Mg2+ concentration decreases, x = 

0.25, the Mn2+ ions are mostly clustered into domains. The domains are strongly 

asymmetric (they are often only 2-3 cations in diameter and orientated along the [110] 

direction. We have not observed the formation of well-defined structures such as 

exsolution lamellae. For x = 0.5 these domains have coalesced to form a three 

dimensional (> than 3 atoms in width) interlocking structure. The final frame in figure 4 is 

for a composition where the number of larger Mn2+ ions exceeds that of the smaller 

Mg2+ ions (x = 0.75). The Mg2+ ions now form clusters of defects arranged in a linear 

fashion along [110], similar to those formed by Mn2+ at x = 0.25. 

 

We have also briefly investigated the influence of temperature on the formation of defect 

clusters. As expected the association of dopant ions is reduced so that for x = 0.1 the 

dopants tend to be dispersed at temperatures above 600 K. Nevertheless, even at 1400 

K for higher concentrations, such as for x = 0.25 shown in figure 5, nano-sized domains 

persist. 

 

Conclusions 

 



We have demonstrated that it is feasible to employ DDMC to study large ionic systems 

using approximate methods for the long-range Coulomb sum whilst retaining the 

accuracy of the thermodynamic properties of the materials. This approach is facilitated 

by the structure of modern high performance computers by providing a combination of 

MPI and openMP parallelisation.  

 

In this instance we have studied 1728000 ions using 64 domains, but the method could 

be readily employed to run much larger systems. The technique has been applied in a 

pilot project to study the structure of MgxMn(1-x)O.. In these calculations we observe the 

formation of linear, nano-domains that are orientated along the [110] vector. Well 

defined structures such as exsolution lamellae are not seen.  The size of the domains 

are such that one should be careful when drawing conclusions from calculations very 

small simulation cells, especially from the results of ab initio calculations where the 

computational overheads prevent the use of large cells. Indeed, the use of large 

simulation cells allows us to investigate previous assumptions regarding the 

convergence of enthalpies and entropies of mixing with unit cell size, calculated either 

from Monte Carlo simulations using smaller cells [15] or from configurational averaging 

of the results from direct free energy minimisation of even smaller cells [42]. 
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Figure 1. A two dimensional diagram demonstrating the synchronous relaxation method. The 

core region is surrounded by the skin (dark grey) and the ghost region (atoms on the 

neighbouring domain) in light grey. The domains are bounded by the black lines. 

 
 

core 



Figure 2. The variation of Δ, the difference in values of the chemical potential change, Δμ, 

are presented for different values of the pairwise interaction cutoff Rc used in the FG method.  
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Figure 3. The calculated enthalpy of mixing, ΔHmix, MnxMg1-xO, calculated using both the Ewald 

and FG methods. In the FG calculations, α was set to 0.25 and Rc to 18 Å. The uncertainty in 

each value of ΔHmix is approximately 0.3 kJ mol-1 for both sets of calculations. 
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Figure 4. A slice through the cell obtained from DDMC simulations for Mg1-xMnxO containing 

1728000 ions. a) x = 0.10, b) x = 0.25, c) x = 0.5 and d) x = 0.75. All calculations were 

performed at 600 K which is below the critical temperature for all compositions. Red = oxygen, 

green = Mg and purple = Mn. 
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Figure 5. A snapshot of the simulation cell obtained from DDMC simulations for Mg1-xMnxO, x = 

0.25, containing 1728000 ions at T = 1400 K Red = oxygen, green = Mg and purple = Mn. 

 

 

 



 

 

 

REFERENCES 

                                                

1  F.M. Granozio, , MRS Bulletin, 38:1019 (2013). 

2  F. Ye, T. Mori, D.R. Ou, J. Zou, G. Auchterlonie, J. Drennan, Solid State Ionics, 

179: 827, 2008. 

3  D.Y.Wang, D.S. Park, J. Griffith, A.S. Nowick, Solid State Ionics 2 (1981) 95, 

4  H. Inaba, H. Tagawa, Solid State Ionics 83 (1996) 1) 

5  T. Mori, J. Drennan, Y. Wang, G. Auchterlonie, J.G. Li, A. Yago, Sci. Technol. 

Adv. Mater. 4 (2003) 213 

6  D.R. Ou, T. Mori, F. Ye, T. Kobayashi, J. Zou, G. Auchterlonie, J. Drennan, Appl. 

Phys. Lett. 89, 171911, 2006 

7  B. Wang, R.J. Lewis and A.N. Cormack, Solid State Ionics, 182:8, 2011. 

8  Z-P Li, T. Mori, F. Ye, D. Ou, G.J. Auchterlonie, J. Zou and J. Drennan, J. Phys. 

Chem., C, 116, 5435-5443, 2012) 

9  M.B. Taylor, G.D. Barrera, N.L. Allan, T.H.K. Barron and W.C. Mackrodt, 

Faraday Discuss 106, 377, 1997). 

10  J.A. Purton, G.D. Barrera, N.L. Allan and J.D. Blundy, J. Phys. Chem. B102, 

5202-5207 (1998) 

11  M. Yu. Lavrentiev, N.L. Allan, G.D. Barrera, and J.A. Purton, J. Phys. Chem. B 

105, 3594–3599 (2001) 

12  N.L. Allan, G.D. Barrera, M. Yu. Lavrentiev, I.T. Todorov and J.A. Purton, J. Mat. 

Chem. 11, 63-68 (2001) 

13  M. Yu. Lavrentiev, N.L. Allan and J.A. Purton, Phys. Chem., Chem. Phys. 5, 

2190-2196 (2003); 

14  M. Yu. Lavrentiev, J.A. Purton and N.L. Allan, Am. Miner. 88, 1522-1531 (2003); 

see also 89, 1149 (2004) 

15  I.T. Todorov, N.L. Allan, M. Yu. Lavrentiev, C.L. Freeman, C.E. Mohn and J.A. 

Purton, J. Phys.: Condens. Matter 16, S2751-S2770 (2004) 

16  J.A. Purton, M. Yu. Lavrentiev, N.L. Allan and I.T. Todorov, Phys. Chem., Chem. 

Phys. 7 3601-3604 (2005) 

17  J.A. Purton, S.C. Parker and N.L. Allan, PCCP, 15:6219, 2013. 

18  P. Erhart, J. Marian and B. Sadigh, Phys. Rev. B, 88:024116, 2013. 

19  S. Plimpton, J. Comp. Phys., 117:1, 1995. 

20  G.S. Heffelfinger, Comp. Phys. Comm., 128:219, 2000. 

21  I.T. Todorov, W. Smith, K. Trachenko and M. Dove, J. Mat. Chem., 16:1911, 

2006. 

22  J. A. Purton, M. Y. Lavrentiev, and N.L. Allan, Comp. Mat. Sci., 105: 179, 2007. 



                                                                                                                                                       

23  N.I. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, J. 

Chem. Phys., 21: 1087, 1953 

24  D. Frenkel and B. Smit, Understanding Molecular Simulations: From algorithms 

to applications, Academic Press: San Diego, 1996. 

25  G.V. Lewis and C.R.A. Catlow, J. Phys. C, 18:1149, 1985. 

26  P.P. Ewald, Ann. Phys. (Leipzig), 64:253, 1921. 

27  G.S. Heffelfinger and M.E. Lewitt, J. Comp. Chem., 17, 250-265 (1996). 

28  A.C. Maggs and V. Rosetto, Phys. Rev. Lett., 88:196402, 2002 
29  J. Rottler and A.C  Maggs, J. Chem. Phys., 120:3119, 2004 
30  F. Fahrenberger and C. Holm,, http://arXiv:1309.7859 [physics.comp-ph] 
31  D. Wolf, P. Keblinski, S.R. Philpot and J. Eggebrecht, J. Chem. Phys., 110:8255, 

1999. 

32  D. Zhan, B. Schilling and S.M. Kast, J. Phys. Chem. B, 106:10725, 2002. 

33  C.J. Fennell and J.D. Gezelter, J. Chem. Phys., 124:234104, 2006. 

34  T.J.H. Vlugt, E. Garcia-Pérez, D. Dubbeldam, S. Ban and S. Calero, J. Chem. 

Theory. Comput., 4:1107, 2008. 

35  G.S. Heffelfinger and M.E. Lewitt, J. Comp. Chem., 17:250, 1996. 

36  Y. Shim and J.G. Amar, Phys. Rev. B, 71:115436, 2007 

37  www.openmpi.org 

38  http://www.openmp.org/wp 

39  R. Ren and G. Orkoulas, J. Chem. Phys., 126:211102, 2007. 

40  C.J. O’Keefe, R. Ren and G. Orkoulas, J. Chem. Phys., 127:194103, 2007. 

41  J. A. Purton, J.C. Crabtree, S.C. Parker, Mol. Sim., 39:1240, 2013. 

42  N.L. Allan, G.D. Barrera, R.M. Fracchia, M. Yu. Lavrentiev, M.B. Taylor, I.T. 

Todorov, and J. A. Purton , Phys. Rev. B 63:094203, 2001. 

43  Jmol: an open-source Java viewer for chemical structures in 3D, 

http://www.jmol.org. 


