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Abstract

Background—Platelets are central to the process of haemostasis, rapidly aggregating at sites of 

blood vessel injury and acting as coagulation nidus sites. Upon interaction with sub-endothelial 

matrix platelets are transformed into balloon-like structures as part of the haemostatic response. 

It remains unclear, however, how and why platelets generate these structures. We set out to 

determine the physiological relevance and cellular and molecular mechanisms underlying 

platelet membrane ballooning.

Methods and Results—Using 4D live-cell imaging and electron microscopy, we show that 

human platelets adherent to collagen are transformed into phosphatidylserine-exposing balloon-

like structures with expansive macro/micro-vesiculate contact surfaces, by a process which we 

termed procoagulant-spreading. We reveal that ballooning is mechanistically and structurally 

distinct from membrane blebbing and involves disruption to the platelet microtubule 

cytoskeleton and inflation through fluid entry. Unlike blebbing, procoagulant ballooning is 

irreversible and a consequence of Na+, Cl- and water entry. Furthermore, membrane ballooning 

correlated with micro-particle generation. Inhibition of Na+, Cl- or water entry impaired 

ballooning, procoagulant-spreading, micro-particle generation and also diminished local 

thrombin generation. Human Scott syndrome platelets, which lack expression of Ano-6, also 

showed a marked reduction in membrane ballooning, consistent with a role for chloride entry in 

the process. Finally, blockade of water entry by acetazolamide attenuated ballooning in vitro, and 

markedly suppressed thrombus formation in vivo in a mouse model of thrombosis. 

Conclusions—Ballooning and procoagulant-spreading of platelets are driven by fluid entry into 

the cells, and are important for amplification of localised coagulation in thrombosis.   

Key words: cell physiology; hemostasis; coagulation; platelet; collagen; membrane ballooning; 
procoagulant-spreading; microparticles; fluorescent imaging; high-resolution microscopy 
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Introduction 

Platelets play complex roles in haemostasis and arterial thrombosis, rapidly adhering to sub-

endothelial structures and to each other to generate a platelet aggregate which is stabilised by the 

local production of thrombin and subsequently fibrin1.  Critical to this response is the surface 

exposure of aminophospholipids, particularly phosphatidylserine (PS), which promotes assembly 

of the tenase and prothrombinase complexes on the platelet surface.  This platelet-dependent 

procoagulant activity therefore depends upon two major factors: (i) the degree of PS exposure 

and (ii) the surface area of membrane with exposed PS.   

It is currently thought that a sustained rise in cytosolic Ca2+ is required for exposure of PS 

on the extracellular leaflet of the plasma membrane, through activation of a non-specific 

phospholipid scramblase and inhibition of a PS translocase or flippase. Anoctamin-6 (gene 

ANO6 or TMEM16F) is identified as a key regulator of calcium-dependent PS exposure2, and 

loss-of-function mutations in anoctamin-6 have been shown in two Scott syndrome patients3, 4, 

who have aberrant calcium-dependent scramblase activity5. However the precise role played by 

anoctamin-6 is still unclear. It is possible that, like other members of the anoctamin family, it 

forms Ca2+-activated Cl- channels6. Although much effort has gone into determining the 

molecular mechanisms regulating surface PS exposure, relatively little is known about the 

mechanisms by which platelet membrane surface area may be maximised. Possibly, Cl- entry 

may also be required for a change in membrane surface area, and this would be another distinct 

functional role for Cl- entry in potentiating platelet procoagulant activity.   

Platelets have long been reported to transform in vivo to form balloons upon activation, 

and fibrin has been shown to fill the space between these balloon structures at wound sites7-9. 

Platelet membrane ballooning has also been observed in vitro in platelets adherent to 

on the extracellular leaflet of the plasma membrane, throughf activation of a non-ssspepepecicicififificcch
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immobilised collagen10-12. However, it is not clear whether this striking morphological change is 

analogous to apoptotic blebbing in other cell types13-15. Attempts to assess ballooning in platelets 

have been limited by the methods of investigation, imaging resolution10 and the fragility of the 

balloon structure which often results in its loss or significant deformation11.  

Here we hypothesised that platelet ballooning was important to markedly increase the 

surface area of exposed membrane, and exposed PS, thereby enhancing the local procoagulant 

response10, 16, 17.  We used detailed dynamic imaging approaches to visualise thrombin generation 

on platelet membrane surfaces and to understand the mechanisms regulating ballooning.  This 

study revealed that the key mechanism involves fluid entry, accompanied by the genesis of a 

novel spread membrane structure in a process we have termed ‘procoagulant-spreading’. Unlike 

conventional lamellipodial spreading, this form of spreading yields procoagulant surfaces, and 

rapidly breaks up by multiple coalescences to form numerous procoagulant microvesicles.  

Ballooning and procoagulant-spreading are therefore linked processes which are likely to 

contribute to hemostatic responses in vivo.   

Methods

Written informed consent was obtained in accordance with the Declaration of Helsinki.   

Human blood was obtained from healthy drug-free volunteers under Local Research Ethics 

approval (E5736). The UK Scott patient blood was obtained with NHS Research Ethics Committee 

approval, and has been described.  This Scott patient is a compound TMEM16F heterozygote, 

IVS6 + 1G A, resulting in exon 6 skipping. Another mutation in this patient, (c.1219insT) causes 

premature translation termination and defective expression of TMEM16F4, 18.  

Materials

Details of materials used are given in Supplementary files.   

novel spread membrane structure in a process we have termed ‘procoagulant-spreeeadadadinining’g’g’... UnUnUnlililikekk  

conventional lamellipodial spreading, this form of spreading yields procoagulant surfaces, and 
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Platelet-rich plasma preparation 

Blood drawn from healthy human volunteers was anticoagulated with 0.4% trisodium citrate and 

acidified with 16% acid citrate dextrose (85 mmol/L trisodium citrate, 71 mmol/L citric acid, 111 

mmol/L glucose). Platelet-rich plasma (PRP) was obtained by centrifugation at 180 g for 17 min.  

Washed human platelet preparation 

PRP was centrifuged at 650 g for 10 min in the presence of 10 mol/L indomethacin and 0.02 

U/mL apyrase, and resuspended in HEPES-Tyrode’s buffer modified with 0.1% (w/v) glucose, 

10 mol/L indomethacin, and 0.02 U/mL apyrase. Sodium and chloride free HEPES-Tyrode’s 

buffers were prepared by replacing Na+ and Cl- with equimolar N-methyl-D glucamine and 

gluconate, respectively.  

Live cell confocal microscopy 

Washed human platelets were pre-incubated (10 minutes) with calcium dye Fluo-4 AM and 

Alexa Fluor 568 annexin-V conjugate (1%V/V). Hyperosmolar Tyrodes’ was prepared by adding 

40 mmol/L sucrose to HEPES-Tyrode’s buffer. MatTek dishes were pre-coated with collagen 

(20 μg/mL) and aliquots of platelet suspensions were added (2x107 cells/mL), supplemented with 

1 mmol/L CaCl2.  Changes in relative fluorescence intensity (F/F0) over time were monitored. 

Details of confocal microscopy are given in Supplementary files.   

Measurement of platelet thrombin generation

PRP was incubated with fluorogenic thrombin substrate, Z-GGR-AMC (450 μmol/L). PRP was 

re-calcified and thrombin generation initiated with 5 pmol/L tissue factor. Thrombin substrate 

was measured on platelet membrane surfaces and traces for single platelets and platelet 

aggregates were converted into first-derivative curves.  
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Image deconvolution and analysis 

Raw intensities from time-series (single plane over time) images were quantified after regions of 

interest were chosen and images corrected for background noise. For each platelet analysed, 

relative fluorescence (F/F0) is reported; where F0 designates the background-subtracted 

fluorescence level before platelet activation. Deconvolution of Z-stack images was based on 

calculated point spread functions; 3D & 4D reconstruction, movie rendering and co-localisation 

analysis were performed using Volocity imaging software (Perkin-Elmer, UK).   

In vitro and in vivo thrombosis assays

Details of in vitro and in vivo thrombosis assays are given in Supplementary files.   

Statistical analysis 

Data were analyzed using GraphPad Prism 6 (San Diego, CA) and presented as interleaved box 

plots with whiskers showing min to max values and interquartile ranges. We determined 

statistical significance by the Friedman test, followed by Dunn’s multiple comparison test or by 

Wilcoxon Signed Rank Test.   p<0.05 (*) or p<0.01 (**) was considered significant. 

Results 

Spatiotemporal dynamics of platelet membrane ballooning and phosphatidylserine 

exposure

Upon interaction with sub-endothelial matrix platelets are transformed into balloon-like structures 

as part of the haemostatic response7-10. To obtain more temporal and dynamic insight into platelet 

ballooning, we used phase-contrast and confocal live cell imaging microscopy techniques to study 

platelet adhesion and ballooning on a collagen-coated surface. In the early phases of contact with 

collagen, platelets formed small, retractable membrane blebs (Figure 1A, image 2-7, blue arrows). 

Statistical analysis 

Data were analyzed using GraphPad Prism 6 (San Diego, CA) and presented as interleaved box 

plottsss wiwiwiththth wwwhihh skkkerererss showing min to max values aaandndnd interquartile rangeesss. We determined 

tttatttiistical signiffficicicaancecece bbby y y thththe e e FrFrFrieieiedmdmdmanann ttest,tt  fooollowweeed bbby y y DuDuDunnnn’s’s’s mmm lulultititippplee cooompmpmparararisisisonono tttesee t t t ororor bbbyy y
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However, in many platelets, one of these blebs can swell to become a balloon (Figure 1A, image 

10, yellow arrow), which ranged between 1 - 6 μm in diameter and typically did not retract (Figure 

1A, Movie S1). We identified three distinct phases leading to balloon formation, which we termed 

phases Ph1, Ph2 and Ph3 (Figure 1B). Ph1 was characterised by blebbing (membrane protrusion  1 

μm) (Figure 1A and B, images 1-5). During Ph2, the membrane of non-retracted blebs rapidly 

expanded (images 6-8) and in Ph3, the expansion plateaued (images 9-10). Initiation of ballooning 

was typically by 5 min after adhesion of the platelet to collagen fibre, and progressed rapidly to 

phase 3 by a further 5 min.  Importantly, we observed platelet ballooning in vivo, in a mouse 

thrombus formation model (Figure S1A), consistent with previous observations7-9. Ballooning also 

occurred in human thrombi, as shown in in vitro flow studies (Figure S1B, C).  Interestingly there 

was no ballooning in platelets adherent to von Willebrand factor in the presence of botrocetin, 

suggesting agonist specificity of the response.   

A 3D recontruction showed that the platelet body and the balloon membrane bound 

labelled annexin-V, demonstrating PS exposure and generation of a procoagulant surface5, 19-21 

(Figure 1C, Movie S2). Annexin-V binding was characterised by two stages: Initially, a low 

level (F/F0 = 1.3-1.5) of annexin-V accumulated on the membrane of the platelet body alone 

(Figure 1D, images 1-5), followed by annexin-V binding to the balloon as well (Figure 1D, 

images 7-10, Movie S3). Importantly, PS externalisation did not temporally correspond with 

membrane ballooning (Figure 1E&F), suggesting a distinction between the mechanisms 

underlying these two events. Furthermore, integrin IIb 3 was activated at an early time point 

prior to ballooning, but was sustained and localised just to the platelet body (Figure 1G, H).  

Thrombin is generated on the ballooned surface of human platelets adherent to collagen  

To demonstrate that ballooned platelets support a procoagulant response, we visualised the 

occurred in human thrombi, as shown in in vitro flow studies (Figure S1B, C).  Inteteterererestststinininglglgly y y thththeeere 

was no ballooning in platelets adherent to von Willebrand factor in the presence of botrocetin, 

uggggesesestititingngng aaagogg niiiststst specificity of the response.  
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formation of thrombin using the fluorogenic thrombin substrate Z-Gly-Gly-Arg aminomethyl 

coumarin (ZGGR-AMC, Figure 2Ai, cyan blue). 3D reconstruction further confirmed that 

thrombin was generated all over the balloon and platelet body (Figure 2Aii). Figure 2Aiii shows 

that thrombin is generated within 300-450 sec after platelet adhesion to collagen. This strongly 

correlated with balloon formation and annexin-V binding by single platelets (compare with 

Figure 1B and E, F).  

Platelets from patients with Scott syndrome show significantly impaired PS exposure and 

procoagulant activity18. Here we show that platelets from the UK Scott syndrome patient have a 

marked defect in balloon formation compared to control platelets (Figure 2B, see arrows). 

Platelet ballooning may therefore be important for the procoagulant response, by increasing the 

available surface area for recruitment of the tenase and prothrombinase complexes (Figure S2).  

Ballooned and procoagulant-spread (BAPS) platelets 

Using 4D imaging, we observed four distinct platelet phenotypes adherent to collagen (Figure

3A): (1) conventionally spread non-ballooned platelets (CSNB, annexin-V-), (2) ballooned and 

procoagulant-spread platelets (BAPS, annexin-V+), (3) ballooned non-spread platelets (BNS, 

annexin-V+) and (4) non-ballooned and non-spread platelets (NBNS). The NBNS phenotype was 

typically annexin-V- but could be induced to expose PS with prolonged stimulation. 

Procoagulant-spreading, in BAPS platelets, was only clearly identifiable by visualising annexin-

V just above (between 0 and 0.75 m) the collagen-coated surface (Figure 3A&B, in red, Movie

S4).  The area covered by procoagulant-spread platelets is generally much greater than by 

conventionally spread platelets and can extend to around 20 m (Figure 3A).  BAPS platelets 

constitute a distinct subpopulation of adherent platelets, and this report is the first 

characterisation of these structures.

Platelet ballooning may therefore be important for the procoagulant response, by iiincncncrerereasasasinining g g thththe 

available surface area for recruitment of the tenase and prothrombinase complexes (Figure S2).  

Ballloooooonenened d d ananand prprproco oagulant-spread (BAPS) ppplalalatett lets 

UUUsinining 4D imagigigingngn , wewewe ooobsbsbseererveveveddd fofofouuur dddisstincncct ppplateeleet ppphehehenononotytytypep sss aaadhdhdherererennt tooo cccololollalalagegegen n (((FiFiFigugugurerere

3AAA):):): (((1) connnvevv ntttiooonalllly spreeeadadad nnonnn-b-b-baallll oooo neneedd d plp attelletsss (C(C(CSNSNSNB,BB aaannnnnexexe innn-VV-),),), (((2)22  baaallloloonneed annnd 

prprprocococoaoaoaguggulalalantntnt ss-sprprpreaeaeaddd plplplatatateleleletetetsss (B(B(BAPAPAPSSS, aaannnnnnexeexininin VV-V+))), (((3)3)3) bbbalalallololoonononededed nnnononon ss-sprprpreaeaeaddd plplplatatateleleletetetsss (B(B(BNSNSNS, 
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Ballooning and procoagulant-spreading are synchronised events 

4D live-cell imaging showed balloon formation started within 4 min after platelet adhesion and 

reached a maximal diameter by 9-10 min, as visualised by annexin-V binding (Figure 4A&B). 

Procoagulant membrane spreading followed membrane ballooning after a 1-2 min delay (Figure

4A-Ci) and both were temporally correlated (Figure 4Ci, Movies S5&S6). Only a small 

proportion of platelets (approx. 10%) ballooned without procoagulant-spreading (BNS; Figure

4Cii), and we did not observe procoagulant-spreading without ballooning These data suggest that 

ballooning is likely to be required for procoagulant-spreading, but not vice versa. In this 

experiment, after adhesion of platelets to collagen for 1 hr, the mean relative proportions of 

platelets were CSNB (27.4%), BNS (10.4%), BAPS (50.0%), NBNS AnxV- (5.9%), and NBNS 

AnxV+ (6.3%) (Figure 4Cii).    

BAPS platelets showed a punctate or cobble-stone annexin-V staining pattern (Figure

4A&B). In addition, BAPS platelets released microvesicles in a time-dependent manner (Suppl.

Figure S3) and scanning electron microscopy showed the cobble-stone appearance to be 

microvesicles formed from BAPS platelets after 1 h adhesion (Figure 4D-F). This was clearly 

distinct from the CSNB platelet (Figure 4E). We therefore suggest that procoagulant-spreading 

forms the basis for microvesicle formation and release upon adhesion of platelets to surfaces.   

Inhibition of actomyosin promotes membrane ballooning whilst blocking procoagulant-

spreading

To determine the role of the actin cytoskeleton in ballooning and procoagulant-spreading, 

platelets were incubated with modulators of actin polymerisation or myosin motor activity. 

Figure 5A shows representative figures of annexin-V binding to platelets adhered to collagen in 

the presence of these inhibitors. Blebbistatin, which blocks myosin-II ATPase activity22, 

platelets were CSNB (27.4%), BNS (10.4%), BAPS (50.0%), NBNS AnxV- (5.9%%%),),), aaandndnd NNNBNBNBNS

AnxV+ (6.3%) (Figure 4Cii).    

BABABAPSPSPS plaaatetetelets showed a punctate or cobbbblblbleee-stone annexin-V stttaiaiaining pattern (Figure

44A4A&&B& ). In adddididittitioon, BABABAPSPSPS ppplalalateteteleleletststs relee eeaseed dd mmim crrooovesssicicicllelesss ininin aa ttimmmeee-dededeppendddenenenttt mamamannnnnnererer (((SuSuSuppppppl.

FiFiigugugurerr  S3 eleeectctctrororon mimm crrrossscopypypy shoowwweddd) ) ananand sscs aana niiingng thhhe cccobbbblblb eee-ssstonono eee aapppeeearrranceee ttto be ddd

mimimicrcrcrovoovesesesiciciclelelesss fofoformrmrmededed fffrororommm BABABAPSPSPS plplplatatateleleletetetsss afafafteteterrr 111 hhh adadadhehehesisisiononon (((FiFiFiguggurerere 444DDD-FFF))). TTThihihisss waawasss clclcleaeaearlrlrly
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significantly promoted the progression of platelets ballooning and increased balloon diameter at 

Ph3 (Figure 5Aii, Figure S3). Similar results were found with platelets pre-treated with 

cytochalasin-D or Y27632. However, whilst enhancing ballooning, blebbistatin, cytochalasin-D 

and Y27632 inhibited spreading, and therefore formation of the BAPS morphology, so that 

platelets were restricted to the BNS phenotype (Figure 5Aii). Platelets treated with 

jasplakinolide, to promote actin polymerisation23, did not show any membrane ballooning or 

spreading. The data indicate that actin polymerisation and myosin contraction negatively control 

membrane ballooning. Inhibition of procoagulant-spreading using cytochalasin D also resulted in 

diminished thrombin generation (Figure 5B).  

Probing live platelets with AlexaFluor-350 phalloidin showed staining in the spread 

membranes of BAPS platelets (Figure 5C), indicating that their membrane integrity was likely 

to be compromised and that the balloons were actin-rich (see also Movie S7). In contrast, CSNB 

platelets were phalloidin negative.   

Platelet ballooning involves microtubule disruption at the exit point of the protrusion

Transmission electron microscopy images of platelets in the expansion phase (Ph2) of ballooning 

revealed a neck structure that delineated the balloon from the main platelet body (Figure S4A; 

yellow arrows), beneath which lay a disrupted microtubule ring structure, shown in detail by 

TEM tomography (Figure S4Aiii, green arrows; Movie S8). Significantly, there was no 

microtubule architecture present in Ph3 balloons (Figure S4B). In the later phases of balloon 

formation, the integrity of the membrane becomes compromised, since it becomes leaky to two 

low molecular weight dyes, calcein and propidium iodide (data not shown).  

Platelet ballooning and procoagulant-spreading requires salt and water entry 

The rapid growth of the platelet balloon suggested that it may be driven by fluid entry.  Our data 

Probing live platelets with AlexaFluor-350 phalloidin showed staining in thththeee spspsprerereadadad 

membranes of BAPS platelets (Figure 5C), indicating that their membrane integrity was likely 

o be e e cococompmpmprororomim sssed dd and that the balloons were acacctititinnn-rich (see also Movivivie ee S7). In contrast, CSNB 

pplplatttelets were ppphhhallloioioidddin n n nenenegagagatititivevee.  

PlPllatatatelele et ballllololoonninining innnvvov lvesess mmmicrororottutubububule dddisssrupptp iiionnn aaat tthehehe eeexixiit popopoinnt oof ttthehehe proootrrrusiion

TrTrTrananansmsmsmisisissisisiononon eeelelelectctctrororonnn mimimicrcrcrosososcococopyppy iiimamamagegegesss ofofof ppplalalateteteleleletststs iiinnn thththeee exeexpapapansnsnsioioionnn phphphasasaseee (P(P(Phhhfff 2))) ofofof bbbalalallololoonononininingggg
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showed a 1.6 ± 0.02 fold increase in [Cl-]cyt after 5 min contact with collagen (Figure 6A&B), 

which was absent in Cl- free medium (not shown). In similar experiments, we recorded transient 

Na+ entry during platelet adherence to collagen (Figure 6C&D), which was absent in Na+ free 

medium (not shown). The percentage of adhered platelets that ballooned (Figure 6E) and 

underwent procoagulant-spreading (BAPS, Figure 6F) was significantly attenuated in media 

lacking Cl- or Na+ ions.  Interestingly, the peak change and half-life of annexin-V binding were 

significantly reduced under these conditions (Figure S3). It is likely that Cl- entry was substantially 

mediated by calcium-activated chloride channels (CaCC) since the inhibitor of these channels, 

CaCCinh-A01, induced similar effects to removal of extracellular Cl- (Figure 6E and F).  

To assess whether water entry was required for ballooning, we increased extracellular 

osmolality, using sucrose, by 40 mmol/L, which significantly attenuated both ballooning (Figure

7A) and procoagulant spreading (BAPS, Figure 7B), but not blebbing (Figure 7A). 

Furthermore, mean balloon diameter was attenuated in the small proportion of platelets able to 

balloon (Figure S3A). Acetazolamide has been shown to block aquaporin water channels24, and 

it induced a characteristic retraction of the ballooning membrane (Figure 7A) and attenuated 

membrane accumulation of annexin-V (Movie S9). Importantly, there was also a marked 

reduction in formation of BAPS platelets (Figure 7B), suggesting a requirement for water entry 

in procoagulant-spreading.   

In addition, acetazolamide and hyperosmotic challenge significantly reduced PS exposure 

and thrombin generation on the platelet surface (Figures 7C&D, S3B and Movies S9, 10). The 

mean intensity of thrombin substrate per unit membrane area was similar in BAPS and BNS 

platelets (Figure 7E), suggesting that the greater thrombin generation seen in controls was due to 

increased membrane surface area provided by ballooning and procoagulant-spreading.  

To assess whether water entry was required for ballooning, we increased exexextrtrtracacacelelellulululalalarr r 

osmolality, using sucrose, by 40 mmol/L, which significantly attenuated both ballooning (Figure

7A) ) ) ananand d d prprprocococoagugugulall nt spreading (BAPS, Figureee 777BBB), but not blebbing (((FiFF gure 7A). 

FFFurrtrthermore, mmmeeae nn bababalllloooooonnn dididiamamametee ererer wwwaas attttttennnuatteddd innn ttthehehe sssmamamallllll ppprrrr opopopororortiion ooof f f lplplatatateleleletttss s babblelele ttto oo

baaallll oooooon (Figugugure S33A3 )). AAAcetataazooolal mimimiddde haasa bbbeeeeen shhooownnn ttoto bbllolockckk aaaquququapapa ooorinn wwwatttere  chahahannnneelsss24, anaand 

ttt iiindndnduccucededed aaa ccchahaharararactctcterererisisistititiccc rereretrtrtracacactititiononon ooofff thththeee bababalllllloooooonininingngng mmmememembrbrbranananeee (((FiFiFiguggurerere 777AAA))) anananddd atatattetetenunnuatatatededed 
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Blocking water entry and ballooning significantly reduces in vivo thrombus formation.  

Mice were treated by bolus intravenous administration of acetazolamide (7 mg/kg) and carotid 

artery damage was induced by application of FeCl3 (10% v/v).  Accumulation of platelets, 

labelled with DyLight 488-antiGp1b , was visualised by video epifluorescence microscopy.  

Whereas control mice showed rapid and sustained accumulation of platelets in a growing and 

eventually occlusive thrombus, mice treated with acetazolamide were markedly spared from this 

event (Figure 8). Balloon-enhanced local generation of thrombin will therefore likely form a 

positive feedback system to further activate platelets and promote coagulation.   

 

Discussion

Platelets are the surveillance cells of the vascular system, detecting vessel damage events and 

acting as the early and rapid response system to address the damage they recognise. They rapidly 

adhere to sub-endothelial matrix collagen, recruit more platelets to form an aggregate and 

stabilise the structure by initiating blood coagulation. This procoagulant activity depends on the 

surface exposure of negatively charged aminophospholipids, particularly phosphatidylserine 

(PS), which binds the tenase and prothrombinase complexes. The dynamics of platelet membrane 

transformation therefore underpin the coagulant response. Previous studies have shown that 

platelets are able to undergo both membrane blebbing and ballooning upon activation7-11, and 

that platelet balloon formation is part of the normal hemostatic response.  In particular the studies 

of Wester et al.,7, 8 used a template bleeding technique to induce acute wounds to human skin, 

and excised the wounds at various time periods after wounding.  Using histological and electron 

microscopic approaches they showed the existence of platelet balloons within the structure of the 

associated thrombus.  Importantly they showed that fibrin was deposited in the margins between 

Discussion

Platelets are the surveillance cells of the vascular system, detecting vessel damage events and 

actingngng aaasss thththeee eae rllly y y and rapid response system to adadaddrdd ess the damage theeey y y recognise. They rapidly

adadadhhhere to sub-b enenendoddothhheeleliaaal ll mamamatrtrtrixixix cccololollalal ggegen, rrecececrur it mmmoreee plplplatatatelelelettts tooo fffororormm m aan aaaggggggreeegagagatett aaandndnd 

tttababa ilililise thee stststrucctc uuru e bybyby initititiatititingngg bbbllloododod coaaaguuulatiioonn. ThThThis ppprrrocccoooagugugulall nnnt aacttivivi ititity y deeeppependds on ttthee 

uurfrfrfacacaceee exeexpopoposussurerere ooofff nenenegagagatititiveevelylly ccchahahargrgrgededed aaamimiminononophphphosososphphpholololipipipidididsss, pppararartititicucculalalarlrlrly phphphosososphphphatatatidididyllylseseseriririnenene 
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platelet balloons, suggesting a functional link between balloon formation and coagulation in 

vivo. Consistent with this, we demonstrated that activated factor V and X are bound to ballooned 

platelet membranes (Fig. S2).  We have determined the molecular regulation of these events, and 

revealed in real time the formation of a novel ballooned and procoagulant-spread (BAPS) 

platelet phenotype in a process we termed procoagulant-spreading. The balloon and 

procoagulant-spread structures are functionally linked and both contribute to the local generation 

of thrombin. BAPS platelets break into a multitude of procoagulant microvesicles, and this 

process may form a major route for generation of platelet-derived microvesicles which contribute 

to local hemostasis but with potential for pathological roles in various cardiovascular diseases25.   

While previous studies had described platelet membrane ballooning in some detail7, 8, 10, 

11, 26, this is the first report of coordinated membrane ballooning and procoagulant-spreading. 

Platelets with characteristics similar to the ballooned platelets seen here have been reported, 

particularly COATED and SCIP platelets18, 26.  However, there are clear differences, since 

platelets in this study showed sustained integrin IIb 3 activation (Figures 1G,H & S2) and 

transient increase in cytosolic calcium (data not shown).  Furthermore, data in Figure S2 and 

S4b show that the balloon retains some of the molecular and subcellular components of the 

platelet from which it was derived, including various surface receptor markers and mitochondria.  

The timing and localisation of PS exposure in platelets indicates that it does not appear 

until ballooning is well under way, suggesting that PS exposure is not a requirement for 

ballooning. Rather, platelet balloons result from physical disruption to the circumferential 

microtubule, accompanied by an increase in internal hydrostatic pressure provided by a 

coordinated Na+, Cl- and water entry mechanism, which inflates the balloon. By contrast, 

membrane blebbing analogous to that seen in cancerous cells is reversible and occurs 

While previous studies had described platelet membrane ballooning in sommmeee dededetatataililil7, 7, 7, 8, 8, 8, 10,1010  

1, 26, this is the first report of coordinated membrane ballooning and procoagulant-spreading.

Platteleleletetets ss wiwiwiththth chahaharraracteristics similar to the ballooooonenened platelets seen hereee hhhave been reported, 

ppparttticularly COAOAOATETEEDDD anananddd SCSCSCIPIPIP ppplalalatetelell tts18,8,8 262626... Hooowwwevevever,r,r, ttthehehererr aareree ccleleleararar ddiffefeferererencncceseses, , , siiinncn e e e 

plllatata elelelets in ttthihih s ssts uudu y shshshowededd sssusuu taaaininineddd iiintegegegrririn IIbbb 3 accctivvvatatatioioon n (FFiFigugg rerres 1G1GG,H,H,H &&& SSS2) annnd 

rrrananansisisienenenttt ininincrcrcreaeaeasesese iiinnn cyccytototosososolililiccc cacacalclclciuiiummm (d(d(datatataaa nononottt shshshowoown)n)n). FFFurrurthththererermomomorerere, dadadatatata iiinnn FiFiFiguggurerere SSS222 anananddd
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independent of fluid entry mechanisms27. It is possible that Na+ may enter through non-selective 

cation channels, such as TRPC628,  or by Na+/Ca2+ exchange. For Cl-, anoctamin (TMEM16) 

genes are key components of calcium-activated chloride channels, (CaCC)29-31. Anoctamin-6 is a 

CaCC6, 32 which functionally couples to TRPC channels33. Salt may therefore enter through 

regulated pathways, providing an osmotic drive for water entry and ballooning. The role of 

calcium in these events is pivotal since blockade of calcium entry or release from intracellular 

stores abolished ballooning and procoagulant-spreading, but not lamellipodial spreading (data 

not shown). A rise in cytosolic free Ca2+ may therefore trigger CaCC opening6 and allow 

chloride entry34.  Interestingly, the rise in cytosolic Na+ and Cl- ions concentrations are 

predominantly in the platelet cell body, rather than the balloon (Figure 6).  A possible 

explanation is that the major volume change occurs in the balloon, and not in the cell body. 

Likely, all increases in ion concentration in the balloon are continuously being diluted through 

entry of water. Related to this, we have never observed balloons to continue to grow or to burst, 

but always observe them reaching a plateau size.  We suggest that this is likely to be a product of 

this transient increase in ion permeability leading to a self-limiting water entry, constraining the 

balloon to a steady-state sustained volume.   

Scott syndrome is extremely rare and patients show a bleeding disorder associated with 

defective expression of TMEM16F and a resultant defect in microvesicle formation and exposure 

of PS5, 35. Our observations show that platelet ballooning is also markedly impaired in this 

syndrome (Figure 1C). It is possible that TMEM16F provides the critical mechanism driving 

ballooning, through regulated ion influx followed by water, and that the membrane stretching 

lowers the activation energy required for scrambling of membrane phospholipids and movement 

of inner leaflet PS to the outer leaflet.  

predominantly in the platelet cell body, rather than the balloon (Figure 6).  A possssssibibiblelele 

explanation is that the major volume change occurs in the balloon, and not in the cell body. 

Likeeelylyly,,, alalall l l ininincrcc eaaaseees in ion concentration in the bababallllllooon are continuouslllyyy bebb ing diluted through

enenentrrry of water. RRRellateteteddd tototo ttthhihis,s,s, wwweee hahahaveveve nnevveere  obserrrved d d bababalllllloooooonsn  tooo cococontntntinnue ttto o o grrrowowow ooorr r totoo bbburururststst, 

buuut tt alalalways ooobsbb errrveee theeemm m reacacachihihingngg aaa plalaateteteauuu siizize.  WWWe suguguggegegesttt ttthahaat ththhisii iiis likekekelyyy to bebebe a ppproooduccct of

hhhisisis tttrararansnsnsieieientntnt iiincncncrerereasasaseee ininin iiiononon pppererermememeabababilililititity leleleadadadiiingngng tttooo aaa seseselflflf ll-limimimitititinininggg waawateteterrr enenentrtrtry, ccconononstststrararaininininininggg thththeee 
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Importantly, this study has revealed a novel phenotype which we have termed ballooned 

and procoagulant-spread (BAPS) platelets.  These structures break up to form procoagulant 

microvesicles and thereby increase the PS-exposing membrane surface area for procoagulant 

activity. That it had been previously missed in the literature was likely the result of the extremely 

thin and particulate nature of the spread membrane, which is only visible when platelets are 

stained with labelled annexin-V, under physiological concentrations of extracellular calcium and 

monitored over varying z-heights.  There was a direct link between ballooning and procoagulant-

spreading because inhibition of ballooning by CaCCinh-A01 (Figure 6E) or jasplakinolide or 

acetazolamide (Figures 5 & 7) also blocked procoagulant-spreading and microparticle 

generation (Figure S3). Agents that inhibit procoagulant-spreading independent of ballooning, 

such as blebbistatin, cytochalasin-D or Y27632, also largely inhibited microparticle formation 

(Figure S3).  It is therefore likely that all these events are functionally linked, and sequential, 

from ballooning to procoagulant-spreading to microparticle formation (Movies S5&S6).  It is 

interesting to note that endothelial PS exposure has recently been shown to play a major role in 

thrombin generation36.  However, it is possible that procoagulant-spreading may also allow 

platelets to contribute to coagulation over a much wider surface area than just the platelet ‘cell 

body’, which may explain any apparent discrepancy with Ivanciu et al. (2014).   

Our data would also suggest that as the hydrostatic pressure in the platelet cell body rises, 

it is able to sustain this increase in pressure due to the intact cytoskeleton of the cell.  However, 

once a weakness in the cytoskeleton develops, the membrane rapidly inflates to generate the 

balloon.  This leaves further questions, such as the molecular nature of the ion and water 

channels, and whether disruption of the cytoskeleton is a tightly coordinated event.  The fact 

however that acetazolamide is able to markedly diminish in vitro ballooning, and also act to 

generation (Figure S3). Agents that inhibit procoagulan  t-spreading independent ofofof bbbalalallololoonononinining,gg

uch as blebbistatin, cytochalasin-D or Y27632, also largely i n nhibited microparticle formation

Figugugurerere SSS333).).).  It iiis thtt erefore likely that all these evevevenenents are functionally  lililinknn ed, and sequential,

frfrfrommm balloonining gg too ppprororocococoagagagulululanananttt-spspsprerr adaa iing tott  miccrooopaaartrtrticiciclelele ffforormamamatititiononon (((MMoviviieseses SSS5&5&5&S6S66))).  ItItIt iiisss
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potently inhibit thrombus formation in vivo, indicates the importance of this event, and suggests 

potentially novel ways to control thrombus formation pharmacologically.   

In conclusion, this study has uncovered the molecular mechanisms that control dramatic 

platelet membrane ballooning and revealed a novel procoagulant-spread membrane structure, 

upon platelet activation by collagen. The events are mechanistically coupled and are likely to 

amplify the procoagulant responses at wound sites.  They also suggest a route by which platelets 

generate microparticles upon contact with collagen.  The mechanism of membrane ballooning 

shown here, which involves salt and water entry into the cells, may lead to new therapeutic 

directions for the control of thrombus formation in vivo.   
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Figure Legends: 

Figure 1. Spatiotemporal dynamics of human platelets undergoing ballooning and a 

procoagulant response upon adhesion to collagen. (A) & (B) Platelets were allowed to adhere to 

a collagen-coated surface and imaged by phase contrast video microscopy.  Images show the 

time course of interaction of a single platelet, with frame numbers in (A) corresponding to the 

time points shown in (B).  Three distinct phases of ballooning are shown as Ph1, Ph2 and Ph3. See 

also Movie S1.  (C) Rotated views of a 3D reconstruction of Alexa568-Annexin-V (AnxV; red) 
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stained ballooned platelet in Ph3.  See also Movie S2.  (D-F) Time course of a platelet 

undergoing ballooning upon adhesion to a collagen-coated surface.  Alexa568-AnxV-stained 

fluorescence images in (upper panel D, see also Movie S3) are superimposed upon phase 

contrast images (lower panel D).  Image frame numbers correspond to time points indicated in 

(E) & (F).  (E) displays the time course of AnxV staining in the platelet cell body and balloon, 

and the early time course after adhesion to collagen is indicated in the inset (F).  (G) Extended 

focus image showing Oregon green-488 human fibrinogen staining for activated integrin IIb 3 

(green) and Alexa568-AnxV (red).  The time course for fibrinogen (green) and AnxV (red) 

binding is shown in (H).  Scale bars: (A, C, D, G) 2μm, (B, E & F) 5 min.  Data are 

representative of 257 platelets from 9 donors.   

Figure 2. Thrombin is generated on the ballooned surface of human platelets adherent to collagen: 

Scott patient platelets show aberrant membrane ballooning. (A) Platelets in platelet-rich plasma 

were allowed to settle onto a collagen-coated surface, and thrombin activity was visualized in real-

time, by means of a fluorogenic thrombin substrate, Z-GGR-AMC.  A(i) Z-section of confocal 

image at 15 min shows the fluorogenic thrombin substrate on the membranes of ballooned 

platelets. A(ii) 3D reconstruction of platelets in A(i).  A(iii) shows the first derivative of the time 

course of thrombin generation in a representative single platelet after adhesion to the collagen-

coated surface. Scale bars in (i) and (ii) are 3 μm. . (B) Blood from healthy control (i) or a patient 

with Scott syndrome (ii) was flowed over a collagen-coated surface at 1000 s-1 for 4 min.  

Accumulated thrombi were stained with FITC- CD62P mAb to detect P-selectin. Arrows indicate 

platelet balloons.  Scale bars in (i) and (ii) are 5 μm.  Data are representative of platelets from at 

least 3 donors (healthy) except Scott patient data in B(ii) where n=1.  

epresentative of 257 platelets from 9 donors.   

Figuuurerere 222... ThThThrorr mbmbmbinini  is generated on the ballooneed d d sususurface of human platetetelelelets adherent to collagen:
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Figure 3. A distinct subpopulation of ballooning platelets undergo extensive procoagulant-

spreading. Platelets were allowed to adhere to a collagen-coated surface for 1 hour and imaged 

by phase contrast and fluorescence video microscopy. (A) shows an overlay of phase contrast 

with Alexa568-Annexin-V (AnxV; red) and Fluo-4 (green).  Four phenotypes were observed, as 

indicated: non-ballooned non-spread platelets (NBNS), ballooned non-spread platelet (BNS), 

conventional spread non-ballooned platelet (CSNB) and ballooned and procoagulant-spread 

platelet (BAPS). (B) Z sections of the image shown in (A) at the indicated distance above the 

coated surface.  Shown are phase-contrast (i), Alexa568-AnxV (red, ii), Alexa568-AnxV (red) 

superimposed on Fluo-4 (green, iii), and combined overlay (iv). Scale bar: 10 μm. Data are 

representative of platelets from 9 human donors. See also associated Movie S4.   

 

Figure 4. Membrane ballooning and procoagulant-spreading are coordinated events. (A-C) 

Platelets were allowed to adhere to a collagen-coated surface and imaged by 4D fluorescence 

microscopy.  A time series of 3D reconstructions of a ballooned and procoagulant-spread 

(BAPS) platelet is shown in the X-Y axis (A, and see Movie S5) and X-Y-Z axis (B, and see 

Movie S6). Images are superimposed Alexa568-Annexin-V (AnxV; red) and DiOC6 (green). 

Spread membrane and balloon diameter of this platelet are shown in C(i), while C(ii) indicates 

the percentage of adherent platelets showing different phenotypes after 1 hr on collagen, 

abbreviated as per legend for Fig. 3. Data show min to max values, median and interquartile 

ranges. (D-F) Scanning electron microscopy images of platelets adherent to collagen show 

BAPS and conventional spread non-ballooned (CSNB) phenotypes as indicated (F is a zoomed-

in view of inset in E). Scale bar: 12 μm (A, B), 3 μm (D-F). Data are representative of platelets 

from 9 human donors.  

epresentative of platelets from 9 human donors. See also associated Movie S4.   

Figuguurerere 444.. . MeMeMembbbraraanen  ballooning and procoagulaaantntnt-ssspreading are coordidiinananated events. (A-C) 
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Figure 5. Inhibition of actomyosin contraction promotes membrane ballooning whilst blocking 

procoagulant-spreading. Platelets were pre-incubated with DMSO (0.1%; control), blebbistatin 

(BBS; 80 μmol/L), cytochalasin-D (Cyt-D; 5 μmol/L), Y27632 (10 μmol/L) or jasplakinolide 

(Jaspl; 5 μmol/L) and allowed for 1 h to adhere to collagen coated surface. (A) (i) Top row 

shows extended focus fluorescence images of Alexa568-Annexin-V (AnxV; red), which were 

overlaid with phase-contrast images in bottom row. (ii) Interleaved box plots with whiskers 

showing min to max values, median and interquartile range. Graph indicates the percentage of 

adherent platelets observed showing different phenotypes. For abbreviations, see text for Fig. 3. 

Data analysis was by Friedman test, followed by Dunn’s multiple comparison test. P < 0.05 (*) 

or P < 0.01 (**) was considered significant.  (B) Mean intensity per platelet versus time plot, of 

the fluorogenic thrombin substrate, after adhesion to collagen.  Extended focus fluorescence 

images are control (i, ii) or cyto-D treated platelets (iii, iv) detecting thrombin substrate alone 

(cyan blue, i & iii) or overlaid with AnxV (ii & iv). (C) 3D reconstruction of adherent platelets 

stained with (i) fluo-4 (green), (ii) AnxV (red) and (iii) phalloidin (magenta), distinguishing 

CSNB and BAPS phenotypes as indicated. White and yellow bracket in C(ii) delineate the 

ballooned and procoagulant-spread segments of the BAPS platelet. C-iv shows an overlay of i - 

iii. Scale bar: 12 μm (A, B), 10 μm (C). Data are representative of platelets from 6 human 

donors. See also Movie S7 and Figure S3.  

  

Figure 6. Membrane ballooning and procoagulant-spreading is mediated by salt entry. (A-D) 

Platelets were pre-loaded with the chloride ion (Cl-) indicator MQAE (A,B) or the sodium ion 

(Na+) indicator CoroNa™ Green (C,D).  Cells were allowed to adhere to immobilised collagen 

and time-lapse fluorescence images captured. Images show the time course of interaction of a 

single platelet, with frame numbers in (A) & (C) corresponding to the time points shown in (B) 

or P < 0.01 (**) was considered significant.  (B) Mean intensity per platelet versuuusss tititimememe ppplololot,t,t, ooof 

he fluorogenic thrombin substrate, after adhesion to collagen.  Extended focus fluorescence 

magagageseses aaarerere ccconoo trrrololol (i, ii) or cyto-D treated plateleleetststs ((iii, iv) detecting thhrrorombmm in substrate alone 
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& (D) respectively.  Images in (A) show MQAE alone (Cyan blue, i), overlaid onto phase-

contrast image (ii) or on to Alexa568-Annexin-V (AnxV; red, iii). (B) shows fluorescence 

quantification (F/F0) for MQAE and Alexa568-AnxV, and mean balloon diameter. MQAE 

detects chloride ion entry by collisional quenching, thus decreases in F/F0 against time represent 

increases in [Cl-]i. Images in (C) show CoroNa™ Green alone (green, i) or overlaid on to phase-

contrast image (ii). (D) shows fluorescence quantification (F/F0) for CoroNa™Green and mean 

balloon diameter. (E&F) Platelets were pre-treated with DMSO (0.1%; control) or CaCCinh-

A01 (40 μmol/L) or resuspended in Cl--free or Na+-free media, and added to collagen-coated 

surfaces. The percentage of maximally adherent platelets undergoing membrane blebbing or 

ballooning over time is shown in (E).  Corresponding images are shown in the lower panels 

where AnxV (red) images are superimposed onto phase-contrast images. (F) shows phenotypes 

(abbreviated as per Fig. 3) of platelet adherent to collagen at 1 h time point; in interleaved box 

plots with whiskers showing min to max values, median and interquartile range. Data analysis 

was by Friedman test, followed by Dunn’s multiple comparison test. P < 0.05 (*) or P < 0.01 

(**) was considered significant. Scale bars: 3 μm (A, C), 10 μm (E). Time scale (B, D, E): 15 

min. Data are representative of platelets from 7 human donors.  

 

Figure 7. Water entry drives platelet membrane ballooning and procoagulant-spreading. (A) 

Platelets were untreated (control), resuspended in hyperosmolar solution (+40 mOsmol) or pre-

incubated with acetazolamide (40 μmol/L) and allowed 1 h, to settle onto collagen-coated 

surface. Graphs show the percentage of maximally adherent platelets undergoing membrane 

blebbing or ballooning over time.  Lower panels show representative images of Alexa568-

Annexin-V (AnxV) stained platelets (red) superimposed on corresponding phase-contrast 

images. (B) Bar chart shows the percentage of adherent platelets observed showing different 

ballooning over time is shown in (E).  Corresponding images are shown in the lowewewer r r papapanenenelslsls  

where AnxV (red) images are superimposed onto phase-contrast images. (F) shows phenotypes 

abbbrerereviviviatatatededed aas pepeperr r Fig. 3) of platelet adherent tooo cccoloo lagen at 1 h time pppoioiointn ; in interleaved box 
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phenotypes, abbreviated as per Fig. 3; in interleaved box plots with whiskers showing min to 

max values, median and interquartile range. Data analysis was by Friedman test, followed by 

Dunn’s multiple comparison test. P < 0.05 (*) or P < 0.01 (**) was considered significant. (C)

extended focus fluorescence images showing fluorogenic thrombin substrate (cyan) (i: control, 

iii: acetazolamide) alone and superimposed onto AnxV stained platelets (red) (ii: control, iv: 

acetazolamide). (D) Fluoresence intensity versus time plot for fluorogenic thrombin substrate. 

(E) Specific fluorescence intensity of the thrombogenic substrate relative to platelet surface area 

of control and acetazolamide-treated platelets. Scale bar: 15 min (A, graphs), 10 μm (A lower 

panels, C). Data are representative of platelets from 6 human donors. See also Movie S9 and S10 

for videos of acetazolamide-treated and hyperosmolar-treated platelets undergoing reversible 

ballooning.    

  

Figure 8. Acetazolamide suppresses thrombus formation in vivo. Mice were administered

acetazolamide (7mg/kg) or vehicle by single bolus IV injection, followed immediately by 

DyLight 488-conjugated anti-GPIb  antibody to label platelets.  Carotid artery damage was 

achieved by treatment with FeCl3 as described in supplementary material. Fluorescently labelled 

platelets adhering at the site of injury could then be imaged continuously by intravital 

fluorescence microscopy.  Images at frames indicated in (A) correspond to time points indicated 

in (B (i)), which shows median fluorescence intensity, quantified using ImageJ. Analysis of area 

under the curve for media fluorescence is shown in B (ii) as interleaved box plots with whiskers 

showing min to max values, median and interquartile range. Data analysis was by Wilcoxon 

Signed Rank Test, P < 0.05 (*) was considered significant. Scale bar: 500 μM (A), 5 min (B). 

Data are from 8 mice.   

 

for videos of acetazolamide-treated and hyperosmolar-treated platelets undergoinnnggg rerereveveversrsrsibibiblelele 

ballooning.    
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SUPPLEMENTAL MATERIAL 

 

 

 

SUPPLEMENTARY METHODS 

Materials 

Fibrillar collagen (Horm suspension) was from Nycomed (Munich, Germany). Alexa Fluor® 

568 Conjugated Annexin V (annexin-V; anxV), Fluo-4 AM, propidium iodide, chloride ion 

indicator N-(Ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE), and 

CoroNa™ green sodium indicator were purchased from Life Technologies. Glass bottom 

35mm dishes (P35G-1.5-20-C) were obtained from MatTek Corporation (USA). Flow 

chambers (Vena8™ biochip) were from Cellix Ltd. BAPTA-AM, blebbistatin, jasplakinolide, 

cytochalasin-D, Y27632, xestospongin-C and CaCCinh-A01 were purchased from Tocris 

(Bristol, UK).  Acetazolamide was purchased from Sigma-Aldrich (Poole, UK) 

 

Live cell confocal imaging 

Confocal images were acquired using a Perkin Elmer Ultra-VIEW ERS 6FE confocal system 

(with Yokogawa CSU22 spinning disk) attached to a Leica DM I6000 inverted 

epifluorescence microscope. The system is equipped with Piezo drive, Hamamatsu C9100-50 

EM-CCD camera (14 bit, 8 micron pixels) and the following laser lines: 14 mW Ar laser 

(488, 514 nm lines), 7.5 mW Kr laser (568 nm), 7.5 mW violet (405 nm) diode laser, 7mW 

blue diode laser (440 nm) and 7.5 mW Red diode (640 nm). Images were captured with 

Volocity (Improvision) acquisition software using an oil immersion objective lens (100x). 

Acquisition setting was kept constant and pixel width at x1 binning was 0.069 µm; phase-

contrast imaging was integrated with fluorescence imaging using emission discrimination 

mode. In selected experiments, image acquisition was done in real-time over variable z-

heights. 

 

Electron microscopy of mouse carotid artery 

The carotid artery was carefully excised and added to 2.5% glutaraldehyde in 0.1 mol/L 

sodium cacodylate buffer for 1 h. The tissue was post-fixed with 1% osmium tetroxide in 

sodium cacodylate buffer for 1 h, stained with 3% uranyl acetate in deionised water for 30 

min and dehydrated through a graded series of ethanol (70%, 80%, 90%, 96%) followed by 

three washes in 100% ethanol. The ethanol was replaced with propylene oxide prior to 

incubation in a 1:1 mixture of propylene oxide and Epon for 24 h. The propylene oxide was 

left to evaporate for 3 h before the tissue was added to fresh Epon which was hardened for 72 

h at 60°C. The artery was sectioned at a thickness of 70 nm. 

 
Correlative light-electron microscopy of platelets 

Platelets were seeded into live cell imaging dishes (MatTek) with an etched grid pattern in 

the glass. Upon completion of fluorescence imaging, the location of the platelets of interest 

on the grid was noted. Platelets were fixed with 2.5% glutaraldehyde in 0.1mol/L sodium 

cacodylate buffer (pH7.4) for 30 minutes. Platelets were post-fixed with 1% osmium 

tetroxide in sodium cacodylate buffer for 30 minutes and stained with 3% uranyl acetate in 

deionised water for 30 minutes. Platelets were dehydrated through a graded series of ethanol 

(70%, 80%, 90%, 96%) followed by three washes in 100% ethanol. Platelets were then 

embedded in pure Epon for 2 hours before being replaced with fresh Epon and hardened for 

48 hours at 60°C. The etched coverslip was removed by first submerging in liquid nitrogen 

and then plunging into boiling water. This process was repeated until the coverslip could be 

lifted away from the resin. The resin was then trimmed down to the area of interest and 

sectioned at a thickness of 250 nm. Transmission electron microscopy (TEM) images were 
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acquired on an Eagle 4k x 4k CCD camera attached to an FEI Tecnai 12, 120kV BioTwin 

Spirit. 

 

Transmission EM Tomography 

Sections were exposed to fiducial markers (10 nm gold particles) on both sides. A dual axis 

tilt series was acquired using an FEI Tecnai 20, 200kV TEM using a minimum angular range 

between -60° and +60°, acquiring images at 1° increments. The two tilt series were combined 

using IMOD reconstruction software. 

 

In vitro thrombosis assay 

Flow chambers (Vena8™ biochip) were coated with 50 μg/mL fibrillar collagen for 2 h at 

4°C. Chambers were then blocked with 2% fatty acid-free BSA (Sigma Aldrich) overnight at 

4°C. Human blood was drawn from healthy volunteers, under local ethics committee 

agreement and after fully informed consent. Blood was taken into 4% citrate (1:10 v/v) and 

supplemented with 2 units/mL heparin (Sigma Aldrich) and 40 μmol/L PPACK 

(Calbiochem). Blood was labelled with 2 μmol/L DiOC6 (3,3′-dihexyloxacarbocyanine 

iodide) for 10 min in the dark. Immediately prior to being passed through the flow chamber, 

6.6 mmol/L CaCl2 and 6.6 mmol/L MgCl2 were added. Blood was passed through the flow 

chamber at a rate of 1000 s
-1

 for 5 min. The flow chamber was washed for 5 min with 

HEPES-Tyrode’s buffer (10 mmol/L HEPES pH 7.2, 145 mmol/L NaCl, 3 mmol/L KCl, 0.5 

mmol/L Na2HPO4, 1 mmol/L MgSO4) to remove excess red blood cells. The chamber was 

visualised by confocal microscopy.  

 

Ferric chloride carotid injury model in mouse 

In vivo thrombus formation assays were performed as described here. Mice were bred and 

experimental procedures performed under UK Home Office licence PPL30/2908, held by 

AWP.  Mice were anaesthetised with ketamine 100 mg/kg (Vetalar V, Pfizer) and 10 mg/kg 

xylazine (Rompun, Bayer). Acetazolamide or control vehicle was administered by 

intravenous bolus and platelets were labelled by intravenous administration of 100 mg/kg 

Dylight-488 conjugated anti-GPIbβ antibody, 10 min prior to induction of thrombosis. Right 

carotid arteries were exposed and 2x1 mm 15% ferric chloride-soaked filter paper was placed 

on the arterial adventitia for 3 min. Time-lapse microscopy of the injury site for 20 min was 

performed and images processed using ImageJ. Background fluorescence values measured 

upstream of the injury site were subtracted from thrombus-specific fluorescence and data 

expressed as integrated densities.   
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SUPPLEMENTARY FIGURES 

 

 
Figure S1:  In vivo and in vitro evidence for ballooning of human platelet membranes 

under flow; related to Figure 1.  (A) Electron microscopy of a 30 min biopsy of mouse 

carotid artery following ferric chloride injury (A-ii and A-iii are zoomed-in views of insets in 

A-i and A-ii), respectively, with arrows pointing to balloons. (B) Confocal Z-section of a 

thrombus formed after DIOC6-stained (in green) whole human blood was perfused through 

collagen-coated capillaries (B-ii and B-iii are zoomed-in views of rectangular and oval insets 

in B-i, respectively, highlighting ballooned platelets.(C) Extended focus images of thrombus 

following in vitro flow of whole blood over collagen, showing annexin-V-labelled PS (in 

magenta) (C-i), DIOC6-stained (in green) platelets (C-ii), a combined overlay (C-iii) with 

arrows showing ballooned platelets, and an overlay onto phase-contrast (C-iv). Scale bar: 50 

µm (A-i), 10 µm (A-ii, C), 2 µm (A-iii), 20 µm (B-i), 2 µm (B-ii, B-iii). 
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Figure S2: Ballooned human platelets’ membrane expressed coagulation markers.  

Platelets allowed to undergo adhesion and full membrane ballooning (phase 3) over collagen-

coated surfaces.  Cells were then stained for expression of surface markers with anti FVa, anti 

FXa, anti-CD41, anti-GP1b, anti-P-selectin and anti-PAR1 and counterstained with 

Alexa568-AnxV as indicated. Oregon green conjugated human fibrinogen was also used to 

stain platelets as indicated. Scale bar = 3µm. Data were obtained from platelets analysed from 

3 human donors. 
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Figure S3: Mean balloon diameter and procoagulant response of human platelet 

adherent to collagen; related to Figure 2. (A) Platelets, treated as indicated, were 

monitored as they adhere to collagen. Mean membrane balloon diameter was measured 

during the stable phase of balloon formation (Ph3). (B) Spatio-temporal dynamics of 

phosphatidylserine exposure associated with platelet ballooning as revealed by annexin-V 

binding to platelets (in orange) or membrane balloons (in magenta). Summary charts show 

the peak change in annexin-V accumulation (i) and time required for annexin-V intensity to 

decay to 50% peak values (ii). (C) Microparticles (200-900 nm) released were identified by 

image intensity and counted; data are expressed as the number of microparticles divided by 

the number of platelets in the field of view. Data (mean ± SEM) are representative of 

platelets from 6-9 human donors. 
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Figure S4: Platelet ballooning involves microtubule disruption at the exit point of the 

protrusion; related to Figure 5. (A) Transmission electron microscopy of a ballooning 

human platelet (A-ii and A-iii are zoomed-in views of A-i and A-ii, respectively). A 

tomogram video file of (A-iii) is provided as Supplementary Movie 8. Green arrows in A 

point to unwinding microtubules; white arrows point to collagen fibre, red arrows point to 

balloon membrane, and yellow arrows  point to a ‘neck-like’ structure in the ballooning 

region of the platelet. (B) Correlative light-electron microscopy of a ballooned platelet.  

Phase-contrast overlay with annexin-V (in red) (B-i) and transmission electron microscope 

image (B-ii) of a platelet at Ph3 (B-iii is zoomed-in view of B-ii). Yellow arrows point to 

cristae within mitochondria. Scale bar: 1 µm (A-i), 500 nm (A-ii,iii), 2 µm (B-i), 500 nm (B-

ii, iii). Data was obtained from platelets analysed from 4 human donors. 
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SUPPLEMENTARY MOVIES 

 

Movie S1 

Platelet membrane ballooning is a consequence of adhesion to collagen; related to 

Figure 2. Confocal phase contrast images of human platelet adhering to fibrillar collagen 

were captured at the rate of 1 frame per 4 seconds. Confocal images were acquired using a 

Perkin Elmer Ultra-VIEW ERS 6FE confocal. Movie was created at 24 frames per second 

using Volocity 6.3 software. 

 

Movie S2 

Membrane balloon increases platelet procoagulant surface; related to Figure 2.  Movie 

is a 3D visualisation of a ballooned human platelet, showing copious accumulation of 

annexin-V (in red) on both platelet body and inflated/ballooned membrane. Images were 

acquired by Perkin Elmer Ultra-VIEW ERS 6FE confocal system. Rotated 3D reconstruction 

of image sections was performed as described in methods using Volocity 6.3 software.  

 

Movie S3 

Spatio-temporal dynamics of the early procoagulant response associated with collagen 

induced human platelet ballooning; related to Figure 2.  Fluo-4 (in green) and annexin-V 

(in red) were used to monitor calcium mobilisation and membrane exposure of 

phosphatidylserine in real time, respectively. Images were captured as described in methods 

at a frame per 4 seconds, using a Perkin Elmer Ultra-VIEW ERS 6FE confocal system.  

Movie was created at 24 frames/second using Volocity 6.3 software.  

 

 

Movie S4 

Ballooned and procoagulant-spread (BAPS) platelets are a distinct subpopulation of 

human platelet on collagen sites; related to Figure 3.  Fluo-4 (green) and annexin-V (red) 

were used to label intracellular calcium and externalised phosphatidylserine. A z-axis view is 

shown as image acquisition mode is switched from phase contrast to fluorescence mode. 

Images were captured at a frame per 4 seconds, using a Perkin Elmer Ultra-VIEW ERS 6FE 

confocal system.  Video rendition was done using Volocity 6.3 software. 

 

Movie S5 

Ballooning and procoagulant-spreading visualised (X-Y) orientation; related to Figure 

4. A 4-dimensional (4-D: xyz-t) reconstruction of human platelets adherent on collagen 

shows real time membrane dynamics in the X-Y axis. Images were captured using a Perkin 

Elmer Ultra-VIEW ERS 6FE confocal system. Images are superimposed annexin-V (red) and 

DIOC6 (green) 3D re-constructions at selected time-points previously indicated. Movie was 

created using Volocity 6.3 software. 

 

Movie S6 

Ballooning and procoagulant-spreading visualised in (X-Y-Z) orientation; related to 

Figure 4.  A 4-dimensional (4-D: xyz-t) reconstruction of human platelets adherent on 

collagen showing real time membrane dynamics in the X-Y-Z axis. Images were captured 

using a Perkin Elmer Ultra-VIEW ERS 6FE confocal. Images are superimposed annexin-V 

(red) and DIOC6 (green) 3D re-constructions at selected time-points previously indicated. 

Movie was created using Volocity 6.3 software. 
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Movie S7 

Actin localisation in ballooned and procoagulant-spread platelets; related to Figure 5. 
Actin was visualised by Alexa Fluor® 350 Phalloidin staining (magenta), intracellular 

calcium by Fluo-4 (green) and phosphatidylserine exposure by annexin-V (red). Images were 

captured using a Perkin Elmer Ultra-VIEW ERS 6FE confocal system. Movie was created 

using Volocity 6.3 software. 

 

Movie S8 

Platelets’ microtubule bundles disruption is associated with membrane ballooning 

related to Figure 5. Transmission electron microscopy images were acquired on an Eagle 4k 

x 4k CCD camera attached to an FEI Tecnai 20, 200kV BioTwin Spirit. Movie is a 

reconstructed single-axis tomogram showing microtubule disruption during active platelet 

ballooning.  

 

Movie S9 

Characteristic membrane retraction of acetazolamide pre-treated human platelet on 

collagen; related to Figure 7.  Annexin-V (red) membrane binding was used to monitor 

procoagulant activity. Fluo-4 (green) was used to monitor cytosolic calcium. Time-lapse 

images were captured as described in methods at a frame per 4 second, using a Perkin Elmer 

Ultra-VIEW ERS 6FE confocal system. Movie was created at 24 frames/second using 

Volocity 6.3 software. 

 

Movie S10 

Membrane balloon collapse in human platelet on collagen, under hyperosmolar 

challenge; related to Figure 7.  Annexin-V (red) membrane binding was used to monitor 

procoagulant activity. Time-lapse images were captured at the rate of 1 frame per 4 seconds, 

using a Perkin Elmer Ultra-VIEW ERS 6FE confocal system. Movie was created at 24 

frames/second using Volocity 6.3 software. 
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