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Monte Carlo methods use random sampling to
estimate numerical quantities which are hard to
compute deterministically. One important example
is the use in statistical physics of rapidly mixing
Markov chains to approximately compute partition
functions. In this work we describe a quantum
algorithm which can accelerate Monte Carlo methods
in a very general setting. The algorithm estimates
the expected output value of an arbitrary randomised
or quantum subroutine with bounded variance,
achieving a near-quadratic speedup over the best
possible classical algorithm. Combining the algorithm
with the use of quantum walks gives a quantum
speedup of the fastest known classical algorithms with
rigorous performance bounds for computing partition
functions, which use multiple-stage Markov chain
Monte Carlo techniques. The quantum algorithm can
also be used to estimate the total variation distance
between probability distributions efficiently.

1. Introduction
Monte Carlo methods are now ubiquitous throughout
science, in fields as diverse as statistical physics [1],
microelectronics [2] and mathematical finance [3].
These methods use randomness to estimate numerical
properties of systems which are too large or complicated
to analyse deterministically. In general, the basic core of
Monte Carlo methods involves estimating the expected
output value µ of a randomised algorithmA. The natural
algorithm for doing so is to produce k samples, each
corresponding to the output of an independent execution
of A, and then to output the average µ̃ of the samples
as an approximation of µ. Assuming that the variance
of the random variable corresponding to the output of
A is at most σ2, the probability that the value output by
this estimator is far from the truth can be bounded using
Chebyshev’s inequality:

Pr[|µ̃− µ| ≥ ε]≤ σ2

kε2
.
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It is therefore sufficient to take k=O(σ2/ε2) to estimate µ up to additive error ε with, say, 99%
success probability. This simple result is a key component in many more complex randomised
approximation schemes (see e.g. [1,4]).

Although this algorithm is fairly efficient, its quadratic dependence on σ/ε seems far from
ideal: for example, if σ= 1, to estimate µ up to 4 decimal places we would need to runA over 100
million times. Unfortunately, it can be shown that, without any further information about A, the
sample complexity of this algorithm is asymptotically optimal [5] with respect to its scaling with
σ and ε, although it can be improved by a constant factor [6].

We show here that, using a quantum computer, the number of uses of A required to
approximate µ can be reduced almost quadratically beyond the above classical bound. Assuming
that the variance of the output of the algorithm A is at most σ2, we present a quantum algorithm
which estimates µ up to additive error ε, with 99% success probability, using A only Õ(σ/ε)

times1. It follows from known lower bounds on the quantum complexity of approximating the
mean [7] that the runtime of this algorithm is optimal, up to polylogarithmic factors. This result
holds for an arbitrary algorithmA used as a black box, given only an upper bound on the variance.

An important aspect of this construction is that the underlying subroutine A need not be a
classical randomised procedure, but can itself be a quantum algorithm. This enables any quantum
speedup obtained byA to be utilised within the overall framework of the algorithm. A particular
case in which this is useful is quantum speedup of Markov chain Monte Carlo methods [8].
Classically, such methods use a rapidly mixing Markov chain to approximately sample from a
probability distribution corresponding to the stationary distribution of the chain. Quantum walks
are the quantum analogue of random walks (see e.g. [9] for a review). In some cases, quantum
walks can reduce the mixing time quadratically (see e.g. [10,11]), although it is not known
whether this can be achieved in general [12–14]. We demonstrate that this known quadratic
reduction can be combined with our algorithm to speed up the fastest known general-purpose
classical algorithm with rigorous performance bounds [4] for approximately computing partition
functions up to small relative error, a fundamental problem in statistical physics [1]. As another
example of how our algorithm can be applied, we substantially improve the runtime of a quantum
algorithm for estimating the total variation distance between two probability distributions [15].

(a) Prior work
The topic of quantum estimation of mean output values of algorithms with bounded

variance connects to several previously-explored directions. First, it generalises the problem
of approximating the mean, with respect to the uniform distribution, of an arbitrary bounded
function. This has been addressed by a number of authors. The first asymptotically optimal
quantum algorithm for this problem, which usesO(1/ε) queries to achieve additive error ε, seems
to have been given by Heinrich [16]; an elegant alternative optimal algorithm was later presented
by Brassard et al. [17]. Using similar techniques to Brassard et al., Wocjan et al. [18] described
an efficient algorithm for estimating the expected value of an arbitrary bounded observable. It is
not difficult to combine these ideas to approximate the mean of arbitrary bounded functions with
respect to nonuniform distributions (see Section 2).

One of the main technical ingredients in the present paper is based on an algorithm of Heinrich
for approximating the mean, with respect to the uniform distribution, of functions with bounded
L2 norm [16]. Here we describe a generalisation of this result to nonuniform distributions,
using similar techniques. This is roughly analogous to the way that amplitude amplification [19]
generalises Grover’s quantum search algorithm [20].

The related problem of quantum estimation of expectation values of observables, an important
task in the simulation of quantum systems, has been studied by Knill, Ortiz and Somma [21].
These authors give an algorithm for estimating tr(Aρ) for observables A such that one can
efficiently implement the operator e−iAt. The algorithm is efficient (i.e. achieves runtimes close to
1The Õ notation hides polylogarithmic factors.
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Algorithm Precondition Approximation of µ Uses of A and A−1

1 v(A)∈ [0, 1] Additive error ε O(1/ε)

3 Var(v(A))≤ σ2 Additive error ε Õ(σ/ε)

4 Var(v(A))/(E[v(A)])2 ≤B Relative error ε Õ(B/ε)

Table 1. Summary of the main quantum algorithms presented in this paper for estimating the mean output value µ of an

algorithm A. (Algorithm 2, omitted, is a subroutine used in Algorithm 3.)

O(1/ε)) when the tails of the distribution tr(Aρ) decay quickly. However, in the case where one
only knows an upper bound on the variance of this distribution, the algorithm does not achieve
a better runtime than classical sampling.

Quantum algorithms have been used previously to approximate classical partition functions
and solve related problems. In particular, a number of authors (see [22] and references therein)
have considered the complexity of computing Ising and Potts model partition functions. These
works in some cases achieve exponential quantum speedups over the best known classical
algorithms. Unfortunately, they in general either produce an approximation accurate up to a
specified additive error bound, or only work for specific classes of partition function problems
with restrictions on interaction strengths and topologies, or both. Here we aim to approximate
partition functions up to small relative error in a rather general setting.

Using related techniques to the present work, Somma et al. [23] used quantum walks to
accelerate classical simulated annealing processes, and quantum estimation of partition functions
up to small relative error was addressed by Wocjan et al. [18]. Their algorithm, which is based on
the use of quantum walks and amplitude estimation, achieves a quadratic speedup over classical
algorithms with respect to both mixing time and accuracy. However, it cannot be directly applied
to accelerate the most efficient classical algorithms for approximating partition function problems,
which use so-called Chebyshev cooling schedules (discussed in Section 3). This is essentially
because these algorithms are based around estimating the mean of random variables given only
a bound on the variance. This was highlighted as an open problem in [18], which we resolve here.

Several recent works have developed quantum algorithms for the quantum generalisation
of sampling from a Gibbs distribution: producing a Gibbs state ρ∝ e−βH for some quantum
Hamiltonian H [24–27]. Given such a state, one can measure a suitable observable to compute
some quantity of interest about H . Supplied with an upper bound on the variance of such an
observable, the procedure detailed here can be used (as for any other quantum algorithm) to
reduce the number of repetitions required to estimate the observable to a desired accuracy.

(b) Techniques
We now give an informal description of our algorithms, which are summarised in Table 1 (for

technical details and proofs, see Section 2). For any randomised or quantum algorithmA, we write
v(A) for the random variable corresponding to the value computed byA, with the expected value
of v(A) denoted E[v(A)]. For concreteness, we think ofA as a quantum algorithm which operates
on n qubits, each initially in the state |0〉, and whose quantum part finishes with a measurement
of k of the qubits in the computational basis. Given that the measurement returns outcome
x∈ {0, 1}k, the final output is then φ(x), for some fixed function φ : {0, 1}k→R. IfA is a classical
randomised algorithm, or a quantum circuit using (for example) mixed states and intermediate
measurements, a corresponding unitary quantum circuit of this form can be produced using
standard reversible-computation techniques [36]. As is common in works based on quantum
amplitude amplification and estimation [19], we also assume that we have the ability to execute
the algorithm A−1, which is the inverse of the unitary part of A. If we do have a description of
A as a quantum circuit, this can be achieved simply by running the circuit backwards, replacing
each gate with its inverse.
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We first deal with the special case where the output of A is bounded between 0 and 1.
Here a quantum algorithm for approximating µ :=E[v(A)] quadratically faster than is possible
classically can be found by combining ideas from previously known algorithms [16–18]. We
append an additional qubit and define a unitary operator W on k + 1 qubits which performs
the map |x〉|0〉 7→ |x〉(

√
1− φ(x)|0〉+

√
φ(x)|1〉). If the final measurement of the algorithm A is

replaced with performing W , then measuring the added qubit, the probability that we receive
the answer 1 is precisely µ. Using quantum amplitude estimation [19] the probability that this
measurement returns 1 can be estimated to higher accuracy than is possible classically. Using t
iterations of amplitude estimation, we can output an estimate µ̃ such that |µ̃− µ|=O(

√
µ/t+

1/t2) with high probability [19]. In particular, O(1/ε) iterations of amplitude estimation are
sufficient to produce an estimate µ̃ such that |µ̃− µ| ≤ ε with, say, 99% probability.

The next step is to use the above algorithm as a subroutine in a more general procedure that
can deal with algorithms A whose output is non-negative, has bounded `2 norm, but is not
necessarily bounded between 0 and 1. That is, algorithms for which we can control the expression
‖v(A)‖2 :=

√
E[v(A)2]. The procedure for this case generalises, and is based on the same ideas

as, a previously known result for the uniform distribution [16].
The idea is to split the output of A up into disjoint intervals depending on size. Write Ap,q

for the “truncated” algorithm which outputs v(A) if p≤ v(A)< q, and otherwise outputs 0. We
estimate µ by applying the above algorithm to estimate E[v(Ap,q)] for a sequence of O(log 1/ε)

intervals which are exponentially increasing in size, and summing the results. As the intervals
[p, q) get larger, the accuracy with which we approximate E[v(Ap,q)] decreases, and values v(A)
larger than about 1/ε are ignored completely. However, the overall upper bound on ‖v(A)‖2
allows us to infer that these larger values do not affect the overall expectation µ much; indeed, if
µ depended significantly on large values in the output, the `2 norm of v(A) would be high.

The final result is that for ‖v(A)‖2 =O(1), given appropriate parameter choices, the estimate
µ̃ satisfies |µ̃− µ|=O(ε) with high probability, and the algorithm uses A Õ(1/ε) times in total.
This scaling is a near-quadratic improvement over the best possible classical algorithm.

We next consider the more general case of algorithms A which have bounded variance,
but whose output need not be non-negative, nor bounded in `2 norm. To apply the previous
algorithm, we would like to transform the output ofA to make its `2 norm low. If v(A) has mean
µ and variance upper-bounded by σ2, a suitable way to achieve this is to subtract µ from the
output of A, then divide by σ. The new algorithm’s output would have `2 norm upper-bounded
by 1, and estimating its expected value up to additive error ε/σ would give us an estimate of µ
up to ε. Unfortunately, we of course do not know µ initially, so cannot immediately implement
this idea. To approximately implement it, we first run A once and use the output m̃ as a proxy
for µ. Because Var(v(A))≤ σ2, m̃ is quite likely to be within distance O(σ) of µ. Therefore, the
algorithm B produced fromA by subtracting m̃ and dividing by σ is quite likely to have `2 norm
upper-bounded by a constant. We can thus efficiently estimate the positive and negative parts of
E[v(B)] separately, then combine and rescale them. The overall algorithm achieves accuracy ε in
time Õ(σ/ε). For a more precise statement, see Theorem 5.

A similar idea can be used to approximate the expected output value of algorithms for which
we have a bound on the relative variance, namely that Var(v(A)) =O(µ2). In this setting it turns
out that Õ(1/ε) uses of A suffice to produce an estimate µ̃ accurate up to relative error ε, i.e. for
which |µ̃− µ| ≤ εµ. This is again a near-quadratic improvement over the best possible classical
algorithm. See Theorem 6 for the details.

(c) Approximating partition functions
In this section we discuss (with details in Section 3) how these algorithms can be applied

to the problem of approximating partition functions. Consider a (classical) physical system
which has state space Ω, together with a Hamiltonian H :Ω→R specifying the energy of each
configuration2 x∈Ω. Here we will assume that H takes integer values in the set {0, . . . , n}. A
2We use x to label configurations rather than the more standard σ to avoid confusion with the variance.
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central problem is to compute the partition function

Z(β) =
∑
x∈Ω

e−β H(x)

for some inverse temperature β defined by β = 1/(kBT ), where T is the temperature and kB is
Boltzmann’s constant. As well as naturally encapsulating various models in statistical physics,
such as the Ising and Potts models, this framework also encompasses well-studied problems in
computer science, such as counting the number of valid k-colourings of a graph. In particular,
Z(∞) counts the number of configurations x such that H(x) = 0. It is often hard to compute Z(β)
for large β but easy to approximate Z(β)≈ |Ω| for β ≈ 0. In many cases, such as the Ising model,
it is known that computing Z(∞) exactly falls into the #P-complete complexity class [29], and
hence is unlikely to admit an efficient quantum or classical algorithm.

Here our goal will be to approximate Z(β) up to relative error ε, for some small ε. That is, to
output Z̃ such that |Z̃ − Z(β)| ≤ ε Z(β), with high probability. For simplicity, we will focus on
β =∞ in the following discussion, but it is easy to see how to generalise to arbitrary β.

Let 0 = β0 <β1 < · · ·<β` =∞ be a sequence of inverse temperatures. A standard classical
approach to design algorithms for approximating partition functions [4,18,30–32] is based around
expressing Z(β`) as the telescoping product

Z(β`) =Z(β0)
Z(β1)

Z(β0)

Z(β2)

Z(β1)
. . .

Z(β`)

Z(β`−1)
.

If we can compute Z(β0) = |Ω|, and can also approximate each of the ratios αi :=Z(βi+1)/Z(βi)

accurately, taking the product will give a good approximation to Z(β`). Let πi denote the Gibbs
(or Boltzmann) probability distribution corresponding to inverse temperature βi, where

πi(x) =
1

Z(βi)
e−βiH(x).

To approximate αi we define the random variable

Yi(x) = e−(βi+1−βi)H(x).

Then one can readily compute that Eπi [Yi] = αi, so sampling from each distribution πi allows us
to estimate the quantities αi. It will be possible to estimate αi up to small relative error efficiently
if the ratio E[Y 2

i ]/E[Yi]
2 is low. This motivates the concept of a Chebyshev cooling schedule [4]: a

sequence of inverse temperatures βi such that E[Y 2
i ]/E[Yi]

2 =O(1) for all i. It is known that,
for any partition function problem as defined above such that |Ω|=A, there exists a Chebyshev
cooling schedule with `= Õ(

√
logA) [4].

It is sufficient to approximate E[Yi] up to relative error O(ε/`) for each i to get an overall
approximation accurate up to relative error ε. To achieve this, the quantum algorithm presented
here needs to use at most Õ(`/ε) samples from Yi. Given a Chebyshev cooling schedule with `=
Õ(
√
logA), the algorithm thus uses Õ((logA)/ε) samples in total, a near-quadratic improvement

in terms of ε over the complexity of the fastest known classical algorithm [4].
In general, we cannot exactly sample from the distributions πi. Classically, one way of

approximately sampling from these distributions is to use a Markov chain which mixes rapidly
and has stationary distribution πi. For a reversible, ergodic Markov chain, the time required to
produce such a sample is controlled by the relaxation time τ := 1/(1− |λ1|) of the chain, where λ1
is the second largest eigenvalue in absolute value [8]. In particular, sampling from a distribution
close to πi in total variation distance requires Ω(τ) steps of the chain.

It has been known for some time that quantum walks can sometimes mix quadratically
faster [10]. One case where efficient mixing can be obtained is for sequences of Markov chains
whose stationary distributions π are close [11]. Further, for this special case one can approximately
produce coherent “quantum sample” states |π〉=

∑
x∈Ω

√
π(x)|x〉 efficiently. Here we can show

(Section 3) that the Chebyshev cooling schedule condition implies that each distribution in the
sequence π1, . . . , π`−1 is close enough to its predecessor that we can use techniques of [11] to
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approximately produce any state |πi〉 using Õ(`
√
τ) quantum walk steps each. Using similar ideas

we can approximately reflect about |πi〉 using only Õ(
√
τ) quantum walk steps.

Approximating E[Yi] up to relative error O(ε/`) using our algorithm requires one quantum
sample approximating |πi〉, and Õ(`/ε) approximate reflections about |πi〉. Therefore, the total
number of quantum walk steps required for each i is Õ(`

√
τ/ε). Summing over i, we get a

quantum algorithm for approximating an arbitrary partition function up to relative error ε
using Õ((logA)

√
τ/ε) quantum walk steps. The fastest known classical algorithm [4] exhibits

quadratically worse dependence on both τ and ε.
In the above discussion, we have neglected the complexity of computing the Chebyshev

cooling schedule itself. An efficient classical algorithm for this task is known [4], which runs
in time Õ((logA)τ). Adding the complexity of this part, we finish with an overall complexity of
Õ((logA)

√
τ(
√
τ + 1/ε)). We leave the interesting question open of whether there exists a more

efficient quantum algorithm for finding a Chebyshev cooling schedule.

(d) Applications
We now sketch several representative settings (for details, see Section 2) in which our

algorithm for approximating partition functions gives a quantum speedup.

• The ferromagnetic Ising model above the critical temperature. This well-studied
statistical physics model is defined in terms of a graph G= (V,E) by the Hamiltonian
H(z) =−

∑
(u,v)∈E zuzv , where |V |= n and z ∈ {±1}n. The Markov chain known as the

Glauber dynamics is known to mix rapidly above a certain critical temperature and to
have as its stationary distribution the Gibbs distribution. For example, for any graph
with maximum degreeO(1), the mixing time of the Glauber dynamics for sufficiently low
inverse temperature β is O(n logn) [33]. In this case, as A= 2n, the quantum algorithm
approximates Z(β) to within relative error ε in Õ(n3/2/ε+ n2) steps. The corresponding
classical algorithm [4] uses Õ(n2/ε2) steps.
• Counting colourings. Here we are given a graphGwith n vertices and maximum degree
d. We seek to approximately count the number of valid k-colourings of G, where a
colouring of the vertices is valid if all pairs of neighbouring vertices are assigned different
colours. In the case where k > 2d, the use of a rapidly mixing Markov chain gives a
quantum algorithm approximating the number of colourings of G up to relative error
ε in time Õ(n3/2/ε+ n2), as compared with the classical Õ(n2/ε2) [4].
• Counting matchings. A matching in a graph G is a subset M of the edges of G such that

no pair of edges in M shares a vertex. In statistical physics, matchings are studied under
the name of monomer-dimer coverings [34]. Our algorithm can approximately count the
number of matchings on a graph with n vertices and m edges in Õ(n3/2m1/2/ε+ n2m)

steps, as compared with the classical Õ(n2m/ε2) [4].

Finally, as another example of how our algorithm can be applied, we improve the accuracy
of an existing quantum algorithm for estimating the total variation distance between probability
distributions. In this setting, we are given the ability to sample from probability distributions p
and q on n elements, and would like to estimate the distance between them up to additive error
ε. A quantum algorithm of Bravyi, Harrow and Hassidim solves this problem using O(

√
n/ε8)

samples [15], while no classical algorithm can achieve sublinear dependence on n [35].
Quantum mean estimation can significantly improve the dependence of this quantum

algorithm on ε. The total variation distance between p and q can be described as the expected
value of the random variable R(x) = |p(x)−q(x)|

p(x)+q(x)
, where x is drawn from the distribution r=

(p+ q)/2 [15]. For each x, R(x) can be computed up to accuracy ε using Õ(
√
n/ε) iterations of

amplitude estimation. Wrapping this within O(1/ε) iterations of the mean-estimation algorithm,
we obtain an overall algorithm running in time Õ(

√
n/ε3/2). See Section 4 for details.
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2. Algorithms
We now give technical details, parameter values and proofs for the various algorithms described
informally in Section 1. Recall that, for any randomised or quantum algorithm A, we let v(A) be
the random variable corresponding to the value computed byA. We assume thatA takes no input
directly, but may have access to input (e.g. via queries to some black box or “oracle”) during its
execution. We further assume throughout that A is a quantum algorithm of the following form:
apply some unitary operator to the initial state |0n〉; measure k≤ n qubits of the resulting state in
the computational basis, obtaining outcome x∈ {0, 1}k; output φ(x) for some easily computable
function φ : {0, 1}k→R. We finally assume that we have access to the inverse of the unitary part
of the algorithm, which we write as A−1.

The following simple and well-known result, sometimes known as the powering lemma, will
be useful to us in various contexts:

Lemma 1 (Powering lemma [37]). Let A be a (classical or quantum) algorithm which aims to estimate
some quantity µ, and whose output µ̃ satisfies |µ− µ̃| ≤ ε except with probability γ, for some fixed γ < 1/2.
Then, for any δ > 0, it suffices to repeat A O(log 1/δ) times and take the median to obtain an estimate
which is accurate to within ε with probability at least 1− δ.

We will also need the following fundamental result from [19]:

Theorem 2 (Amplitude estimation [19]). There is a quantum algorithm called amplitude estimation
which takes as input one copy of a quantum state |ψ〉, a unitary transformationU = 2|ψ〉〈ψ| − I , a unitary
transformation V = I − 2P for some projector P , and an integer t. The algorithm outputs ã, an estimate
of a= 〈ψ|P |ψ〉, such that

|ã− a| ≤ 2π

√
a(1− a)
t

+
π2

t2

with probability at least 8/π2, using U and V t times each.

The success probability of 8/π2 can be improved to 1− δ for any δ > 0 using the powering
lemma at the cost of an O(log 1/δ) multiplicative factor.

(a) Estimating the mean with bounded output values
We first consider the problem of estimating E[v(A)] in the special case where v(A) is bounded
between 0 and 1. The algorithm for this case (described as Algorithm 1) is effectively a
combination of elegant ideas of Brassard et al. [17] and Wocjan et al. [18]. The former described
an algorithm for efficiently approximating the mean of an arbitrary function with respect to the
uniform distribution; the latter described an algorithm for approximating the expected value of
a particular observable, with respect to an arbitrary quantum state. The first quantum algorithm
achieving optimal scaling for approximating the mean of a bounded function under the uniform
distribution was due to Heinrich [16].

Theorem 3. Let |ψ〉 be defined as in Algorithm 1 and set U = 2|ψ〉〈ψ| − I . Algorithm 1 uses O(log 1/δ)

copies of the state A|0n〉, uses U O(t log 1/δ) times, and outputs an estimate µ̃ such that

|µ̃− E[v(A)]| ≤C

(√
E[v(A)]
t

+
1

t2

)
with probability at least 1− δ, where C is a universal constant. In particular, for any fixed δ > 0 and any
ε such that 0≤ ε≤ 1, to produce an estimate µ̃ such that with probability at least 1− δ, |µ̃− E[v(A)]| ≤
εE[v(A)] it suffices to take t=O(1/(ε

√
E[v(A)])). To achieve |µ̃− E[v(A)]| ≤ εwith probability at least

1− δ it suffices to take t=O(1/ε).
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Input: an algorithm A such that 0≤ v(A)≤ 1, integer t, real δ > 0.
Assume that A is a quantum algorithm which makes no measurements until the end of the
algorithm; operates on initial input state |0n〉; and its final measurement is a measurement of
the last k≤ n of these qubits in the computational basis.

(i) Let W be the unitary operator on k + 1 qubits defined by

W |x〉|0〉= |x〉
(√

1− φ(x)|0〉+
√
φ(x)|1〉

)
,

where each computational basis state x∈ {0, 1}k is associated with a real number
φ(x)∈ [0, 1] such that φ(x) is the value output by Awhen measurement outcome x is
received.

(ii) Repeat the following step O(log 1/δ) times and output the median of the results:

(a) Apply t iterations of amplitude estimation, setting |ψ〉= (I ⊗W )(A⊗ I)|0n+1〉,
P = I ⊗ |1〉〈1|.

Algorithm 1. Approximating the mean output value of algorithms bounded between 0 and 1 (cf. [16–18])

Proof. The complexity claim follows immediately from Theorem 2. Also observe that W can
be implemented efficiently, as it is a controlled rotation of one qubit dependent on the value
of φ(x) [18]. It remains to show the accuracy claim. The final state of A, just before its last
measurement, can be written as

|ψ′〉=A|0n〉=
∑
x

αx|ψx〉|x〉

for some normalised states |ψx〉. If we then attach an ancilla qubit and apply W , we obtain

|ψ〉= (I ⊗W )(A⊗ I)|0n〉|0〉=
∑
x

αx|ψx〉|x〉
(√

1− φ(x)|0〉+
√
φ(x)|1〉

)
.

We have
〈ψ|P |ψ〉=

∑
x

|αx|2φ(x) =E[v(A)],

where P = I ⊗ |1〉〈1|. Therefore, when we apply amplitude estimation, by Theorem 2 we obtain
an estimate µ̃ of µ=E[v(A)] such that

|µ̃− µ| ≤ 2π

√
µ(1− µ)
t

+
π2

t2

with probability at least 8/π2. The powering lemma (Lemma 1) implies that the median of
O(log 1/δ) repetitions will lie within this accuracy bound with probability at least 1− δ.

Observe that U = 2|ψ〉〈ψ| − I can be implemented with one use each of A and A−1, and V =

I − 2P is easy to implement.
It seems likely that the median-finding algorithm of Nayak and Wu [7] could also be

generalised in a similar way, to efficiently compute the median of the output values of any
quantum algorithm. As we will not need this result here we do not pursue this further.

(b) Estimating the mean with bounded `2 norm
We now use Algorithm 1 to give an efficient quantum algorithm for approximating the mean
output value of a quantum algorithm whose output has bounded `2 norm. In what follows, for
any algorithm A, let A<x, Ax,y , A≥y , be the algorithms defined by executing A to produce a
value v(A) and:



9

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

Input: an algorithm A such that v(A)≥ 0, and an accuracy ε < 1/2.

(i) Set k= dlog2 1/εe, t0 =
⌈
D
√

log2 1/ε
ε

⌉
, where D is a universal constant to be chosen

later.
(ii) Use Algorithm 1 with t= t0, δ= 1/10 to estimate E[v(A0,1)]. Let the estimate be µ̃0.

(iii) For `= 1, . . . , k:

(a) Use Algorithm 1 with t= t0, δ= 1/(10k) to estimate E[v(A2`−1,2`)/2
`]. Let the

estimate be µ̃`.

(iv) Output µ̃= µ̃0 +
∑k
`=1 2

`µ̃`.

Algorithm 2. Approximating the mean of positive functions with bounded `2 norm

• A<x: If v(A)<x, output v(A), otherwise output 0;
• Ax,y : If x≤ v(A)< y, output v(A), otherwise output 0;
• A≥y : If y≤ v(A), output v(A), otherwise output 0.

In addition, for any algorithm A and any function f :R→R, let f(A) be the algorithm produced
by evaluating v(A) and computing f(v(A)). Note that Algorithm 1 can easily be modified
to compute E[f(v(A))] rather than E[v(A)], for any function f :R→ [0, 1], by modifying the
operation W .

Our algorithm (Algorithm 2) and correctness proof are a generalisation of a result of
Heinrich [16] for computing the mean with respect to the uniform distribution of functions with
bounded L2 norm, and are based on the same ideas. Write ‖v(A)‖2 :=

√
E[v(A)2].

Lemma 4. Let |ψ〉=A|0n〉, U = 2|ψ〉〈ψ| − I . Algorithm 2 uses O(log(1/ε) log log(1/ε)) copies of |ψ〉,
uses U O((1/ε) log3/2(1/ε) log log(1/ε)) times, and estimates E[v(A)] up to additive error ε(‖v(A)‖2 +

1)2 with probability at least 4/5.

Proof. We first show the resource bounds. Algorithm 1 is run Θ(log 1/ε) times, each time
with parameter δ=Ω(1/(log 1/ε)). By Theorem 3, each use of Algorithm 1 consumes
O(log log 1/ε) copies of |ψ〉 and uses U O((1/ε)

√
log(1/ε) log log(1/ε)) times. The total number

of copies of |ψ〉 used is O(log(1/ε) log log(1/ε)), and the total number of uses of U is
O((1/ε) log3/2(1/ε) log log(1/ε)).

All of the uses of Algorithm 1 succeed, except with probability at most 1/5 in total. To estimate
the total error in the case where they all succeed, we write

E[v(A)] =E[v(A0,1)] +

k∑
`=1

2`E[v(A2`−1,2`)/2
`] + E[v(A≥2k )]

and use the triangle inequality term by term to obtain

|µ̃− E[v(A)]| ≤ |µ̃0 − E[v(A0,1)]|+
k∑
`=1

2`|µ̃` − E[v(A2`−1,2`)/2
`]|+ E[v(A≥2k )].

Let p(x) denote the probability that A outputs x. We have

E[v(A≥2k )] =
∑
x≥2k

p(x)x≤ 1

2k

∑
x

p(x)x2 =
‖v(A)‖22

2k
.
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By Theorem 3,

|µ̃0 − E[v(A0,1)]| ≤C

(√
E[v(A0,1)]

t0
+

1

t20

)
and similarly

|µ̃` − E[v(A2`−1,2`)/2
`]| ≤C


√

E[v(A2`−1,2`)]

t0 2`/2
+

1

t20

 .

So the total error is at most

C

√E[v(A0,1)]

t0
+

1

t20
+

k∑
`=1

2`


√

E[v(A2`−1,2`)]

t0 2`/2
+

1

t20

+
‖v(A)‖22

2k
.

We apply Cauchy-Schwarz to the first part of each term in the sum:

k∑
`=1

2`/2
√

E[v(A2`−1,2`)]≤
√
k

(
k∑
`=1

2`E[v(A2`−1,2`)]

)1/2

≤
√
2k ‖v(A)‖2 ,

where the second inequality follows from

E[v(A2`−1,2`)] =
∑

2`−1≤x<2`

p(x)x≤ 1

2`−1

∑
2`−1≤x<2`

p(x)x2 =
‖v(A2`−1,2`)‖

2
2

2`−1
.

Inserting this bound and using E[v(A0,1)]≤ 1, we obtain

|µ̃− E[v(A)]| ≤C

(
1

t0
+

1

t20
+

√
2k ‖v(A)‖2

t0
+

2k+1

t20

)
+
‖v(A)‖22

2k
.

Inserting the definitions of t0 and k, we get an overall error bound

|µ̃− E[v(A)]|

≤ C

D

(
ε√

log2 1/ε
+

ε2

D log2 1/ε
+
√
2ε ‖v(A)‖2

(
1 +

1

log2 1/ε

)1/2

+
4ε

D log2 1/ε

)
+ ε ‖v(A)‖22

≤ C

D

(
ε+

ε

D
+ 2ε ‖v(A)‖2 +

4ε

D

)
+ ε ‖v(A)‖22

= ε

(
C

D

(
1 +

5

D
+ 2 ‖v(A)‖2

)
+ ‖v(A)‖22

)
using 0< ε< 1/2 in the second inequality. For a sufficiently large constant D, this is upper-
bounded by ε(‖v(A)‖2 + 1)2 as claimed.

Observe that, if E[v(A)2] =O(1), to achieve additive error ε the number of uses of A that
we need is O((1/ε) log3/2(1/ε) log log(1/ε)). By the powering lemma, we can repeat Algorithm 2
O(log 1/δ) times and take the median to improve the probability of success to 1− δ for any δ > 0.

(c) Estimating the mean with bounded variance
We are now ready to formally state our algorithm for estimating the mean output value of an
arbitrary algorithm with bounded variance, as Algorithm 3 below. For clarity, some of the steps
are reordered as compared with the informal description in Section 1. Recall that, in the classical
setting, if we wish to estimate E[v(A)] up to additive error ε for an arbitrary algorithm A such
that Var(v(A)) :=E[(v(A)− E[v(A)])2]≤ σ2, we need to use A Ω(σ2/ε2) times [5].

Theorem 5. Let |ψ〉=A|0n〉, U = 2|ψ〉〈ψ| − I . Algorithm 3 uses O(log(σ/ε) log log(σ/ε)) copies of
|ψ〉, uses U O((σ/ε) log3/2(σ/ε) log log(σ/ε)) times, and estimates E[v(A)] up to additive error ε with
success probability at least 2/3.
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Input: an algorithm A such that Var(v(A))≤ σ2 for some known σ, and an accuracy ε such
that ε < 4σ.

(i) Set A′ =A/σ.
(ii) Run A′ once and let m̃ be the output.

(iii) Let B be the algorithm produced by executing A′ and subtracting m̃.
(iv) Apply Algorithm 2 to algorithms −B<0/4 and B≥0/4 with accuracy ε/(32σ)

and failure probability 1/9, to produce estimates µ̃−, µ̃+ of E[v(−B<0)/4] and
E[v(B≥0)/4], respectively.

(v) Set µ̃= m̃− 4µ̃− + 4µ̃+.
(vi) Output σ µ̃.

Algorithm 3. Approximating the mean with bounded variance

Proof. First, observe that m̃ is quite close to µ′ :=E[v(A′)] with quite high probability. As
Var(v(A′)) =Var(v(A))/σ2 ≤ 1, by Chebyshev’s inequality we have Pr[|v(A′)− µ′| ≥ 3]≤ 1

9 . We
therefore assume that |m̃− µ′| ≤ 3. In this case we have

‖v(B)‖2 = E[v(B)2]1/2 =E[((v(A′)− µ′) + (µ′ − m̃))2]1/2

≤ E[(v(A′)− µ′)2]1/2 + E[(µ′ − m̃)2]1/2 ≤ 4,

where the first inequality is the triangle inequality. Thus ‖v(B)/4‖2 ≤ 1, which implies that
‖v(−B<0)/4‖2 ≤ 1 and ‖v(B≥0)/4‖2 ≤ 1.

The next step is to use Algorithm 2 to estimate E[v(−B<0)/4] and E[v(B≥0)/4] with accuracy
ε/(32σ) and failure probability 1/9. By Lemma 4, if the algorithm succeeds in both cases the
estimates are accurate up to ε/(8σ). We therefore obtain an approximation of each of E[v(−B<0)]

and E[v(B≥0)] up to additive error ε/(2σ). As we have

E[v(A)] = σ E[v(A′)] = σ(m̃− E[v(−B<0)] + E[v(B≥0)])

by linearity of expectation, using a union bound we have that σ µ̃ approximates E[v(A)] up to
additive error ε with probability at least 2/3.

(d) Estimating the mean with bounded relative error
It is often useful to obtain an estimate of the mean output value of an algorithm which is accurate
up to small relative error, rather than the absolute error achieved by Algorithm 3. Assume that
we have the bound on the relative variance that Var(v(A))/(E[v(A)])2 ≤B, where we normally
think of B as small, e.g. B =O(1). Classically, it follows from Chebyshev’s inequality that the
simple classical algorithm described in the Introduction approximates E[v(A)] up to additive
error εE[v(A)] with O(B/ε2) uses of A. In the quantum setting, we can improve the dependence
on ε near-quadratically; we describe this as Algorithm 4 below.

Theorem 6. Let |ψ〉=A|0n〉, U = 2|ψ〉〈ψ| − I . Algorithm 4 uses O(B + log(1/ε) log log(1/ε)) copies
of |ψ〉, uses U O((B/ε) log3/2(B/ε) log log(B/ε)) times, and outputs an estimate µ̃ such that Pr[|µ̃−
E[v(A)]| ≥ εE[v(A)]]≤ 1/4.

Proof. The complexity bounds follow from Lemma 4; we now analyse the claim about accuracy.
m̃ is a random variable whose expectation is E[v(A)] and whose variance is Var(v(A))/d32Be. By
Chebyshev’s inequality, we have

Pr[|m̃− E[m̃]| ≥ |E[m̃]|/2]≤ 4Var(m̃)

E[m̃]2
=

4Var(v(A))
d32BeE[v(A)]2

≤ 1

8
.
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Input: An algorithmA such that v(A)≥ 0 and Var(v(A))/(E[v(A)])2 ≤B for someB ≥ 1, and
an accuracy ε < 27B/4.

(i) Run A k= d32Be times, receiving output values v1, . . . , vk, and set m̃= 1
k

∑k
i=1 vi.

(ii) Apply Algorithm 2 to A/m̃ with accuracy 2ε/(3(2
√
B + 1)2) and failure probability

1/8. Let µ̃ be the output of the algorithm, multiplied by m̃.
(iii) Output µ̃.

Algorithm 4. Approximating the mean with bounded relative error

We can thus assume that E[v(A)]/2≤ m̃≤ 3E[v(A)]/2. In this case, when we apply Algorithm 2
to A/m̃, we receive an estimate of E[v(A)]/m̃ which is accurate up to additive error

2ε(‖v(A)‖2 /m̃+ 1)2

3(2
√
B + 1)2

≤
εE[v(A)](2 ‖v(A)‖2 /E[v(A)] + 1)2

m̃(2
√
B + 1)2

≤ εE[v(A)]
m̃

except with probability 1/8, where we use ‖v(A)‖2 /E[v(A)]≤
√
B. Multiplying by m̃ and taking

a union bound, we get an estimate of E[v(A)] which is accurate up to ε except with probability at
most 1/4.

Once again, using the powering lemma we can repeat Algorithms 3 and 4 O(log 1/δ) times
and take the median to improve their probabilities of success to 1− δ for any δ > 0. Algorithm
4 can be extended to work for subroutines A which output both positive and negative values in
a similar way to Algorithm 3, by modifying step (ii) of the algorithm to estimate and recombine
the positive and negative parts of the output of A/|m̃|. We omit the details as this variant is not
required for the applications below.

To see that Algorithms 3 and 4 are close to optimal, we can appeal to a result of Nayak
and Wu [7]. Let A be an algorithm which picks an integer x between 1 and N uniformly at
random, for some large N , and outputs f(x) for some function f : {1, . . . , N}→ {0, 1}. Then
E[v(A)] = |{x : f(x) = 1}|/N . It was shown by Nayak and Wu [7] that any quantum algorithm
which computes this quantity for an arbitrary function f up to (absolute or relative) error ε must
make at most Ω(1/ε) queries to f in the case that |{x : f(x) = 1}|=N/2. As the output of A for
any such function has variance 1/4, this implies that Algorithms 2 and 4 are optimal in the black-
box setting in terms of their scaling with ε, up to polylogarithmic factors. By rescaling, we get a
similar near-optimality claim for Algorithm 3 in terms of its scaling with σ.

3. Partition function problems
In this section we formally state and prove our results about partition function problems. We first
recall the definitions from Section 1. A partition function Z is defined by Z(β) =

∑
x∈Ω e

−β H(x),
where β is an inverse temperature and H is a Hamiltonian function taking integer values in the
set {0, . . . , n}. Let 0 = β0 <β1 < · · ·<β` =∞ be a sequence of inverse temperatures and assume
that we can easily compute Z(β0) = |Ω|. We want to approximate Z(∞) by approximating the
ratios αi :=Z(βi+1)/Z(βi) and using the telescoping product

Z(β`) =Z(β0)
Z(β1)

Z(β0)

Z(β2)

Z(β1)
. . .

Z(β`)

Z(β`−1)
.

Finally, a sequence of Gibbs distributions πi is defined by πi(x) = 1
Z(βi)

e−βiH(x).



13

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

(a) Chebyshev cooling schedules
We start by motivating, and formally defining, the concept of a Chebyshev cooling schedule [4].
To approximate αi we define the random variable Yi(x) = e−(βi+1−βi)H(x). Then

E[Yi] :=Eπi [Yi] =
1

Z(βi)

∑
x∈Ω

e−βiH(x)e−(βi+1−βi)H(x) =
1

Z(βi)

∑
x∈Ω

e−βi+1H(x) =
Z(βi+1)

Z(βi)
= αi.

The following result was shown by Dyer and Frieze [31] (see [4] for the statement here):

Theorem 7. Let Y0, . . . , Y`−1 be independent random variables such that E[Y 2
i ]/E[Yi]

2 ≤B for all i,
and write Y =E[Y0]E[Y1] . . .E[Y`−1]. Let α̃i be the average of 16B`/ε2 independent samples from Yi,
and set Ỹ = α̃0 α̃1 . . . α̃`−1. Then Pr[(1− ε)Y ≤ Ỹ ≤ (1 + ε)Y ]≥ 3/4.

Thus a classical algorithm can approximate Z(∞) up to relative error ε using O(B`2/ε2)

samples in total, assuming that Z(0) can be computed without using any samples and that we
have E[Y 2

i ]/E[Yi]
2 ≤B. To characterise the latter constraint, observe that we have

E[Y 2
i ] =

1

Z(βi)

∑
x∈Ω

e−βiH(x)e−2(βi+1−βi)H(x) =
1

Z(βi)

∑
x∈Ω

e(βi−2βi+1)H(x) =
Z(2βi+1 − βi)

Z(βi)
,

so
E[Y 2

i ]

(E[Yi])2
=
Z(2βi+1 − βi)Z(βi)

Z(βi+1)2
.

This motivates the following definition:

Definition 1 (Chebyshev cooling schedules [4]). Let Z be a partition function. Let β0, . . . , β` be
a sequence of inverse temperatures such that 0 = β0 <β1 < · · ·<β` =∞. The sequence is called a B-
Chebyshev cooling schedule for Z if

Z(2βi+1 − βi)Z(βi)
Z(βi+1)2

≤B

for all i, for some fixed B.

Assume that we have a sequence of estimates α̃i such that, for all i, |α̃i − αi| ≤ (ε/2`)αi with
probability at least 1− 1/(4`). We output as a final estimate Z̃ =Z(0) α̃0 α̃1 . . . α̃`−1. By a union
bound, all of the estimates α̃i are accurate to within (ε/2`)αi, except with probability at most 1/4.
Assuming that all the estimates are indeed accurate, we have

1− ε

2
≤
(
1− ε

2`

)`
≤ Z̃

Z(∞)
≤
(
1 +

ε

2`

)`
≤ eε/2 ≤ 1 + ε

for ε < 1. Thus |Z̃ − Z(∞)| ≤ ε Z(∞) with probability at least 3/4.
Using these ideas, we can formalise the discussion in Section 1.

Theorem 8. Let Z be a partition function with |Ω|=A. Assume that we are given aB-Chebyshev cooling
schedule 0 = β0 <β1 < · · ·<β` =∞ for Z. Further assume that we have the ability to exactly sample
from the distributions πi, i= 1, . . . , `− 1. Then there is a quantum algorithm which outputs an estimate
Z̃ such that Pr[(1− ε)Z(∞)≤ Z̃ ≤ (1 + ε)Z(∞)]≥ 3/4 using

O

(
B` log `

ε
log3/2

(
B`

ε

)
log log

(
B`

ε

))
= Õ

(
B`2

ε

)
samples in total.

Proof. For each i= 1, . . . , `− 1, we use Algorithm 4 to estimate E[Yi] up to additive error
(ε/(2`))E[Yi] with failure probability 1/(4`). As the βi form a B-Chebyshev cooling schedule,



14

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

E[Y 2
i ]/E[Yi]

2 ≤B, so Var(Yi)/E[Yi]2 ≤B. By Theorem 6, each use of Algorithm 4 requires

O

(
B`

ε
log3/2

(
B`

ε

)
log log

(
B`

ε

)
log `

)
samples from πi to achieve the desired accuracy and failure probability. The total number of

samples is thus O
(
B`2 log `

ε log3/2
(
B`
ε

)
log log

(
B`
ε

))
as claimed.

(b) Approximate sampling
It is unfortunately not always possible to exactly sample from the distributions πi. However, one
classical way of approximately sampling from each of these distributions is to use a (reversible,
ergodic) Markov chain which has unique stationary distribution πi. Assume the Markov chain
has relaxation time τ , where τ := 1/(1− |λ1|), and λ1 is the second largest eigenvalue in
absolute value. Then one can sample from a distribution π̃i such that ‖π̃i − πi‖ ≤ ε using
O(τ log(1/(επmin,i))) steps of the chain, where πmin,i =minx |πi(x)| [8]. We would like to replace
the classical Markov chain with a quantum walk, to obtain a faster mixing time. A construction
due to Szegedy [38] defines a quantum walk corresponding to any ergodic Markov chain, such
that the dependence on τ in the mixing time can be improved to O(

√
τ) [12]. Unfortunately, it is

not known whether in general the dependence on πmin,i can be kept logarithmic [12,14]. Indeed,
proving such a result is likely to be hard, as it would imply a polynomial-time quantum algorithm
for graph isomorphism [13].

Nevertheless, it was shown by Wocjan and Abeyesinghe [11] (improving previous work
on using quantum walks for classical annealing [23]) that one can achieve relatively efficient
quantum sampling if one has access to a sequence of slowly varying Markov chains.

Theorem 9 (Wocjan and Abeyesinghe [11]). Let M0, . . . ,Mr be classical reversible Markov chains
with stationary distributions π0, . . . , πr such that each chain has relaxation time at most τ . Assume
that |〈πi|πi+1〉|2 ≥ p for some p > 0 and all i∈ {0, . . . , r − 1}, and that we can prepare the state |π0〉.
Then, for any ε > 0, there is a quantum algorithm which produces a quantum state |π̃r〉 such that
‖|π̃r〉 − |πr〉|0a〉‖ ≤ ε, for some integer a. The algorithm uses O(r

√
τ log2(r/ε)(1/p) log(1/p)) steps

in total of the quantum walk operators Wi corresponding to the chains Mi.

In addition, one can approximately reflect about the states |πi〉 more efficiently still, with a
runtime that does not depend on r. This will be helpful because Algorithm 4 uses significantly
more reflections than it does copies of the starting state.

Theorem 10 (Wocjan and Abeyesinghe [11], see [18] for version here). Let M0, . . . ,Mr be classical
reversible Markov chains with stationary distributions π0, . . . , πr such that each chain has relaxation time
at most τ . For each i there is an approximate reflection operator R̃i such that R̃i|φ〉|0b〉= (2|ψ〉〈ψ| −
I)|φ〉|0b〉+ |ξ〉, where |φ〉 is arbitrary, b=O((log τ)(log 1/ε)), and |ξ〉 is a vector with ‖|ξ〉‖ ≤ ε. The
algorithm uses O(

√
τ log(1/ε)) steps of the quantum walk operator Wi corresponding to the chain Mi.

In our setting, we can easily create the quantum state |π0〉, which is the uniform superposition
over all configurations x. We now show that the overlaps |〈πi|πi+1〉|2 are large for all i. We go via
the chi-squared divergence

χ2(ν, π) :=
∑
x∈Ω

π(x)

(
ν(x)

π(x)
− 1

)2

=
∑
x∈Ω

ν(x)2

π(x)
− 1.

As noted in [4], one can calculate that

χ2(πi+1, πi) =
Z(βi)Z(2βi+1 − βi)

Z(βi+1)2
− 1. (3.1)
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Therefore, if the βi values form a Chebyshev cooling schedule, χ2(πi+1, πi)≤B − 1 for all i. For
any distributions ν, π, we also have

1√
χ2(ν, π) + 1

=
1√∑

x∈Ω ν(x)
ν(x)
π(x)

≤
∑
x∈Ω

ν(x)

√
π(x)

ν(x)
= 〈ν|π〉

by applying Jensen’s inequality to the function x 7→ 1/
√
x. So, for all i, |〈πi|πi+1〉|2 ≥ 1/B. Note

that in [4] it was necessary to introduce the concept of a reversible Chebyshev cooling schedule
to facilitate “warm starts” of the Markov chains used in the algorithm. That work uses the fact
that one can efficiently sample from πi+1, given access to samples from πi, if χ2(πi, πi+1) =O(1);
this is the reverse of the condition (3.1). Here we do not need to reverse the schedule as the
precondition |〈πi|πi+1〉|2 ≥Ω(1) required for Theorem 9 is already symmetric.

We are now ready to formally state our result about approximating partition functions. We
assume that ε is relatively small to simplify the bounds; this is not an essential restriction.

Theorem 11. Let Z be a partition function. Assume we have a B-Chebyshev cooling schedule β0 = 0<

β1 <β2 < · · ·<β` =∞ forB =O(1). Assume that for every inverse temperature βi we have a reversible
ergodic Markov chainMi with stationary distribution πi and relaxation time upper-bounded by τ . Further
assume that we can sample directly fromM0. Then, for any δ > 0 and ε=O(1/

√
log `), there is a quantum

algorithm which uses

O((`2
√
τ/ε) log5/2(`/ε) log(`/δ) log log(`/ε)) = Õ(`2

√
τ/ε)

steps of the quantum walks corresponding to the Mi chains and outputs Z̃ such that Pr[(1− ε)Z(∞)≤
Z̃ ≤ (1 + ε)Z(∞)]≥ 1− δ.

Proof. For each i, we use Algorithm 4 to approximate αi up to relative error ε/(2`), with failure
probability γ, for some small constant γ. This would require R reflections about the state |πβi

〉,
for some R such that R=O((`/ε) log3/2(`/ε) log log(`/ε)), and O(log(`/ε) log log(`/ε)) copies of
|πβi
〉.

Instead of performing exact reflections and using exact copies of the states |πi〉, we use
approximate reflections and approximate copies of |πi〉. By Theorem 10, O(

√
τ log(1/εr)) walk

operations are sufficient to reflect about |πi〉 up to an additive error term of order εr . By Theorem
9, as we have a Chebyshev cooling schedule, a quantum state |π̃i〉 such that ‖|π̃i〉 − |πi〉|0b〉‖ ≤ εs
can be produced using O(`

√
τ log2(`/εs)) steps of the quantum walks corresponding to the

Markov chains M0, . . . ,Mi.
We choose εr = γ/R, εs = γ. Then the final state of Algorithm 4 using approximate reflections

and starting with the states |π̃i〉 rather than |πi〉 can differ from the final state of an exact algorithm
by at most Rεr + εs = 2γ in `2 norm. This implies that the total variation distance between the
output probability distributions of the exact and inexact algorithms is at most 2γ, and hence by a
union bound that the approximation is accurate up to relative error ε/(2`) except with probability
3γ. For each i, we then take the median of O(log(`/δ)) estimates to achieve an estimate which
is accurate up to relative error ε/(2`) except with probability at most δ/`. By a union bound, all
the estimates are accurate up to relative error ε/(2`) except with probability at most δ, so their
product is accurate to relative error ε except with probability at most δ.

The total number of steps needed to produce all the copies of the states |π̃i〉 required is thus

O(` · `
√
τ(log2 `) · log(`/ε) log log(`/ε) · log(`/δ))

and the total number of steps needed to perform the reflections is O(` ·
√
τ(logR) ·R · log(`/δ)).

Adding the two, substituting the value of R, and using ε=O(1/
√
log `), we get an overall bound

of
O((`2

√
τ/ε) log5/2(`/ε) log(`/δ) log log(`/ε)) = Õ(`2

√
τ/ε)

as claimed.
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We remark that, in the above complexities, we have chosen to take the number of quantum
walk steps used as our measure of complexity. This is to enable a straightforward comparison
with the classical literature, which typically uses a random walk step as its elementary operation
for the purposes of measuring complexity [4]. To implement each quantum walk step efficiently
and accurately, two possible approaches are to use efficient state preparation [39] or recently
developed approaches to efficient simulation of sparse Hamiltonians [40].

(c) Computing a Chebyshev cooling schedule
We still need to show that, given a particular partition function, we can actually find a Chebyshev
cooling schedule. For this we simply use a known classical result:

Theorem 12 (Štefankovič, Vempala and Vigoda [4]). Let Z be a partition function. Assume that
for every inverse temperature β we have a Markov chain Mβ with stationary distribution πβ and
relaxation time upper-bounded by τ . Further assume that we can sample directly from M0. Then,
for any δ > 0 and any B =O(1), we can produce a B-Chebyshev cooling schedule of length `=

O(
√
logA(logn)(log logA)) with probability at least 1− δ, using at most Q=O((logA)((logn) +

log logA)5τ log(1/δ)) steps of the Markov chains.

We remark that a subsequent algorithm [41] improves the polylogarithmic terms and the
hidden constant factors in the complexity. However, this algorithm assumes that we can efficiently
generate independent samples from distributions approximating πβ for arbitrary β. The most
efficient general algorithm known [4] for approximately sampling from arbitrary distributions πβ
uses “warm starts” and hence does not produce independent samples.

Combining all the ingredients, we have the following result:

Corollary 13. Let Z be a partition function and let ε > 0 be a desired precision such that ε=
O(1/

√
log logA). Assume that for every inverse temperature β we have a Markov chain Mβ with

stationary distribution πβ and relaxation time upper-bounded by τ . Further assume that we can sample
directly from M0. Then, for any δ > 0, there is a quantum algorithm which uses

O(((logA)(log2 n)(log logA)2
√
τ/ε) log5/2((logA)/ε) log((logA)/δ) log log((logA)/ε)

+ (logA)((logn) + log logA)5τ log(1/δ)))

= Õ((logA)
√
τ(1/ε+

√
τ))

steps of theMβ chains and their corresponding quantum walk operations, and outputs Z̃ such that Pr[(1−
ε)Z(∞)≤ Z̃ ≤ (1 + ε)Z(∞)]≥ 1− δ.

The best comparable classical result known is Õ((logA)τ/ε2) [4]. We therefore see that we have
achieved a near-quadratic reduction in the complexity with respect to both τ and ε, assuming that
ε≤ 1/

√
τ . Otherwise, we still achieve a near-quadratic reduction with respect to ε.

(d) Some partition function problems
In this section we describe some representative applications of our results to problems in
statistical physics and computer science.

The ferromagnetic Ising model. This well-studied statistical physics model is defined in
terms of a graph G= (V,E) by the Hamiltonian H(z) =−

∑
(u,v)∈E zuzv , where |V |= n and

z ∈ {±1}n. A standard method to approximate the partition function of the Ising model uses
the Glauber dynamics. This is a simple Markov chain with state space {±1}n, each of whose
transitions involves only updating individual sites, and whose stationary distribution is the Gibbs
distribution πβ(z) =

1
Z(β)

e−βH(z). This Markov chain, which has been intensively studied for



17

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

decades, is known to mix rapidly in certain regimes [42]. Here we mention just one representative
recent result:

Theorem 14 (Mossel and Sly [33]). For any integer d > 2, and inverse temperature β > 0 such that (d−
1) tanhβ < 1, the mixing time of the Glauber dynamics on any graph of maximum degree d isO(n logn).

(More precise results than Theorem 14 are known for certain specific graphs such as
lattices [43].) As we have A= 2n, in the regime where (d− 1) tanhβ < 1 the quantum algorithm
approximates Z(β) to within ε relative error in Õ(n3/2/ε+ n2) steps. The fastest known classical
algorithm with rigorously proven performance bounds [4] uses time Õ(n2/ε2). We remark that
an alternative approach of Jerrum and Sinclair [29], which is based on analysing a different
Markov chain, gives a polynomial-time classical algorithm which works for any temperature,
but is substantially slower.

Counting colourings. Here we are given as input a graph G with n vertices and maximum
degree d. We seek to approximately count the number of valid k-colourings of G, where a
colouring of the vertices is valid if all pairs of neighbouring vertices are assigned different colours,
and k=O(1). In physics, this problem corresponds to the partition function of the Potts model
evaluated at zero temperature. It is known that the Glauber dynamics for the Potts model mixes
rapidly in some cases [44]. One particularly clean result of this form is work of Jerrum [45]
showing that this Markov chain mixes in time O(n logn) if k > 2d. As here A= kn, we obtain
a quantum algorithm approximating the number of colourings of G up to relative error ε in
Õ(n3/2/ε+ n2) steps, as compared with the classical Õ(n2/ε2) [4].

Counting matchings. A matching in a graph G is a subset M of the edges of G such that
no pair of edges in M shares a vertex. In statistical physics, matchings are often known as
monomer-dimer coverings [34]. To count the number of matchings, we consider the partition
function Z(β) =

∑
M∈M e−β|M |, where M is the set of matchings of G. We have Z(0) = |M|,

while Z(∞) = 1, as in this case the sum is zero everywhere except the empty matching (00 = 1).
Therefore, in this case we seek to approximate Z(0) using a telescoping product which starts with
Z(∞). In terms of the cooling schedule 0 = β0 <β1 < · · ·<β` =∞, we have

Z(β0) =Z(β`)
Z(β`−1)

Z(β`)

Z(β`−2)

Z(β`−1)
. . .

Z(β0)

Z(β1)
.

As we have reversed our usage of the cooling schedule, rather than looking for it to be a B-
Chebyshev cooling schedule we instead seek the bound Z(2βi − βi+1)Z(βi+1)/Z(βi)

2 ≤B to
hold for all i= 0, . . . , `− 1. That is, the roles of βi and βi+1 have been reversed as compared with
Definition 1. However, the classical algorithm for printing a cooling schedule can be modified
to output a “reversible” schedule where this constraint is satisfied too, with only a logarithmic
increase in complexity [4]. In addition, it was shown by Jerrum and Sinclair [46,47] that, for any
β, there is a simple Markov chain which has stationary distribution π, where

π(M) =
1

Z(β)

∑
M∈M

e−β|M |,

and which has relaxation time τ =O(nm) on a graph with n vertices and m edges. Finally,
in the setting of matchings, A=O(n!2n). Putting these parameters together, we obtain a
quantum complexity Õ(n3/2m1/2/ε+ n2m), as compared with the lowest known classical bound
Õ(n2m/ε2) [4].

4. Estimating the total variation distance
Here we give the technical details of our improvement of the accuracy of a quantum algorithm of
Bravyi, Harrow and Hassidim [15] for estimating the total variation distance between probability
distributions. In this setting, we are given the ability to sample from probability distributions p
and q on n elements, and would like to estimate ‖p− q‖ := 1

2‖p− q‖1 =
1
2

∑
x∈[n] |p(x)− q(x)|
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Let p and q be probability distributions on n elements and let r= (p+ q)/2.

(i) Draw a sample x∈ [n] according to r.
(ii) Use amplitude estimation with t queries, for some t to be determined, to obtain

estimates p̃(x), q̃(x) of the probability of obtaining outcome x under distributions
p and q.

(iii) Output |p̃(x)− q̃(x)|/(p̃(x) + q̃(x)).

Algorithm 5. Subroutine for estimating the total variation distance

up to additive error ε. Classically, estimating ‖p− q‖ up to error, say, 0.01 cannot be achieved
using O(nα) samples for any α< 1 [35], but in the quantum setting the dependence on n can be
improved quadratically:

Theorem 15 (Bravyi, Harrow and Hassidim [15]). Given the ability to sample from p and q, there is a
quantum algorithm which estimates ‖p− q‖ up to additive error ε, with probability of success 1− δ, using
O(
√
n/(ε8δ5)) samples.

Here we will use Theorem 3 to improve the dependence on ε and δ of this algorithm. We will
approximate the mean output value of a subroutine previously used in [15] (Algorithm 5).

If the estimates p̃(x), q̃(x) in this subroutine were precisely accurate, the expected output of
the subroutine would be

E :=
∑
x∈[n]

(
p(x) + q(x)

2

)
|p(x)− q(x)|
p(x) + q(x)

=
1

2

∑
x∈[n]

|p(x)− q(x)|= ‖p− q‖.

We now bound how far the expected output Ẽ of the algorithm is from this exact value. By
linearity of expectation,

|Ẽ − E|=

∣∣∣∣∣∣
∑
x∈[n]

r(x)E[d̃(x)− d(x)]

∣∣∣∣∣∣≤
∑
x∈[n]

r(x)E[|d̃(x)− d(x)|]

where d(x) = |p(x)− q(x)|/(p(x) + q(x)), d̃(x) = |p̃(x)− q̃(x)|/(p̃(x) + q̃(x)). Note that d̃(x) is a
random variable. Split [n] into “small” and “large” parts according to whether r(x)≤ ε/n. Then

|Ẽ − E| ≤
∑

x,r(x)≤ε/n
r(x)E[|d̃(x)− d(x)|] +

∑
x,r(x)≥ε/n

r(x)E[|d̃(x)− d(x)|]

≤ ε+
∑

x,r(x)≥ε/n
r(x)E[|d̃(x)− d(x)|]

using that 0≤ d(x), d̃(x)≤ 1. From Theorem 2, for any δ > 0 we have |p̃(x)− p(x)| ≤ 2π

√
p(x)
t +

π2

t2
except with probability at most δ, usingO(t log 1/δ) samples from p. If t≥ 4π/(η

√
p(x) + q(x))

for some 0≤ η≤ 1, this implies that

|p̃(x)− p(x)| ≤
2πη

√
p(x)

√
p(x) + q(x)

4π
+
π2η2(p(x) + q(x))

16π2
≤ η(p(x) + q(x))

except with probability at most δ. A similar claim also holds for |q̃(x)− q(x)|. We now use the
following technical result from [15]:

Proposition 16. Consider a real-valued function f(p, q) = (p− q)/(p+ q) where 0≤ p, q≤ 1. Assume
that |p− p̃|, |q − q̃| ≤ η(p+ q) for some η≤ 1/5. Then |f(p, q)− f(p̃, q̃)| ≤ 5η.
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By Proposition 16, for all x such that t≥ 4π/(η
√
p(x) + q(x)) we have |d̃(x)− d(x)| ≤ 5η,

except with probability at most 2δ. We now fix t= d20π
√
n/εe. Then, for all x such that p(x) +

q(x)≥ 2ε/n, |d̃(x)− d(x)| ≤ ε except with probability at most 2δ. Thus, for all x such that r(x)≥
ε/n, E[|d̃(x)− d(x)|]≤ 2δ + (1− 2δ)ε≤ 2δ + ε. Taking δ= ε, we have |Ẽ − E| ≤ 4ε for any ε, using
O(
√
n/ε log(1/ε)) samples. It therefore suffices to use O(

√
n/ε log(1/ε)) samples to achieve

|Ẽ − E| ≤ ε/2. As the output of this subroutine is bounded between 0 and 1, to approximate Ẽ up
to additive error ε/2 with failure probability δ, it suffices to use the subroutine O((1/ε) log(1/δ))

times by Theorem 3. So the overall complexity is O((
√
n/ε3/2) log(1/ε) log(1/δ)). For small ε and

δ this is a substantial improvement on the O(
√
n/(ε8δ5)) complexity stated in [15].
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32. Bezáková I, Štefankovič D, Vazirani V, Vigoda E. Accelerating Simulated Annealing for the
Permanent and Combinatorial Counting Problems. SIAM J Comput. 2008;37(5):1429–1454.

33. Mossel E, Sly A. Exact thresholds for Ising-Gibbs samplers on general graphs. The Annals of
Probability. 2013;41(1):294–328.

34. Heilmann O, Lieb E. Theory of Monomer-Dimer Systems. Comm Math Phys. 1972;25:190–
232.

35. Valiant P. Testing Symmetric Properties of Distributions. SIAM J Comput. 2011;40(6):1927–
1968.

36. Aharonov D, Kitaev A, Nisan N. Quantum circuits with mixed states. In: Proc. 30th Annual
ACM Symp. Theory of Computing; 1998. p. 20–30.

37. Jerrum M, Valiant L, Vazirani V. Random Generation of Combinatorial Structures from a
Uniform Distribution. Theoretical Computer Science. 1986;43(2–3):169–188.

38. Szegedy M. Quantum speed-up of Markov chain based algorithms. In: Proc. 45th Annual
Symp. Foundations of Computer Science; 2004. p. 32–41. quant-ph/0401053.

39. Chiang CF, Nagaj D, Wocjan P. Efficient Circuits for Quantum Walks. Quantum Inf Comput.
2010;10(5&6):420–424. arXiv:0903.3465.

40. Berry D, Childs A, Kothari R. Hamiltonian simulation with nearly optimal dependence on all
parameters; 2015. arXiv:1501.01715.

41. Huber M. Approximation algorithms for the normalizing constant of Gibbs distributions;
2012. arXiv:1206.2689.

42. Martinelli F. Lectures on Glauber dynamics for discrete spin models. In: Lectures on
probability theory and statistics (Saint-Flour, 1997). vol. 1717 of Lecture Notes in Mathematics.
Springer; 1997. p. 93–191.

43. Martinelli F, Olivieri E. Approach to equilibrium of Glauber dynamics in the one phase
region. Comm Math Phys. 1994;161(3):447–486.

44. Frieze A, Vigoda E. A survey on the use of Markov chains to randomly sample colourings.
In: Combinatorics, Complexity and Chance. Oxford University Press; 2007. p. 53–71.

45. Jerrum M. A very simple algorithm for estimating the number of k-colourings of a low-degree
graph. Random Structures and Algorithms. 1995;7(2):157–165.

46. Jerrum M, Sinclair A. Approximating the permanent. SIAM J Comput. 1989;18(6):1149–1178.
47. Jerrum M. Counting, sampling and integrating: algorithms and complexity. Basel: Birkhäuser

Verlag; 2003.


	1 Introduction
	(a) Prior work
	(b) Techniques
	(c) Approximating partition functions
	(d) Applications

	2 Algorithms
	(a) Estimating the mean with bounded output values
	(b) Estimating the mean with bounded 2 norm
	(c) Estimating the mean with bounded variance
	(d) Estimating the mean with bounded relative error

	3 Partition function problems
	(a) Chebyshev cooling schedules
	(b) Approximate sampling
	(c) Computing a Chebyshev cooling schedule
	(d) Some partition function problems

	4 Estimating the total variation distance
	References

