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Abstract Mathematical models of natural processes can
be used as inversion tools to predict unobserved properties
from measured quantities. Uncertainty in observations and
model formulation impact on the efficacy of inverse mod-
elling. We present a general methodology, history matching,
that can be used to investigate the effect of observational
and model uncertainty on inverse modelling studies. We
demonstrate history matching on an integral model of vol-
canic plumes that is used to estimate source conditions from
observations of the rise height of plumes during the erup-
tions of Eyjafjallajökull, Iceland, in 2010 and Grı́msvötn,
Iceland, in 2011. Sources of uncertainty are identified
and quantified, and propagated through the integral plume
model. A preliminary sensitivity analysis is performed to
identify the uncertain model parameters that strongly influ-
ence model predictions. Model predictions are assessed
against observations through an implausibility measure that
rules out model inputs that are considered implausible given
the quantified uncertainty. We demonstrate that the source
mass flux at the volcano can be estimated from plume height
observations, but the magmatic temperature, exit veloc-
ity and exsolved gas mass fraction cannot be accurately
determined. Uncertainty in plume height observations and
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entrainment coefficients results in a large range of plausi-
ble values of the source mass flux. Our analysis shows that
better constraints on entrainment coefficients for volcanic
plumes and more precise observations of plume height are
required to obtain tightly constrained estimates of the source
mass flux.

Keywords Uncertainty analysis · History matching ·
Plume model · Sensitivity analysis · Turbulent entrainment

Introduction

Mathematical models provide insight into the physical pro-
cesses operating in natural systems and allow investigation
of the response of the system to changing conditions. Fre-
quently, models are used as inversion tools to infer proper-
ties of a system that are difficult to measure directly from
observations that can be made more easily. The character-
ization of uncertainty is crucial to the effective use of a
model as an inversion tool. Aleatory uncertainty, that is the
inevitable variations that occur in natural systems, leads to
variations in observations even if conditions are seemingly
identical. Epistemic uncertainty arises due to incomplete
knowledge of the system, including our inability to measure
precisely. Both aleatory and epistemic uncertainties impact
on the inferences that can be drawn from inverse modelling;
rather than achieving a single prediction of the state of the
system, we instead expect a (possibly empty) set of states
that are consistent with the observations.

Recent model inversion studies (e.g. Denlinger et al.
2012; Anderson and Segall 2013; Madankan et al. 2014)
have adopted techniques of Bayesian inversion and cali-
bration where observations are used to refine prior spec-
ifications of model parameters through the application of

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s00445-015-0959-2-x&domain=pdf
mailto:mark.woodhouse@bristol.ac.uk


 83 Page 2 of 28 Bull Volcanol  (2015) 77:83 

Bayes’ theorem (e.g. Kennedy and O’Hagan 2001; Craig
et al. 2001). Bayesian inversion requires the specification of
prior probability distributions for model inputs and the cal-
culation of the likelihood function that quantifies the ability
of the model to reproduce the observed data (Mosegaard
and Tarantola 1995; Kennedy and O’Hagan 2001). The
calculation of the posterior distribution is computationally
demanding, particularly for a model with a large number of
inputs. Thus, applications have used approximate methods
in the neighborhood of the maximum likelihood estima-
tor (e.g. Denlinger et al. 2012), Markov-chain Monte Carlo
sampling (e.g. Mosegaard and Tarantola 1995; Anderson
and Segall 2013), or the construction of fast surrogate mod-
els (e.g. Craig et al. 2001; Bursik et al. 2012; Madankan
et al. 2014) to estimate the posterior distribution of model
inputs. The uncertainty in observations can be included in
the calibration, and posterior distributions provide insight
into the uncertainty in model inputs.

Here, we employ an alternative method, history match-
ing (Craig et al. 1997; Vernon et al. 2010), for examining
the uncertainty in a physical model, which is related to,
but differs fundamentally from, Bayesian inversion. History
matching seeks to identify those model inputs that produce
outputs which are consistent with uncertain observations,
by ruling out model inputs that are considered implausi-
ble (Craig et al. 1997; Vernon et al. 2010), and does not
involve the construction of posterior probability distribu-
tions for model inputs. The size of the model input space
that is not-ruled-out by history matching is an indication
of the ability of the model to predict properties of the
system. Importantly, history matching allows relationships
between the not-ruled-out model inputs to be examined, pro-
viding insight into how to achieve improved predictions by
incorporating new observations. History matching requires
sampling of the model input space and comparison of model
outputs to observations, and thus requires only ‘forward’
model evaluations. It is therefore a method with general
applicability. For computationally expensive models, model
evaluation time may preclude an extensive sampling of the
input space, and the development of statistical emulators
(Santner et al. 2003; Rougier 2008; Bayarri et al. 2009; Ver-
non et al. 2010; Lee et al. 2011) or fast surrogate models
(Bursik et al. 2012; Madankan et al. 2014) may be neces-
sary. Our model is computationally efficient, with a single
evaluation taking approximately 0.5 s on a desktop com-
puter, allowing a thorough direct investigation of the model
input space without statistical emulation.

Integral models of turbulent buoyant plumes (Morton
et al. 1956) have been utilized widely to quantitatively
describe the rise of plumes in industrial and environmental
settings (Woods 2010), and have been extended to describe
volcanic plumes (Woods 1988; Glaze and Baloga 1996;
Sparks et al. 1997). Integral plume models can exploit

detailed meteorological observations to describe the atmo-
spheric stratification, moisture loading and wind (Bursik
2001; Mastin 2007; Barsotti et al. 2008; Bursik et al. 2009;
Bursik et al. 2012; Degruyter and Bonadonna 2012; Wood-
house et al. 2013; Mastin 2014). The plume model can be
used as a predictive tool in a ‘forward modelling’ approach,
where source and atmospheric conditions are specified.
Integration of the governing equations then provides predic-
tions of plume properties such as the height of rise, and the
effects of varying source and atmospheric conditions can be
assessed (see, e.g. Woods 1988; Sparks et al. 1997; Glaze
and Baloga 1996; Bursik 2001; Mastin 2007; Bursik et al.
2009; Degruyter and Bonadonna 2012; Woodhouse et al.
2013).

Modelling plume dynamics from specific volcanic erup-
tions is more difficult since, in many situations, the source
conditions are not known. For hazard management applica-
tions, the estimation of source conditions is often a crucial
requirement. An integral plume model can be used in an
‘inverse modelling’ approach to estimate source conditions
by matching model predictions to observations by itera-
tively altering the model boundary conditions until a mini-
mum in a measure of the deviation of the model output from
the observation is reached. The resulting model inputs are
then taken as representative of the volcanic system. Inverse
modelling of this type has been referred to as ‘model cal-
ibration’ (Kennedy and O’Hagan 2001) as the output is a
set of model inputs (boundary conditions and parameter val-
ues) that match model predictions to observations and can
subsequently be used to predict non-observed properties.
Inverse modelling using integral plume models and observa-
tions of plume heights has been used to estimate the source
mass flux in reanalysis of volcanic eruptions (Bursik et al.
2012; Bonasia et al. 2012; Degruyter and Bonadonna 2012;
Collini et al. 2013; Devenish 2013; Woodhouse et al. 2013;
Moiseenko and Malik 2014); the unobserved source condi-
tions are adjusted until the predicted plume height matches
an observation. However, as the source conditions are usu-
ally imprecisely known, there is a large range of values
over which the model inputs can be varied. Furthermore,
the observed plume height can be difficult to measure accu-
rately. For example, the studies of Bursik et al. (2012),
Degruyter and Bonadonna (2012) and Woodhouse et al.
(2013) each used a record of plume heights from the 2010
eruption of Eyjafjallajökull derived from a radar using a
scanning strategy that introduces semi-discrete jumps into
the measurements (Arason et al. 2011) giving measurement
errors often in excess of 1 km. Mastin (2014) suggests that
uncertainties in observational data and due to idealizations
in the model formulation limit the applicability of plume
models, since estimates of the source mass flux that are
derived from model inversions may not be significantly bet-
ter than those that can be obtained from calibrated scaling
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relationships (e.g. Sparks et al. 1997; Mastin et al. 2009;
Degruyter and Bonadonna 2012; Woodhouse et al. 2013).

While Bayesian methods can be used to examine
the uncertainty introduced by parameter calibration (e.g.
Kennedy and O’Hagan 2001; Denlinger et al. 2012; Ander-
son and Segall 2013; Madankan et al. 2014), often inversion
of volcanic plume models has varied only a single mem-
ber of the set of source conditions while leaving others at
fixed ‘characteristic’ values. This approach does not assess
the range of possible source conditions that result in a match
of the model predictions to the observation. Furthermore,
the uncertainties that exist explicitly in the target obser-
vation and implicitly in the model formulation are rarely
considered in inverse modelling.

In this study, we perform an uncertainty analysis of an
integral plume model to examine the efficacy of plume
models as inverse modelling tools that are used to estimate
source conditions from observations of the plume height,
using the history matching method. We take as case stud-
ies two recent eruptions in Iceland; Eyjafjallajökull in 2010
and Grı́msvötn in 2011. Both of these eruptions produced
plumes that ascended to high altitudes, delivering ash that
was transported widely and had significant impact on avi-
ation. This contribution is organized as follows. We first
present a brief overview of the integral plume model. We
then examine the sources of uncertainty in an inversion
calculation using the plume model. The history-matching
approach to uncertainty analysis is then introduced. We
describe the methods adopted in our study, including a pre-
liminary sensitivity analysis of model parameters, and the
field observations used. We then present the results of the
sensitivity analysis and history matching, interpret these in
the context of volcanic ash hazard modelling and discuss
the implications of our analysis for plume observations and
future modelling studies.

Overview of the integral plume model

Integral models of volcanic plumes describe changes in
plume properties during the ascent of volcanic material and
entrained atmospheric air (Woods 1988; Glaze and Baloga
1996; Sparks et al. 1997; Bursik 2001; Mastin 2007; Bursik
et al. 2009; Bursik et al. 2012; Degruyter and Bonadonna
2012; Woodhouse et al. 2013). Typically, plume models
assume a steady state, with variations in source and atmo-
spheric conditions occurring on timescales that are much
longer than the timescale for motions in the plume. For typi-
cal atmospheric conditions, this is approximately 100 s (Gill
1982).

Integral models average plume properties over a time that
is long in comparison to the characteristic timescale of tur-
bulent motion in the plume (the eddy-turnover time) (Woods

2010). The detailed transient turbulent features of the plume
dynamics are therefore not described in the model. Rather,
the influence of the turbulent motions on the bulk plume
dynamics must be parameterized (Morton et al. 1956). The
primary effect of turbulence in the plume is to engulf parcels
of ambient fluid and mix these with the plume fluid (Morton
et al. 1956). On viewing the plume on the long timescale of
the bulk motion, this turbulent mixing appears as an inflow
from the ambient into the plume which can be modelled
as an ‘entrainment velocity’ at the plume margins (Morton
et al. 1956; Woods 2010). Here, we denote the entrainment
velocity as Ue. Morton et al. (1956) demonstrated that a sim-
ple entrainment closure, with the entrainment velocity taken
as linearly proportional to the plume centreline velocity,
well describes laboratory scale plumes.

Atmospheric conditions can strongly influence the plume
dynamics (Woods 1988; Glaze and Baloga 1996; Sparks
et al. 1997). The effect of wind is particularly important as
it leads to enhanced mixing of ambient air into the plume,
further reducing the density contrast between the plume
and the surrounding atmosphere (Bursik 2001; Woodhouse
et al. 2013). Atmospheric wind has been incorporated into
integral models (Bursik 2001; Barsotti et al. 2008; Bursik
et al. 2009; Degruyter and Bonadonna 2012; Woodhouse
et al. 2013; Devenish 2013; Mastin 2014) by adopting an
entrainment model proposed by Hewett et al. (1971) based
on laboratory studies of bent-over plumes. The entrainment
velocity for a plume in a cross wind is modelled as (Hewett
et al. 1971)

Ue = ks |U − V cos θ | + kw|V sin θ |, (1)

directed into the plume, where U is the axial centreline
velocity of the plume, V is the horizontal speed of the wind
and θ is the angle of the plume centreline to the horizontal.
The entrainment model contains two entrainment coeffi-
cients, ks and kw, that must be determined empirically. The
coefficient ks is the related to the entrainment that occurs
due to the motion of the plume relative to the atmosphere
and is equal to the entrainment coefficient of a plume in a
quiescent atmosphere, while kw is related to the entrainment
due to the wind.

Here, we use the integral model of volcanic plumes
in a wind-field developed by Woodhouse et al. (2013).
This model can incorporate detailed atmospheric profiles
from direct observations (for example, radiosonde measure-
ments) or numerical weather prediction (NWP) models,
and includes a description of the thermodynamic effects of
phase changes of water in the plume. The model has four
boundary conditions, representing the source mass flux Q0,
exit velocity U0, source temperature T0 and the mass frac-
tion of gas at the vent n0, and 12 parameters that specify the
physical and thermodynamic properties of constituents and
turbulent mixing. In addition, profiles of the atmospheric
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pressure, temperature, wind speed and relative humidity are
required. These dimensional model inputs can be formed
into 17 dimensionless groups.

Sources of uncertainty in model inversion
calculations

Model inversion in multivariable systems is non-trivial.
The complicated topology of the multidimensional sur-
face defined by the deviation of the model output from
the observations (under a suitable metric; for example,
the mean square deviation) can lead to many local min-
ima or extended ‘valleys’. Finding the global minimum in
this landscape is computationally challenging. Furthermore,
the global minimum may differ little from a subset of the
local minima, so multiple ‘acceptable’ solutions may exist.
Indeed, classifying acceptable solutions requires careful
consideration including an assessment of uncertainty.

Aleatory and epistemic uncertainties preclude precise
agreement between model calculations and observations
and so, rather than locating minima in the deviation of
the model prediction from the observation, we seek model
inputs such that the deviation function takes a value below
a chosen threshold. Quantifying the threshold requires
detailed consideration and quantification of the sources of
uncertainty in the system. Following Vernon et al. (2010),
the uncertainty in the system can be classified as (i) observa-
tional uncertainty, (ii) parameter uncertainty, (iii) simulator
uncertainty, (iv) input uncertainty and (v) structural uncer-
tainty. We discuss each of these below in the context of
an inversion calculation using an integral plume model and
observations of volcanic plume height made using radar.

Observational uncertainty

Uncertainty arises in the model inversion due to errors in
the measurement of natural systems. The aleatory aspect
of many natural systems precludes a precise measurement.
Combining multiple observations will give a distribution of
measurements from which we can characterize the variabil-
ity, although this risks incorporating systematic variation
into our quantification of observational uncertainty.

As an example, if we consider measuring the altitude of
a volcanic plume, turbulent fluctuations will give variations
on the timescale that is characteristic of the turbulence, so
we might take a sequence of measurements over a period
of time longer than the turbulent timescale. However, there
may be source variations occurring on the timescale of these
measurements, leading to a systematic change in the altitude
of the plume during the observations.

Observational uncertainty also arises due to lack of
precision in making measurements. Direct measurements

inevitably have error associated with the limited capability
of instruments. Furthermore, many observations of natural
systems are indirect, relying implicitly on models to relate
a direct measurement to a quantity of interest. These indi-
rect observations have additional errors due to the epistemic
uncertainty in the models they adopt.

Uncertainty in the estimation of plume height by direct
observation can be substantial (Tupper et al. 2009), with
the records demonstrating limited accuracy in measure-
ments (Settle 1978; Wilson et al. 1978; Sparks et al. 1997;
Mastin et al. 2009) and ambiguity in the reporting of max-
imum plume height or neutral buoyancy height (Mastin
et al. 2009). Furthermore, estimates made by ground-based
observers can differ greatly for those made using satellite
remote sensing technologies (Oppenheimer 1998; Tupper
and Wunderman 2009).

For plume height measurements made by radar, observa-
tional errors are introduced by the scanning strategy (e.g.
limited scanning angles during operational uses) (Arason
et al. 2011), the finite beam width (thus the radar return sig-
nal is sourced from a range of heights around the centreline)
(Arason et al. 2011), the limits of detectability for fine vol-
canic ash (Marzano et al. 2006; Marzano et al. 2011) and the
influence of hydrometeors on the reflectivity of the plume
(Rogers and Yau 1989; Guo et al. 2004; Durant et al. 2009).

Images of plumes captured in the visible spectrum (e.g.
Arason et al. 2011; Bjornsson et al. 2013) or using ther-
mal cameras (e.g. Spampinato et al. 2011; Harris 2013),
from either terrestrial or satellite instruments (Oppenheimer
1998; Tupper and Wunderman 2009), can give estimates
of the plume height. However, uncertainty arises due to
the limited field of view, the finite resolution of images
from digital cameras (Arason et al. 2011) and satellite-based
instruments (Oppenheimer 1998) and when the view of the
plume is obscured, e.g. by clouds. Lidar instruments can
also be used to estimate the plume height, but these are typi-
cally single point for stationary instruments (e.g. Pappalardo
et al. 2004) or line traverse for mobile lidar (e.g. Marenco
et al. 2011) and often do not measure the maximum height.

Parameter uncertainty

Models of natural systems introduce parameters that quan-
tify physical properties and processes. Our knowledge of
the appropriate values of these parameters is often incom-
plete, based on limited experimental investigations. The use
of parameters fixed at ‘best’ estimated values can constrain
the range of model outputs and therefore greatly influences
the inferences made from model inversion.

In the integral model of volcanic plumes, there are
12 parameters. Our knowledge of appropriate values for
the parameters varies greatly (Table 1). While many
detailed experiments measuring thermodynamic properties
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of liquids and gases have been performed, few studies
have examined the thermodynamics of volcanic ejecta. In
plume models, thermodynamic properties of the plume con-
stituents are often taken to be constant (with the exception
of Mastin 2007 who adopts empirical relationships for the
variations with temperature).

Laboratory experiments and high-resolution computa-
tional simulations of the fundamental governing equations
can provide insight into the numerical values of the entrain-
ment coefficients, but the values obtained for laboratory-
scale plumes may not be appropriate for field-scale volcanic
plumes. Morton et al. (1956) demonstrated that the entrain-
ment coefficient for plumes in a quiescent environment, ks ,
calibrated in laboratory experiments well described obser-
vations of plumes over many scales, although subsequent
experimental studies have not found a universal value for
ks (Table 1, Morton et al. 1956; Fischer et al. 1979; Papan-
icolaou and List 1988). In contrast, there is greater uncer-
tainty in the entrainment coefficients for plumes rising in
a cross-wind. Indeed, the values determined from exper-
iments are smaller than those determined through model
inversion applied to chimney plumes (Table 1, Hoult et al.
1969; Fay et al. 1970), perhaps since laboratory experi-
ments do not explore the same conditions found in the
natural environment. The uncertainty in entrainment coeffi-
cients for wind-blown plumes leads to substantial variation
in predicted plume heights for specified source conditions,
with larger values of the entrainment coefficients leading
to lower plume heights due to enhanced mixing of ambi-
ent air (e.g. Morton et al. 1956; Hewett et al. 1971; Barsotti
et al. 2008; Devenish et al. 2010; Degruyter and Bonadonna
2012; Woodhouse et al. 2013).

Simulator uncertainty

Deterministic mathematical models of natural processes
often involve the solution of nonlinear systems of differ-
ential equations. The analytical solutions of such systems
are rarely available, so numerical methods must be adopted.
We refer to the numerical solver as the simulator of the
natural process. Discretization of the differential equations
introduces numerical errors, known as discretization errors.
Additional errors can occur in the simulator (for example,
finite precision arithmetic).

For our integral model of wind-blown volcanic plumes,
we have a system of coupled ordinary differential equa-
tions and algebraic equations. The numerical solution of
these equations is straight-forward using standard numer-
ical techniques. Here, we use the fourth-order Cash-Karp
Runge-Kutta method with adaptive step-sizes allowing the
discretization error to be controlled and providing high
accuracy in the numerical solution (Press et al. 2007).
The solver is computationally efficient, allowing many

calculations to be performed. Therefore, in our application,
we consider the simulator uncertainty to be negligible.

Input uncertainty

Models may require additional inputs in order to represent
the state of the environment at the instant the calculation is
performed. These inputs have an associated uncertainty that
may be difficult to quantify.

Our plume model requires a representation of the state
of the atmosphere, in the form of atmospheric profiles at
the vent location. We refer to these meteorological inputs as
the ‘model forcing’ as the model predictions are dependent
on this input. The atmospheric profiles could be obtained
from direct observations and are therefore uncertain due to
the observational uncertainty associated with the measure-
ment device. For example, a radiosonde release may not
take place near the volcano or at a time coincident with an
eruption, and the measurements do not yield instantaneous
profiles. An alternative is to use other models to gener-
ate the atmospheric profiles (e.g. NWP tools), which can
be constructed at the volcanic vent and can forecast condi-
tions at the time of an eruption. However, the model results
are uncertain as they implicitly include all five sources of
uncertainty.

Without detailed knowledge of the observational devices
and modelling framework used to construct atmospheric
profiles, it is difficult to estimate precisely the uncertainty
that the forcing contributes to the plume model predictions.
Here, we estimate the uncertainty in the atmospheric forc-
ing through numerical experiments that perturb measured
atmospheric profiles.

Structural uncertainty

Models of natural processes are necessarily idealizations.
In order to construct tractable mathematical descriptions,
we must make simplifications of the complicated physics,
adopting parameterizations of processes that we feel are
important but are unable to describe fully. There may be
alternative parameterizations available, and in modelling
we make a choice as to which we feel is most appropri-
ate. These approximations introduce uncertainties into the
model, known as structural uncertainties (Goldstein and
Rougier 2004, 2009; Vernon et al. 2010), which influ-
ence our ability to match model predictions to observations.
Structural uncertainties within a model are difficult to quan-
tify.

In many cases, parameterizations are derived from a
limited number of observations in controlled laboratory set-
tings. When adopting such a parameterization in a model
of a large-scale natural process, we must appreciate that
we are applying the formulation outside of the regime for
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Table 1 Parameters in the plume model, with estimated value and associated uncertainties

Parameter (symbol) Value Uncertainties

Density of liquid water (ρw) 999.97 kg/m3 ρw is dependent on temperature (e.g. WMO 1988),

with maximum density at 4 ◦C. Supercooled liquid

water is less dense (e.g. ρw = 997.91 kg/m3 at −10 ◦C).

ρw also depends on the concentration of dissolved species,

and pressure (e.g. Pruppacher and Klett 1997; Haynes 2015).

Density of solid pyroclasts (ρs ) 1200 kg/m3 ρs varies widely by type (e.g. pumice 700–1200 kg/m3;

glass shards 2350–2450 kg/m3; lithic fragments

2700–3200 kg/m3; crystal fragments 2600–5200 kg/m3;

Shipley and Sarna-Wojcicki 1982) and size

(Taddeucci and Palladino 2002). Thus, ρs will depend on the

composition of magma and fragmentation processes.

Aggregation processes produce porous grains with a bulk

density as low as 200 kg/m3 (Brown et al. 2012).

Gas constant of dry air (Ra) 287.05 J/K/kg Well constrained.

Gas constant of water vapour (Rv) 461.51 J/K/kg Well constrained.

Gravitational acceleration (g) 9.81 m/s2 Varies in the range 9.76392–9.81974 m/s2 (Hirt et al. 2013)

and varies with altitude.

Latent heat of vaporization of water at 273 K (Lc0) 2.501 × 106 J/kg Well constrained (for pure water, although chemical species

can affect the value; Pruppacher and Klett 1997).

Specific heat capacity of dry air (Ca) 1005 J/K/kg Varies with temperature with e.g. Ca = 1005 J/K/kg at

300 K, Ca = 1051 J/K/kg at 600 K, Ca = 1142 J/K/kg

at 1000 K (Moran and Shapiro 2006; Mastin 2007). Note,

Woods (1988), Glaze and Baloga (1996),

Degruyter and Bonadonna (2012), Woodhouse et al. (2013)

use a smaller value of 998 J/K/kg; Bursik (2001) uses a

value of 1000 J/K/kg.

Specific heat capacity of liquid water (Cw) 4200 J/K/kg Varies with temperature (and weakly with pressure,

Haynes 2015), with Cw = 4219.4 J/K/kg at 273.16 K at

1 bar (Haynes 2015), increasing to Cw = 4522 J/K/kg at

243.15 K (Rogers and Yau 1989).

Specific heat capacity of solid pyroclasts (Cs ) 1100 J/K/kg A range of values have been reported. Experimental

measurements on air fall and basaltic scoria samples give a

range 815–865 J/K/kg (Stroberg et al. 2010). Settle (1978)

recommends a range 837–1256 J/K/kg, and modelling studies

have typically used values at the upper end of the range (e.g.

Wilson et al. 1978; Sparks et al. 1986; Mastin 2007;

Neri and Macedonio 1996). Woods (1988) takes 1617 J/K/kg

and many subsequent studies have adopted this.

Specific heat capacity of water vapour (Cv) 1850 J/K/kg Varies with temperature with e.g. Cv = 1863 J/K/kg at 300 K,

Cv = 2014 J/K/kg at 600 K, Cv = 2288 J/K/kg at 1000 K

(Moran and Shapiro 2006; Mastin 2007).

Entrainment coefficient in the absence of wind (ks ) 0.09 Experiments (e.g. Morton et al. 1956; Fischer et al. 1979;

Papanicolaou and List 1988) give a range 0.0833 ≤ ks ≤ 0.15

(with most around 0.09). Differences are due to the measurement

of either plume radius or fluxes (see Kaye and Linden 2004),
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Table 1 (continued)

source effects (Hunt and Kaye 2001), non-Boussinesq effects

(Ricou and Spalding 1961; Rooney and Linden 1996; Woods 1997),

and variations in entrainment with the local Richardson number for

buoyant jets (Priestley and Ball 1955; Wang and Law 2002; Kaminski et al. 2005; Kaye 2008).

In buoyant jets, laboratory experiments (Saffaraval et al. 2012) and numerical simulations

(Suzuki and Koyaguchi 2010) suggest the entrainment coefficient may be as low as 0.05

during the transition from momentum-driven to buoyancy-driven flow.

Entrainment coefficient due to wind (kw) 0.9 Experimental comparisons to integral model predictions of rise height (e.g.

Hewett et al. 1971; Hoult and Weil 1972; Contini and Robins 2001) give values

in the range 0.60 ≤ kw ≤ 0.71. Comparisons of model predictions to observations

of chimney plumes (Hoult et al. 1969; Fay et al. 1970) give higher values,

0.72 ≤ kw ≤ 0.9. Numerical simulations by Zhang and Ghoniem (1993) and

Devenish et al. (2010) give values kw = 0.7 and kw = 0.5, respectively.

The number of significant digits in the estimated value gives an indication of the measurement accuracy. The parameters marked ‘Well constrained’
are held fixed in the parameter sensitivity screening

which there is empirical support. For example, the wind
entrainment parameterization of Hewett et al. (1971) is pro-
posed on the basis of wind-tunnel experiments that adopted
a uniform wind speed with altitude. In contrast, atmo-
spheric winds typically have a vertical shear profile in the
lower atmosphere, and the plumes from large volcanic erup-
tions may ascend beyond the tropopause and encounter jet
streams with locally high wind speeds (Bursik 2001; Bursik
et al. 2009).

An even greater challenge to quantifying model uncer-
tainty is the structural uncertainty that arises due to
unmodelled physical processes. In model development,
we inevitably choose to neglect some physical processes
as we believe they have little effect on the dominant
behaviour yet would add complexity to the mathemat-
ical description. Furthermore, model development may
have taken place without knowledge of some physical
processes.

As an example of structural uncertainty in our wind-
blown plume model, we neglect the fallout of pyroclasts.
This is a pragmatic modelling decision, since it is not known
how wind modifies particle settling in a bent-over plume.
When the pyroclasts are fine-grained, the fallout of solids
has little effect on the plume dynamics, since the particles
rapidly transfer their heat to the gaseous phases and the
mass lost from the plume due to fallout is only a small
proportion of the total mass of the plume (Woods and Bur-
sik 1991; Sparks et al. 1997). However, if the eruption
produces coarse-grained material, the heat transfer occurs
on a longer timescale so that fallout may occur before
thermal equilibrium is reached (Woods and Bursik 1991;
Sparks et al. 1997). Fallout of coarse grains can then have
a significant effect on the plume dynamics. Therefore, the

structural uncertainty introduced by our neglect of par-
ticle fallout could be significant for eruptions producing
large pyroclasts, but is likely small for fine-grained eruption
columns.

Additionally, our model assumes that the pressure in the
plume is equal to the atmospheric pressure throughout the
ascent. This assumption may not be appropriate very near to
the vent where the erupted material can have a substantial
overpressure (Woods and Bower 1995; Ogden et al. 2008b;
Saffaraval et al. 2012). Large overpressure alters the flow
dynamics (Woods and Bower 1995; Ogden et al. 2008b;
Ogden et al. 2008a), in particular the turbulent mixing pro-
cesses, such that a different parameterization of entrainment
is required (Saffaraval et al. 2012). However, the pressure
in the near vent jet rapidly adjusts to atmospheric pressure
(Saffaraval et al. 2012) and therefore, while the neglect of
physical processes induced by the pressure disequilibrium
introduces structural uncertainty in the model, we expect
the model results to be little affected by the simplified
description (Saffaraval et al. 2012).

History matching

In general, we can view our simulator as a function, f , map-
ping a set of inputs x onto a set of model outputs ymod using
specified parameters θ ,

ymod = f (x; θ). (2)

Here, x denotes the ‘active’ inputs that we seek to determine
from model inversion, and θ denotes model parameters that
remain fixed. We assume that the set of all possible inputs,
X , is non-empty (i.e. there is at least one input that produces
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a model output) so that it is possible to run the simulator. In
practice, the model is only useful if many inputs covering
the range of natural phenomena can be used in the simulator,
so the set X is typically large. In addition, we assume the
model is deterministic, so that f (x; θ) produces the same
output ymod each time a simulation is performed. However,
the model output could be the same for two different inputs.

In model inversion, we seek to find the set of inputs
x ∈ X ∗ ⊂ X that give rise to plausible model output
with respect to the physical observables yphys accounting
for uncertainty. We will do this through a history match-
ing approach whereby we attempt to determine all elements
of X ∗, rather than attempt to find the (probability density
function for the) best match as is done in model calibra-
tion (Kennedy and O’Hagan 2001; Rougier 2007; Denlinger
et al. 2012; Madankan et al. 2014).

Observational uncertainty means that the values of the
quantities we observe differ from the actual physical values,
i.e. yobs = yphys + εobs , where yobs is the observed quan-
tity corresponding to yphys and εobs is the observational
error, which we assume is uncorrelated with yphys (Craig
et al. 1997; Vernon et al. 2010). Therefore, while we wish
to match ymod to yphys , we must instead be satisfied with a
match to yobs , but we should take account of εobs .

Parameter uncertainty, simulator uncertainty, input
uncertainty and structural uncertainty can be combined into
a model discrepancy εmd (Vernon et al. 2010), such that,
even if the physical inputs (denoted by xphys) that give
rise to the observables yphys were known, then yphys =
f (xphys; θ) + εmd . The model discrepancy quantifies the
ability of the simulator to reproduce the physical state of the
system being modelled when the physical inputs are used,
and is estimated by examination of model outputs using a
variety of model inputs.

Following Vernon et al. (2010), we introduce implausi-
bility measures, Ii(x) for each of the model outputs which
are labelled with the index i, to quantify the discrepancy
in the model predictions ymod

i of y
phys
i while account-

ing for uncertainty, defined for a general system in which
probability density functions are specified for the model dis-
crepancy (e.g. for a model that includes stochastic forcing)
and observational error as

I 2
i (x) =

(
yobs
i − fi (x; θ)

)2

Var
(
εmd
i

) + Var
(
εobs
i

) . (3)

Therefore, the implausibility measure I 2
i is the squared

deviation of the model prediction from the observation
scaled by the uncertainty in the model and observation.
Separate implausibility measures are constructed for each
model output–observation pair and can be combined to give
an overall indication of the discrepancy (Vernon et al. 2010),

but here we focus on a single model output and there-
fore adopt a single implausibility measure, I (x), (additional
model outputs can then be assessed sequentially).

The implausibility measure is large when the model
output differs from the observation by an amount that is
unlikely to be due only to model and observational uncer-
tainty. The model inputs giving rise to a large implausibility
measure are then considered as unlikely to be appropri-
ate representations of the physical state of the system, and
these regions of the model input space can be visualized
by projecting the implausibility measure into subspaces of
the model inputs. Visualization of the implausibility mea-
sure provides insight into the effect of uncertainty on model
predictions. In order to rule-out regions of the model input
space as implausible, an implausibility cut-off Ip must be
defined. The plausible input space X ∗ is then populated
with inputs such that I (x) < Ip. Vernon et al. (2010) rec-
ommends Ip = 3 based on the 3σ rule (implying, in some
generality, I (xphys) < 3 with probability greater than 0.95,
Pukelsheim 1994), and we adopt this value here.

In this study, the variances of the model discrepancy and
observational uncertainty are specified to be constants, and
we consider a single model output. For this simple situation,
it is straight-forward to assess changes to the implausi-
bility measure if the observational uncertainty or model
discrepancy is reduced. For example, if we suppose that our
measurement of yobs improves such that the variance in the
observational uncertainty is reduced to αVar(εobs) (which
can be achieved by scaling the distribution of the observa-
tional uncertainty by

√
αεobs) and the variance of the model

discrepancy is reduced to βVar(εmd) for dimensionless fac-
tors 0 < α ≤ 1 and 0 < β ≤ 1, then we can define a new
implausibility measure, I (new), as

I (new) =
√√√√

(
yobs − f (x; θ)

)2

αVar
(
εobs

) + βVar
(
εmd

) . (4)

The new implausibility measure can be related to the origi-
nal measure, I , through,

I (new)

I
=

√
Var

(
εobs

) + Var
(
εmd

)

αVar
(
εobs

) + βVar
(
εmd

) , (5)

and therefore, taking I (new) = 3 as a threshold on the
plausible model output, a corresponding threshold on the
original implausibility measure can be calculated (Fig. 1).
Through Eq. 5, the history-matching results can be updated
if new observations allow the observational uncertainty or
the uncertainty due to the model forcing to be reduced, sim-
ply by calculating the appropriate threshold on the original
implausibility measure, provided the target observations and
model inputs are unchanged.
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Fig. 1 Threshold for the implausibility measure, Ip , as a function of
the factor by which the observational error is reduced, α, while the
model discrepancy is not changed (β = 1). If the observational error
Var

(
εobs

)
is reduced to αVar

(
εobs

)
with 0 < α ≤ 1, then the thresh-

old on the implausibility measure Ip below which the model output
can be considered a plausible match to the observation is decreased.
Four examples are shown, with Var

(
εobs

) = 1.9 km2, Var
(
εmd

) =
0.5 km2 (green line), Var

(
εobs

) = 1.4 km2, Var
(
εmd

) = 0.5 km2

(red line), Var
(
εobs

) = 1.7 km2, Var
(
εmd

) = 0.5 km2 (blue line) and
Var

(
εobs

) = 1.6 km2, Var
(
εmd

) = 1.0 km2 (black line)

Methods

Parameter sensitivity screening

History matching requires a thorough investigation of the
model input space. The number of model evaluations grows
exponentially with the dimension of the input space, so that,
when the input space is large, the number of calculations
required to adequately cover the input space may be pro-
hibitive. We therefore attempt to reduce the dimension of the
input space wherever possible. The approach that we follow
here is to assess the sensitivity of the model to the param-
eters using typical conditions. Only those parameters with
a substantial influence on the variation of the model output
are included as an active input, while those that have little
effect on the model solutions are held fixed. This involves a
subjective decision on the threshold of sensitivity that deter-
mines which parameters are included in the active input set,
a decision that is guided by analysis of the model outputs.
We note that this preliminary parameter screening is not
necessary for the subsequent history matching which could
be performed with all parameters allowed to vary. How-
ever, the reduction in the size of the input space achieved by
removing the non-influential parameters allows for a more
detailed examination of the remaining model inputs without
greatly affecting the variability in model predictions that is
due to uncertain parameters.

Despite the very rapid numerical integration of the gov-
erning equations, an investigation of the 17 dimensional
model input space is prohibitively time consuming. We
therefore perform an initial sensitivity analysis of the nine
most poorly constrained model parameters (see Table 1),
using the variance-based sensitivity analysis of Saltelli et al.
(2010). The sensitivity of the model outputs to changes in
parameters are quantified using sensitivity indices; here, we
compute the first-order and total-effect sensitivity indices.
Full details of the sensitivity indices are given in Saltelli
et al. (2010), and a similar methodology has been employed
by Scollo et al. (2008).

The calculation of the sensitivity indices requires the
evaluation of multidimensional integrals over the model
parameter space, and is therefore computationally expen-
sive for a model with a large number of parameters. Saltelli
et al. (2010) gives estimators of the integrals required to
compute the sensitivity indices that can be obtained from
a random, space-filling sampling of the parameter space.
Here, we use a Latin hypercube design with a maximin cri-
teria, iteratively adjusting the placement of sampling points
in the Latin hypercube to maximize the minimum distance
between points (Morris and Mitchell 1995). Confidence
intervals on the first-order and total-effect sensitivity indices
are estimated by a bootstrap of the Latin hypercube samples
(Archer et al. 1997; Yang 2011).

For a sensitivity analysis focused on the model param-
eters, we hold the other model inputs (i.e. the model
boundary conditions and the meteorological forcing) fixed.
Therefore, the sensitivity analysis is strictly only informa-
tive on the sensitivity of the model predictions to changes
in parameters for the particular choice of boundary con-
ditions and atmospheric conditions. We therefore select
atmospheric conditions that are representative of expected
conditions during the Eyjafjallajökull and Grı́msvötn erup-
tions. In particular, we choose to use atmospheric data
obtained from radiosonde ascent at Keflavı́k International
Airport at 1200 (all times given are UTC) on 11 May 2010,
and take vent radius L0 = 80 m, exit velocity U0 = 80 m/s,
source temperature T0 = 1000 K and gas mass fraction at the
vent n0 = 0.03.

History matching

Following the sensitivity screening of the model parameters,
those parameters that have a substantial influence on the
model output are included in the set of active inputs along-
side the unknown boundary conditions, and the uncertainty
analysis on the model input set is performed following the
history-matching approach. In this study, we use observa-
tions of the height of volcanic plumes derived from radar
instruments during the eruptions of Eyjafjallajökull in 2010
and Grı́msvötn in 2011.
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Fig. 2 Radar-derived plume top heights at Eyjafjallajökull. a The
radar scanning levels adopted throughout the 2010 eruption (circles)
and beam widths at Eyjafjallajökull (bars). The finite beam width and
steps in scanning heights result in observational uncertainties in the

radar-derived plume heights. b Plume top heights at Eyjafjallajökull
derived from the C-band radar at Keflavı́k on 14 April 2010 (green
points, T = 1200), 15 April 2010 (red points, T = 0000) and 11 May
2010 (blue points, T = 1200)

During the Eyjafjallajökull eruption in April and May
2010, a fixed C-band weather radar located at Keflavı́k
International Airport, 155 km west of the volcano, made
reflectivity scans every 5 min giving a high temporal resolu-
tion data set of the plume height (Arason et al. 2011). How-
ever, the distance of the volcano from the radar, the scanning
strategy employed and the limitations of the C-band radar in
detecting fine ash and distinguishing hydrometeors, result in
large observational uncertainty in the inferred plume height
of up to 2.5 km (Fig. 2 and Arason et al. 2011).

We consider three times during the Eyjafjallajökull erup-
tion: 1200 on 14 April 2010 and 0000 on 15 April 2010
during the first explosive phase of the eruption (14–18 April
2010), and 1200 on 11 May 2010 during the second explo-
sive phase (5–17 May 2010). The first explosive phase of the
Eyjafjallajökull eruption was characterized by phreatomag-
matic activity due to interaction of magma with glacial
ice on the summit, and the production of fine ash (Gud-
mundsson et al. 2012). The plume at 1200 on 14 April
2010 reached a higher altitude than the plume at 0000 on
15 April. Variations in the plume height during the first
explosive phase have been attributed to changes in the

wind strength with a constant source mass flux using sim-
ple inversion from radar-derived plume heights (Woodhouse
et al. 2013). The second explosive phase was less vigorous
than the first explosive phase (Gudmundsson et al. 2012).
Figure 2 shows the variation in the plume height as mea-
sured by the C-band radar at Keflavı́k, and Table 2 gives
the target plume height (here taken as the median plume
height in the 2-h period centred on the observation time) and
associated observational uncertainty.

The Grı́msvötn eruption in May 2011 was monitored by
two radar instruments; the fixed C-band radar at Keflavı́k
International Airport and a mobile X-band radar that was
deployed near to the volcano during the eruption (Petersen
et al. 2012). The C-band radar at Keflavı́k was 257 km from
Grı́msvötn and produced plume height measurements every
5 min during the eruption (Petersen et al. 2012). The X-band
radar was located 75 km from Grı́msvötn and was oper-
ational from 0327 on 22 May 2011, approximately 8.5 h
after the start of the eruption (Petersen et al. 2012). Opera-
tional challenges of the field deployment led to a fragmented
record of plume height (Petersen et al. 2012), and the scan-
ning strategy employed results in only a slight improvement

Table 2 Plume height target values and associated quantified uncertainties for history matching

Event location and time Plume height target value Observational uncertainty, Var
(
εobs

)
Model discrepancy, Var

(
εmd

)

Eyjafjallajökull 14 April 2010 at 1200 8.6 km 1.9 km2 0.5 km2

Eyjafjallajökull 15 April 2010 at 0000 5.3 km 1.4 km2 0.5 km2

Eyjafjallajökull 11 May 2010 at 1200 5.0 km 1.7 km2 0.5 km2

Grı́msvötn 22 May 2011 at 0500 19.2 km 1.6 km2 1.0 km2
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Fig. 3 Radar-derived plume top heights at Grı́msvötn. a The scanning
levels (circles) and beam widths at Grı́msvötn (bars) of the C-band
(blue) and X-band (red) radars are shown. The finite beam width and
steps in scanning heights result in observational uncertainties in the

radar-derived plume heights. b Plume top heights at Grı́msvötn from
0400 to 0600 on 22 May 2011 derived from the C-band (blue points)
and X-band (red points) radars

in the vertical resolution of the plume height in comparison
to the fixed C-band radar (Fig. 3 and Petersen et al. 2012).
The X-band radar gives at plume height of 19.2 km at 0500
on 22 May 2011, and we estimate an uncertainty of 1.6 km
in this measurement (Table 2).

The atmospheric conditions during the Eyjafjallajökull
and Grı́msvötn eruptions are not known precisely. No direct
measurements of atmospheric properties are available at the
location of the volcano. Measurements of atmospheric pro-
files are made twice daily at Keflavı́k International Airport

Fig. 4 Meteorological profiles as measured by radiosonde ascent at
Keflavı́k International Airport. Profiles of a, d wind speed, b, e temper-
ature and c, f relative humidity as a function of altitude are shown. The
data in a–c are used to describe the atmospheric conditions at Eyjafjal-
lajökull on 14 April 2010 at 1200 (green), 15 April 2010 at 0000 (red)

and 11 May 2010 at 1200 (blue). In d–f, radiosonde data obtained on
22 May 2011 at 0000 (blue) and 1200 (red) are shown, which are used
to describe the atmospheric conditions at Grı́msvötn. Note the noisy
signal at low wind speed (d) and for the relative humidity (c, f)
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by radiosondes. These are the only direct measurements
available during the eruptions, and we use these mea-
sured atmospheric properties. The adoption of radiosonde
measurements to describe the atmospheric structure at the
volcanoes therefore introduces uncertainties into the model
solutions which are quantified in the model discrepancy.
Meteorological conditions measured by radiosonde are
shown in Fig. 4. For the Eyjafjallajökull examples, we esti-
mate the model discrepancy to be Var(εmd) = 500 m2 due
primarily to uncertainty in the atmospheric observations.
The Grı́msvötn observation at 0500 on 22 May 2011 has
no coincident atmospheric observation, lying between the
radiosonde releases at 0000 and 1200 that show differences
in conditions (Fig. 4d–f). This leads to increased uncertainty
in the model which we estimate by comparing the model
predictions obtained using atmospheric soundings taken at
0000 and 1200 on 22 May 2010, with fixed source condi-
tions. We find the different atmospheric conditions lead to
model plume heights that differ by approximately 1 km and
adopt this value as an estimate of the uncertainty due to
imprecise meteorological inputs (Table 2).

In this initial analysis, we take large ranges for the active
model inputs (Table 3) to avoid excluding values that might
give acceptable model predictions even though experts may
judge these values to be unrepresentative of the physical sys-
tem. Indeed, our analysis examines the ability of the model
to reproduce observations and therefore it is of interest to
determine the extent to which observations constrain model
inputs to ranges that are likely representative of the volcanic
setting. We make no further probability judgements on the
values of each of the active inputs. Further analysis follow-
ing the preliminary history matching could employ prior
probability distributions, perhaps guided by expert judg-
ments. The range of values taken for the active inputs in
our history matching analysis is given in Table 3. For the
model parameters, the range spans the values used in pre-
vious studies (see Table 1), whereas the model boundary
conditions take values that describe a variety of source con-
ditions. To sample the space of active model inputs, we
construct a space filling Latin hypercube with a maximin
design (Morris and Mitchell 1995).

Results

Parameter sensitivity screening

The sensitivity indices for the poorly constrained model
parameters are shown in Table 4. The slow convergence of
the estimators to the multidimensional integrals required for
computation of the sensitivity indices means a large num-
ber of sample points in the Latin hypercube are needed.
Here, we have taken 1 million sample points, resulting in
11 million forward model runs. Such large sample sizes are
possible here as the model calculations are rapid.

A ranking of the importance of the model parameters can
be determined from the sensitivity analysis. Here, we find
that the solids heat capacity Cs , wind entrainment coeffi-
cient kw, heat capacity of dry air Ca and no-wind entrain-
ment coefficient ks (in descending order) have largest effect
on the variation in model outputs. The sensitivity indices of
the other model parameters are orders of magnitude smaller.
In other meteorological conditions, the ordering of the influ-
ential parameters (Cs , kw, Ca and ks) changes, but no other
parameters enter this set. In particular, if the wind speed
is reduced then the sensitivity indices for the parameter
ks increase by an order of magnitude (results not given
here). Given the sensitivity of the model to these parame-
ters and the uncertainty in appropriate values, we include
the parameters Ca , Cs , ks and kw in the set of active model
inputs.

History matching

The visualization of the multidimensional implausibility
function is challenging. Here, we use projections of the min-
imum of the implausibility measure onto two-dimensional
sections. Thus, we compute the smallest implausibility of all
points in our design which have a ≤ xi < b and c ≤ xj < d

for appropriate choices of a, b, c and d. The minimum
projection metric ensures that, for a model input xi to be
considered implausible, the implausibility measure exceeds
the implausibility threshold for all possible values of xj for
j �= i.

Table 3 Range of values for
active model inputs in history
matching

Parameter (symbol) Range

Source mass flux (Q0) 103–109 kg/s

Exit velocity (U0) 10–500 m/s

Source temperature (T0) 800–1500 K

Gas mass fraction at source (n0) 0.001–0.25

Specific heat capacity of solid pyroclasts (Cs ) 815–1617 J/K/kg

Specific heat capacity of dry air (Ca) 998–1142 J/K/kg

Entrainment coefficient in the absence of wind (ks ) 0.07–0.16

Entrainment coefficient due to wind (kw) 0.1–1.2
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Table 4 Sensitivity indices for plume model parameters

Parameter (symbol) First-order sensitivity index 95 % Confidence interval from bootstrap

Density of liquid water (ρw) 2.4 × 10−9 [−4.3 × 10−9, 6.4 × 10−9]
Density of solid pyroclasts (ρs ) 5.6 × 10−5 [−1.3 × 10−5, 2.0 × 10−4]
Gravitational acceleration (g) 4.2 × 10−4 [−4.2 × 10−4, 3.5 × 10−4]
Specific heat capacity of dry air (Ca) 7.7 × 10−2 [6.8 × 10−2, 8.0 × 10−2]
Specific heat capacity of liquid water (Cw) 2.5 × 10−8 [−3.1 × 10−5, 6.6 × 10−5]
Specific heat capacity of solid pyroclasts (Cs ) 5.3 × 10−1 [5.2 × 10−1, 5.5 × 10−1]
Specific heat capacity of water vapour (Cv) 1.8 × 10−4 [−3.0 × 10−4, 3.8 × 10−4]
Entrainment coefficient in absence of wind (ks ) 2.6 × 10−2 [2.2 × 10−2, 2.9 × 10−2]
Entrainment coefficient due to wind (kw) 3.2 × 10−1 [3.2 × 10−1, 3.4 × 10−1]

Total effects sensitivity index 95 % Confidence interval from bootstrap

Density of liquid water (ρw) 7.6 × 10−14 [5.0 × 10−14, 1.0 × 10−13]
Density of solid pyroclasts (ρs ) 3.1 × 10−5 [3.1 × 10−5, 3.1 × 10−5]
Gravitational acceleration (g) 4.2 × 10−4 [4.2 × 10−4, 4.3 × 10−4]
Specific heat capacity of dry air (Ca) 9.6 × 10−2 [9.6 × 10−2, 9.6 × 10−2]
Specific heat capacity of liquid water (Cw) 6.7 × 10−6 [6.7 × 10−6, 6.8 × 10−6]
Specific heat capacity of solid pyroclasts (Cs ) 5.7 × 10−1 [5.7 × 10−1, 5.8 × 10−1]
Specific heat capacity of water vapour (Cv) 3.4 × 10−4 [3.4 × 10−4, 3.4 × 10−4]
Entrainment coefficient in absence of wind (ks ) 3.3 × 10−2 [3.2 × 10−2, 3.3 × 10−2]
Entrainment coefficient due to wind (kw) 3.7 × 10−1 [3.7 × 10−1, 3.7 × 10−1]

We consider first the observations of plume height from
Eyjafjallajökull at 1200 on 14 April 2010 and 0000 on
15 April 2010. The history matching results for 1200 on
14 April as visualized by projections of the minimum of
the implausibility measure onto all combinations of two-
variable planes are shown in Fig. 5. Several immediate
inferences can be made. Firstly, there is a limited range of
the source mass flux Q0 that can be input into the model
such that a plume height prediction that plausibly matches
the observed height is obtained; we can refer to these values
as plausible predictions of the source mass flux and denote
the values as Q∗

0. On 14 April 2010, we find 2.6 × 105 ≤
Q∗

0 ≤ 7.5 × 107 kg/s, whereas we obtain 2.1 × 105 ≤
Q∗

0 ≤ 4.6×107 kg/s on 15 April 2010. The plausible values
of the source mass flux Q∗

0 are strongly dependent on the
choice of the wind entrainment coefficient kw, with higher
values of Q∗

0 when kw is large. The other model inputs
have weaker influence on the plausible values of the source
mass flux. For example, there is evidence that values of Q∗

0
increase with decreasing source temperature T0, and there
is a slightly smaller range of plausible source mass flux
when ks is large. The plume height observation is insuffi-
cient to reduce the range of the input variables other than
the source mass flux, with the exception of a region with
both U0 and n0 small that is implausible. Similar results

are obtained from the history matching for 0000 on 15
April (Fig. 6).

The projection of the implausibility measure onto two-
variable planes hides the higher-order dependencies of the
model predictions on the model inputs. Further insight can
be gained from an examination of the implausibility mea-
sure in cuts through the input space. In particular, we choose
small intervals of the source mass flux, spanning the range
of not-implausible source mass flux. Within each interval,
we examine the implausibility measure as functions of kw

and the remaining input variables.
Figures 7 and 8 demonstrate the additional relationships

between model inputs that can be drawn out by this visu-
alisation. The strong dependence of the source mass flux
Q0 on the value of the wind entrainment coefficient kw is
again apparent. Additionally, we see a three-way interaction
between the source mass flux Q0, source temperature T0

and the wind entrainment coefficient kw, with higher values
of T0 ruled-out unless kw is sufficiently high (see the T0 row
and columns 3–5 in Figs. 7 and 8). Similar relationships are
seen in the gas mass fraction n0 and solids heat capacity Cs

inputs. In contrast, the no-wind entrainment coefficient ks

is (weakly) inversely related to the wind entrainment coef-
ficient kw; the not-ruled out values of ks decrease as kw

increases.
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Fig. 5 The projection of the minimum implausibility measure onto two-variable planes for history matching to the radar-derived plume height at
Eyjafjallajökull at 1200 on 14 April 2010

We consider next the plume from Eyjafjallajökull at 1200
on 11 May 2010, during the second explosive phase of the
eruption. Figure 9 shows projections of the implausibility
measure onto two-variable planes, and Fig. 10 demonstrates
the relationship between the model inputs and the wind
entrainment coefficient kw within intervals of the source
mass flux Q0. Comparison of Fig. 9 with Figs. 5 and 6
shows that the range of not-implausible source mass flux on
11 May 2010 (1.0×105 ≤ Q∗

0 ≤ 2.1×107 kg/s) is at lower
values than for 14 and 15 April 2010. A stronger inverse
relationship between the entrainment coefficients is seen in
Fig. 10 than in Figs. 7 and 8. In other respects, the dependen-
cies of the implausibility measure on the input parameters
for 1200 on 11 May 2010 are similar to those seen for 14
and 15 April 2010.

The history-matching results for the Grı́msvötn eruption
at 0500 on 22 May 2011 are shown in Figs. 11 and 12. The

range of not-implausible source mass flux (1.6 × 107 ≤
Q∗

0 ≤ 8.5×108 kg/s) occurs at markedly increased values in
comparison to the results from the Eyjafjallajökull eruption
(Figs. 5, 6 and 9). The dependence of the not-implausible
source mass flux Q∗

0 on the wind entrainment coefficient
kw is much weaker for the Grı́msvötn example than for the
Eyjafjallajökull cases. We also see that the region of the
input space with both U0 and n0 at the low end of their
range of values that is ruled out by the history matching
has increased in extent. Thus, low velocities at the vent are
implausible unless the ejected material has an abundance of
gas. Figure 12 shows a strong inverse relationship between
the entrainment coefficients that result in plausible matches
between the model prediction and the plume height obser-
vation; high values of the no-wind entrainment coefficient
ks are ruled out unless the wind entrainment coefficient kw

and source mass flux Q0 are sufficiently high.
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Fig. 6 The projection of the minimum implausibility measure onto two-variable planes for history matching to the radar-derived plume height at
Eyjafjallajökull at 0000 on 15 April 2010

Discussion

The observations of plume height from Eyjafjallajökull at
1200 on 14 April 2010 and 0000 on 15 April 2010 differ
by approximately 3.3 km. Woodhouse et al. (2013) suggests
that plume height differences on these occasions could be
accounted for by changes in the meteorological conditions
with the volcanic source conditions held constant. The his-
tory matching uncertainty analysis supports the hypothesis
that the volcanic source conditions (particularly the source
mass flux) did not change substantially between 1200 on
14 April and 0000 on 15 April (Fig. 13). The change in
the atmospheric input to the model alone is sufficient to
describe the difference in the plume heights. Importantly,
this conclusion is independent of the value taken for the
wind entrainment coefficient kw (Fig. 13).

The large uncertainty in the wind entrainment coefficient
kw results in an inability to place tight constraints on the
source mass flux Q0, and history matching allows us to

quantify this uncertainty. The distribution of the source mass
flux that is considered plausible following history match-
ing for each of the Eyjafjallajökull cases spans two orders
of magnitude (Fig. 13). Constraining the wind entrainment
coefficient reduces the range of values for the source mass
flux that is not ruled out of the input space. For example,
taking 0.72 ≤ kw ≤ 0.9 as suggested from observations
of chimney plumes (Hoult et al. 1969; Fay et al. 1970), the
source mass flux on 14 April that is not-ruled-out by history
matching spans the range 3.0×106 ≤ Q0 ≤ 4.4×107 kg/s
(Fig. 13). In contrast, taking the range 0.6 ≤ kw ≤ 0.71
as found from laboratory experiments on plumes in a uni-
form cross-wind (Hewett et al. 1971; Hoult and Weil 1972;
Contini and Robins 2001), the range of source mass flux on
14 April is 2.3 × 106 ≤ Q0 ≤ 2.5 × 107 kg/s (Fig. 13).
Thus, when constraining the wind entrainment coefficient
to empirically determined values, the range of plausible
values for the source mass flux still covers an order of mag-
nitude, due primarily to observational uncertainty in the
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Fig. 7 The projection of the minimum implausibility measure onto two-variable planes within intervals of the source mass flux Q0 for history
matching to the radar-derived plume height at Eyjafjallajökull at 1200 on 14 April 2010

radar plume heights. It is notable that applications of plume
models have often used lower values of the wind entrain-
ment coefficient, with Degruyter and Bonadonna (2012) and
Mastin (2014) adopting a value kw = 0.5, whereas Barsotti
et al. (2008) and Barsotti and Neri (2008) use kw = 0.6.

During the second explosive phase of the Eyjafjallajökull
eruption, the eruption strength was typically deduced to be

lower than during the first explosive phase (Gudmunds-
son et al. 2012) and the plume was strongly wind affected
(Gudmundsson et al. 2012; Degruyter and Bonadonna 2012;
Woodhouse and Behnke 2014). The plume on 11 May 2010
reached an altitude of 5 km, similar to the plume height
observed on 15 April during the first explosive phase, but
the wind speed on 11 May was lower than on 15 April
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Fig. 8 The projection of the minimum implausibility measure onto two-variable planes within intervals of the source mass flux Q0 for history
matching to the radar-derived plume height at Eyjafjallajökull at 0000 on 15 April 2010

(Fig. 4). Additionally, the moisture content of the atmo-
sphere on these occasions differed. The history match-
ing uncertainty analysis demonstrates that the differ-
ent atmospheric conditions are sufficient to result in an
order of magnitude difference in the prediction of the
source mass flux between the first explosive phase (14
and 15 April 2010) and the plume on 11 May 2010
(Fig. 13).

For the high rising plume from the Grı́msvötn eruption
on 22 May 2011, the low wind speed and strength of the
eruption resulted in a plume that was much less affected
by wind than the plumes from the Eyjafjallajökull erup-
tion. The history-matching results reflect this, with weak
dependence of the source mass flux predictions on the wind
entrainment coefficient kw and a stronger dependence on
the no-wind entrainment coefficient ks than is found for the



 83 Page 18 of 28 Bull Volcanol  (2015) 77:83 

Fig. 9 The projection of the minimum implausibility measure onto two-variable planes for history matching to the radar-derived plume height at
Eyjafjallajökull at 1200 on 11 May 2010

weak plumes at Eyjafjallajökull. The observational error for
the Grı́msvötn eruption is substantial, despite the use of a
proximally deployed mobile radar, so the range of source
mass flux that is not ruled out by the history matching
remains large (1.6 × 107 ≤ Q0 ≤ 8.5 × 108 kg/s). With
improvements to the operational strategy of the mobile X-
band radar in Iceland, it is anticipated that the observational
error on plume heights will be greatly reduced during future
eruptions. However, without improved characterization of
the model parameters and model inputs, the reduction in
the observational uncertainty will result in only a modest
decrease in the range of the source mass flux that is not
ruled out in history matching. For example, if the observa-
tional uncertainty could be reduced to Var(εobs) = 160 m2

(so α = 0.1), then the threshold on the implausibility mea-
sure is Ip = 2.0 from Eq. 5, but there is only a slight
reduction in the range of plausible values of the source mass

flux, as illustrated in Fig. 14. We note from Eq. 5 that reduc-
ing the observational uncertainty to zero (which cannot
be achieved in practice) gives an implausibility threshold
Ip = 1.86, and to further constrain the space of plausi-
ble model inputs there must be a reduction in the model
discrepancy, through reduced uncertainty in the observa-
tions of the atmospheric conditions (the model forcing) and
improvement in the model to reduce the implicit structural
uncertainty.

In our analysis, we have not varied the meteorological
input. The atmospheric forcing has a strong influence on
model predictions (Woods 1993; Glaze and Baloga 1996;
Bursik 2001; Degruyter and Bonadonna 2012; Woodhouse
et al. 2013) and therefore uncertainty in the meteoro-
logical input can impact on the ability of the model to
reproduce observations. Here, we have incorporated the
uncertainty in the meteorological forcing through the model
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Fig. 10 The projection of the minimum implausibility measure onto two-variable planes within intervals of the source mass flux Q0 for history
matching to the radar-derived plume height at Eyjafjallajökull at 1200 on 11 May 2010

discrepancy in the implausibility measure. Further exam-
ination of the uncertainty in meteorological forcing can
be achieved by coupling the plume model to an NWP
model. The inputs to the NWP model can then be included
in a history matching uncertainty analysis, but this will
likely increase substantially the dimension of the space of
model inputs.

Two algebraic expressions have been proposed to relate
source conditions to the plume height for volcanic plumes

rising in a wind-field (Degruyter and Bonadonna 2012;
Woodhouse et al. 2013), which can be considered as sur-
rogate models of the integral plume model. The numerical
solution of the integral model is sufficiently rapid that the
surrogate models offer little benefit in evaluation but intro-
duce new uncertainties, e.g. parameter uncertainty from new
parameters that are introduced, and structural uncertainty
from the representation of atmospheric profiles by aver-
aged values. However, the algebraic expressions provide
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Fig. 11 The projection of the minimum implausibility measure onto two-variable planes for history matching to the radar-derived plume height
at Grı́msvötn at 0500 on 22 May 2011

some insight into the relationships revealed in the history
matching.

The relationships proposed by Degruyter and Bonadonna
(2012) and Woodhouse et al. (2013) each have the form,

Q0 = 25/2πk2
s

z4
1

×
[

PA0Ca

g ((Cvn0 + Cs (1 − n0)) T0 − CaTA0) Ra

]
N3H 4f (W), (6)

where PA0 and TA0 denote the atmospheric pressure and
temperature at the vent, respectively, N is a representative
atmospheric buoyancy frequency, given for example by the
average of the buoyancy frequency over the height of the
plume (Degruyter and Bonadonna 2012) and z1 is a cali-
bration parameter (Morton et al. 1956 give z1 = 2.8 from
numerical solutions of an integral model of pure plumes, i.e.

with boundary conditions corresponding to a point source of
buoyancy with no flux of mass or momentum). Note, here
we have inverted the expression presented in Woodhouse
et al. (2013) to give the source mass flux as a function of
the plume height, and we have explicitly included source
thermodynamic properties in the prefactor of the scaling
relationship (see Woodhouse et al. 2013). The effect of wind
is described by the function f (W) which is a monotonic
increasing function of a dimensionless measure of the wind
speed W . The surrogate models differ in the specification
of the dimensionless wind speed W , and the form of the
function f . Degruyter and Bonadonna (2012) propose

f (W) = 1 + z4
1

25/2
.
k2
w

6k2
s

W, with W = v̄

N̄H
, (7)



Bull Volcanol  (2015) 77:83 Page 21 of 28 83 

Fig. 12 The projection of the
minimum implausibility
measure onto two-variable
planes within intervals of the
source mass flux Q0 for history
matching to the radar-derived
plume height at Grı́msvötn at
0500 on 22 May 2011

while Woodhouse et al. (2013) suggest

f (W) =
(

1 + bW + cW2

1 + aW

)4

, with W = 1.44
γ̇

N
.

(8)

Here, v̄ and N̄ are the wind speed and buoyancy fre-
quency averaged over the plume height (Degruyter and
Bonadonna 2012), γ̇ is representative of the shear rate
of the atmospheric wind and a = 0.87 + 0.05kw/ks ,
b = 1.09 + 0.32kw/ks and c = 0.06 + 0.03kw/ks

(Woodhouse et al. 2013). The functional form Eq. 7 is
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Fig. 13 Not-ruled-out values of the source mass flux Q0 as a function
of the wind entrainment coefficient kw using a 3σ -threshold, for 14
April 2010 (green), 15 April 2010 (red) and 11 May 2010 (blue)

obtained by Degruyter and Bonadonna (2012) from a linear
combination, with equal weights, of the plume rise height
relationship of Morton et al. (1956) for plumes in a quies-
cent ambient (when W ≡ 0) and the asymptotic expression
of Hewett et al. (1971) for the rise height of a pure plume
in a uniform cross wind that is appropriate for W 
 1
(Hewett et al. 1971). In contrast, the more complex func-
tional form in Eq. 8 emerges as Woodhouse et al. (2013)

Fig. 14 Not-ruled-out values of the source mass flux Q0 as a func-
tion of the no-wind entrainment coefficient ks for three values of the
implausibility threshold Ip following history matching to the height
of the plume from Grı́msvötn at 0500 on 22 May 2011. The threshold
Ip = 2 is appropriate when Var

(
εobs

) = 160 m2, but for the threshold
Ip = 1 to be appropriate the model discrepancy must also be decreased
to Var

(
εmd

) = 100 m2

fit their algebraic expression to numerical solutions of the
integral plume model in a standard atmosphere over a
range of values of W rather than employing an asymp-
totic relationship. However, the physics captured by the
algebraic relationships of Degruyter and Bonadonna (2012)
and Woodhouse et al. (2013) are essentially identical; the
rise height of the plume decreases as the shear rate of the
wind increases for a fixed source mass flux, due to enhanced
mixing.

Some of the correlations between model inputs found
in history matching can be anticipated from the algebraic
relationships. Indeed, the uncertainty in plume height obser-
vations results in a range of heights H to be input into the
expressions (7) and (8), and therefore a range of values for
the source mass flux Q0 is expected. In a weak wind field,
the wind parameter W is small and f (W) ≈ 1, so the pre-
dicted source mass flux depends on the no-wind entrainment
coefficient, ks . In contrast, in a strong wind field, W > 0,
and a dependence of the source mass flux on the wind
entrainment coefficient kw can be anticipated through the
function f (W). A weak dependence of the source mass flux
on the source temperature T0, and the source gas mass frac-
tion n0, is expected from Eq. 6, but changes in these source
conditions can be compensated by variation in the uncertain
thermodynamic parameters, Cs and Ca .

Our analysis identifies a region of input space with low
exit velocity and low gas content that is considered implau-
sible. The surrogate algebraic expressions cannot capture
this region, as the relationships do not account for the
momentum flux of the erupted material. However, the exis-
tence of such an implausible region can be explained by
consideration of collapse criteria for wind blown plumes
(Degruyter and Bonadonna 2013) which shows that, if the
erupted material has insufficient kinetic energy relative to its
potential energy at the vent, then the erupted material does
not become buoyant.

Implications for observations of volcanic plumes

The history matching performed in this study uses only a
single datum to characterize the plume, i.e. the radar-derived
plume height observation. It would be expected that incor-
porating additional observations would further constrain
model inputs to produce better estimates of the source mass
flux.

Acoustic measurements in the infrasonic frequency range
have been used as volcano monitoring tools (see Johnson
and Ripepe 2011 and Fee and Matoza 2013 for comprehen-
sive reviews of volcano infrasound acoustics) and, through
application of an acoustic source model, estimates of the
ejection velocity (Caplan-Auerbach et al. 2010; Ripepe
et al. 2013) or the ratio of the vent radius to the ejec-
tion velocity (Matoza et al. 2009; Fee and Matoza 2013)
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can be made. Observations of the exit velocity at the vol-
canic vent, including measurement uncertainty, could be
incorporated into a history matching analysis. Our results,
however, suggest that observational constraints on the exit
velocity will not substantially reduce the size of the model
input space that is not-ruled-out by history matching, with
the exception of, perhaps, ruling out extremely low val-
ues of the gas mass fraction at the vent if the measured
velocity is sufficiently low (Figs. 5, 6, 9 and 11). In con-
trast, measurements of the velocity at more than one point
in the plume may be useful in ruling out more of the
input space by, for example, indicating super-buoyancy
(Woods 1988; Bjornsson et al. 2013).

In an analysis of the infrasound record during the second
explosive phase (5–17 May 2010) of the Eyjafjallajökull
eruption, Ripepe et al. (2013) adopts a dipole acoustic
source model to determine the source mass flux from the
measured acoustic pressure, assuming values of the vent
radius (obtained from satellite images following the end of
the eruption), volatile content of the magma, gas density
(i.e. gas composition and temperature) and magma density
(Ripepe et al. 2013). Ripepe et al. (2013) finds a source mass
flux Q0 that varies in the range 5.7 × 105–1.2 × 106 kg/s
over the period 5–17 May 2010, and on 11 May an estimate
of Q0 ≈ 1.1 × 106 kg/s is obtained. This estimate is con-
sistent with the not-ruled-out range of Q0 obtained from our
history matching analysis (Fig. 13).

Photographs of plumes, either in the visible spectrum
(Sparks and Wilson 1982; Formenti et al. 2003; Arason
et al. 2011; Bjornsson et al. 2013) or using infrared (Patrick
et al. 2007; Patrick 2007; Sahetapy-Engel and Harris 2009;
Delle Donne and Ripepe 2012; Webb et al. 2014) or ultra-
violet (Yamamoto et al. 2008) cameras, provide further
observational data on plume dynamics, such as plume tra-
jectory and growth. The growth of the plume is directly
linked to the entrainment of atmospheric air (Morton et al.
1956; Turner 1986) and therefore observations can be
used to estimate entrainment coefficients (Sparks and Wil-
son 1982; Patrick 2007). Images of the volcanic plumes
from the Eyjafjallajökull eruption in 2010 (Arason et al.
2011; Bjornsson et al. 2013) and the Grı́msvötn eruption
in 2011 (Petersen et al. 2012) could be used within a his-
tory matching analysis in an attempt to further constrain the
model inputs.

The history-matching analysis indicates a weak relation-
ship between source temperature T0 and source mass flux
Q0, suggesting that the incorporation of observations of
temperature might further reduce the size of the not-ruled-
out model input space. Thermal imaging of volcanic plumes
using infrared (Patrick et al. 2007; Patrick 2007; Sahetapy-
Engel and Harris 2009; Delle Donne and Ripepe 2012) and
ultraviolet (Yamamoto et al. 2008) cameras have been used
to examine the dynamics of Vulcanian and Strombolian

eruptions and assess predictions of simple models of buoy-
ant thermals and starting plumes. In addition to determining
the temperature variation of the plume, thermal imaging can
provide measurements of the velocity profile and the tran-
sition height from the gas-thrust region to buoyant motion
(Patrick et al. 2007; Patrick 2007; Sahetapy-Engel and Har-
ris 2009; Delle Donne and Ripepe 2012), and the ash
concentration in dilute plumes (Yamamoto et al. 2008).

In addition to incorporating new observations of plume
dynamics, it is also possible to include observations from
other sources to constrain the model inputs by defining new
implausibility measures. In particular, the source mass flux
can be estimated through tephra sampling during an erup-
tion (e.g. Bonadonna et al. 2011), measurements of ground
deformation (e.g. Kozono et al. 2013) and satellite obser-
vations of the growth of umbrella clouds (e.g. Pouget et al.
2013). Each of these techniques rely on a model to extract
the mass flux from direct measurements, and therefore his-
tory matching is a useful tool to assess the uncertainty in
these estimates.

Implications for plume modelling and volcanic source
flux estimation

Volcanic ash transport and dispersion models (VATDMs)
require an estimate of the source mass flux or total mass
erupted in order to forecast the concentration of ash in the
atmosphere (Folch 2012). Uncertainties in the description
of the source terms are propagated through the VATDM
(Scollo et al. 2008; Bonadonna et al. 2012; Bursik et al.
2012; Folch 2012; Denlinger et al. 2012). If appropriate
observations are available, then inversion methods for data
assimilation can be used to refine the estimates of the
source term (e.g. Stohl et al. 2011; Bursik et al. 2012;
Denlinger et al. 2012; Kristiansen et al. 2012; Webster
et al. 2012). Characterizing and quantifying the uncer-
tainty in the source mass flux is essential to producing
robust forecasts of ash dispersion for hazard management
(Bonadonna et al. 2012).

It is clear from the history-matching uncertainty analysis
that, with our current limited understanding of entrain-
ment into wind-blown volcanic plumes, estimates of the
source mass flux are imprecise. In this first analysis, we
have retained a large range of values for the entrainment
coefficients (indeed, a larger range than found in existing
experimental studies) to avoid discounting plausible values
from the study, and have taken ranges for ks and kw and no
further probability judgements to let the observations induce
constraints. These choices could be relaxed in a subse-
quent analysis, curtailing the range of values or constructing
probability distributions for the entrainment coefficients, to
reflect our confidence in experimental calibrations of these
model parameters. This expert judgment is very commonly
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used in inversion studies to the extent that several model
inputs and parameters are set at fixed values.

Our results indicate that a reduced range for the wind
entrainment coefficient kw will result in a reduction in the
range of values of the source mass flux that are consid-
ered not-implausible. However, we must exercise caution
in constraining model inputs. Much can be learned from
laboratory experiments, but the application of parameter
values calibrated in a well-controlled laboratory setting to
the complicated natural environment can be problematic.
For example, experiments to calibrate the wind-entrainment
coefficient kw have used uniform cross-wind conditions
(e.g. Hewett et al. 1971; Hoult and Weil 1972; Contini and
Robins 2001). These conditions are not representative of
volcanic plumes that ascend to high altitude and therefore
experience variations in the wind speed. The use of the cur-
rent experimentally calibrated values of kw for the volcanic
setting is therefore questionable. New experiments examin-
ing non-uniform profiles of wind speed would be extremely
valuable.

Calibration of the wind entrainment coefficient kw could
also be achieved through comparison of model predictions
to field observations. For industrial chimney plumes, this
approach gives a different range of values for kw than
found from laboratory experiments (Hoult et al. 1969; Fay
et al. 1970). However, the volcanic setting is complicated by
additional physical processes, corresponding to new model
inputs and parameters that must also be calibrated. Compar-
ison studies have demonstrated the applicability of integral
models to describe volcanic plumes using entrainment coef-
ficients calibrated in laboratory experiments (e.g. Sparks
and Wilson 1982; Woods 1998; Woodhouse and Behnke
2014) but have not fully considered uncertainty. Thus, other
values for entrainment coefficients are likely to also produce
acceptable model predictions if model inputs are adjusted
appropriately. An alternative approach, building on our
analysis here, is to perform a history-matching uncertainty
analysis incorporating additional observations (for example,
the plume trajectory, growth rate, temperature variation etc.)
and examine the distribution of entrainment coefficients that
are not ruled out as implausible.

Conclusions

Uncertainty is intrinsic in observations of natural processes
and mathematical models used to understand and interpret
them. When inverse modelling studies fail to fully account
for uncertainty the resulting model predictions are often
poor due to over-fitting of model inputs. Quantification of
uncertainty requires an investigation of observational data
and an analysis of the sources of uncertainty within the
model formulation. History matching allows the uncertainty

that arises from measurement and model development to
be included into an inversion calculation. We have applied
history matching to perform an uncertainty analysis of an
integral model of volcanic plumes using observations of
plume height obtained from weather radar. Our focus has
been on assessing the utility of plume models to determine
the source mass flux by inverse modelling, although the
analysis provides insight into the ability (or inability) of the
plume model to predict other properties of volcanological
interest.

The history matching analysis has demonstrated that
large observational uncertainty and poorly constrained
model parameters result in an inability to constrain many
of the model inputs. However, the source mass flux can
be constrained by plume height measurements, and the
strong influence of entrainment coefficients on the source
mass flux predictions is evident. Experimental calibration
of the entrainment coefficients reduces the range of the
source mass flux that is considered not implausible fol-
lowing history matching, but observational uncertainty in
radar-derived plume heights is such that the source mass
flux estimates span an order-of-magnitude. New experimen-
tal studies and further comparisons of model predictions
to observations are required to better constrain the wind
entrainment coefficient in order to achieve improved esti-
mates of the source mass flux.

Our analysis has employed only single-point measure-
ments. The little information contained in the radar data
severely limits the inferences that can be drawn on the
model inputs. Incorporating additional measurements may
provide observational constraints that allow the size of the
not-ruled-out model input space to be reduced. The history
matching uncertainty analysis is easily extended to incorpo-
rate additional observations by defining new implausibility
measures and examining the intersection of the not-ruled-
out spaces for each measure. This approach does not add
to the computational expense as the model evaluation is
performed without direct use of the observations, so a sin-
gle sample of model evaluations can be used to compute a
set of implausibility measures. However, a sequential anal-
ysis with new sampling designs as new observations and
corresponding implausibility measures are added can allow
improved resolution of the not-ruled-out space of model
inputs.
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ciotti E (2011) The Eyjafjöll explosive volcanic eruption from
a microwave weather radar perspective. Atmos Chem Phys
11:9503–9518. doi:10.5194/acp-11-9503-2011

Mastin LG (2007) A user-friendly one-dimensional model for
wet volcanic plumes. Geochem Geophy Geosy 8(3):Q03014.
doi:10.1029/2006GC001455

Mastin LG (2014) Testing the accuracy of a 1-D volcanic plume
model in estimating mass eruption rate. J Geophys Res -Atmos
119(5):2474–2495. doi:10.1002/2013JD020604

Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean
K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D, Siebert
L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas
CF (2009) A multidisciplinary effort to assign realistic source
parameters to models of volcanic ash-cloud transport and dis-
persion during eruptions. J Volcanol Geoth Res 186(1–2):10–21.
doi:10.1016/j.jvolgeores.2009.01.008

Matoza RS, Fee D, Garcés MA, Seiner JM, Ramón PA, Hedlin MAH
(2009) Infrasonic jet noise from volcanic eruptions. Geophys Res
Lett 36(8):L08303. doi:10.1029/2008GL036486

Moiseenko KB, Malik NA (2014) Estimates of total ash content from
2006 and 2009 explosion events at Bezymianny volcano with use
of a regional atmospheric modeling system. J Volcanol Geoth Res
270:53–75. doi:10.1016/j.jvolgeores.2013.11.016

Moran MJ, Shapiro HN (2006) Fundamentals of Engineering Thermo-
dynamics. Wiley, Chichester

Morris MD, Mitchell TJ (1995) Exploratory designs for com-
putational experiments. J Stat Plan Infer 43(3):381–402.
doi:10.1016/0378-3758(94)00035-T

Morton BR, Taylor G, Turner JS (1956) Turbulent gravitational con-
vection from maintained and instantaneous sources. P Roy Soc
Lond A Mat 234:1–23. doi:10.1098/rspa.1956.0011

Mosegaard K, Tarantola A (1995) Monte Carlo sampling of solu-
tions to inverse problems. J Geophys Res -Sol Ea 100(B7):12431–
12447. doi:10.1029/94JB03097

Neri A, Macedonio G (1996) Numerical simulation of collapsing vol-
canic columns with particles of two sizes. J Geophys Res -Sol Ea
101(B4):8153–8174. doi:10.1029/95JB03451

Ogden DE, Glatzmaier GA, Wohletz KH (2008a) Effects of
vent overpressure on buoyant eruption columns: implications

http://dx.doi.org/10.1007/s00445-003-0288-8
http://dx.doi.org/10.1029/95JD03071
http://dx.doi.org/10.1137/S106482750342670X
http://dx.doi.org/10.1016/j.jspi.2008.07.019
http://dx.doi.org/10.1038/srep00572
http://dx.doi.org/10.1029/2003GC000655
http://dx.doi.org/10.1017/CBO9781139029346
http://dx.doi.org/10.1016/0004-6981(71)90028-X
http://dx.doi.org/10.1002/grl.50838
http://dx.doi.org/10.1080/00022470.1969.10466526
http://dx.doi.org/10.1016/0004-6981(72)90069-8
http://dx.doi.org/10.1017/S0022112001003871
http://dx.doi.org/10.1016/j.jvolgeores.2011.06.006
http://dx.doi.org/10.1017/S0022112004003209
http://dx.doi.org/10.3137/ao.460404
http://dx.doi.org/10.1017/S0022112003007250
http://dx.doi.org/10.1017/S0022112003007250
http://dx.doi.org/10.1111/1467-9868.00294
http://dx.doi.org/10.1007/s00445-013-0695-4
http://dx.doi.org/10.1029/2011JD016844
http://dx.doi.org/10.5194/acp-11-12253-2011
http://dx.doi.org/10.1016/j.jcp.2013.11.032
http://dx.doi.org/10.1029/2011JD016396
http://dx.doi.org/10.1109/TGRS.2006.879116
http://dx.doi.org/10.5194/acp-11-9503-2011
http://dx.doi.org/10.1029/2006GC001455
http://dx.doi.org/10.1002/2013JD020604
http://dx.doi.org/10.1016/j.jvolgeores.2009.01.008
http://dx.doi.org/10.1029/2008GL036486
http://dx.doi.org/10.1016/j.jvolgeores.2013.11.016
http://dx.doi.org/10.1016/0378-3758(94)00035-T
http://dx.doi.org/10.1098/rspa.1956.0011
http://dx.doi.org/10.1029/94JB03097
http://dx.doi.org/10.1029/95JB03451


Bull Volcanol  (2015) 77:83 Page 27 of 28 83 

for plume stability. Earth Planet Sc Lett 268(3-4):283–292.
doi:10.1016/j.epsl.2008.01.014

Ogden DE, Wohletz KH, Glatzmaier GA, Brodsky EE (2008b) Numer-
ical simulations of volcanic jets: Importance of vent overpressure.
J Geophys Res -Sol Ea 113:B02204. doi:10.1029/2007JB005133

Oppenheimer C (1998) Volcanological applications of meteo-
rological satellites. Int J Remote Sens 19(15):2829–2864.
doi:10.1080/014311698214307

Papanicolaou PN, List EJ (1988) Investigations of round ver-
tical turbulent buoyant jets. J Fluid Mech 195:341–391.
doi:10.1017/S0022112088002447

Pappalardo G, Amodeo A, Mona L, Pandolfi M, Pergola N, Cuomo
V (2004) Raman lidar observations of aerosol emitted dur-
ing the 2002 Etna eruption. Geophys Res Lett 31:L05120.
doi:10.1029/2003GL019073

Patrick MR (2007) Dynamics of Strombolian ash plumes from thermal
video: Motion, morphology, and air entrainment. J Geophys Res
-Sol Ea 112(B6):B06202. doi:10.1029/2006JB004387

Patrick MR, Harris AJL, Ripepe M, Dehn J, Rothery DA, Calvari
S (2007) Strombolian explosive styles and source conditions:
insights from thermal (FLIR) video. B Volcanol 69(7):769–784.
doi:10.1007/s00445-006-0107-0

Petersen GN, Bjornsson H, Arason P, von Löwis S (2012) Two weather
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