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Abstract

Behavioral ecologists have recently begun using multilevel modeling for the analysis of
social behavior. We present a multilevel modeling formulation of the “Social Relations
Model” that is well suited for the analysis of dyadic network data. This model, which we
adapt for count data and small datasets, can be fitted using standard multilevel modeling
software packages. We illustrate this model with an analysis of meal sharing among
Ye’kwana horticulturalists in Venezuela. In this setting, meal sharing among households is
predicted by an association index, which reflects the amount of time that members of the
households are interacting. This result replicates recent findings that inter-household food
sharing is especially prevalent among households that interact and cooperate in multiple
ways. We discuss opportunities for human behavioral ecologists to expand their focus to
the multiple currencies and cooperative behaviors that characterize interpersonal
relationships in preindustrial societies. We discuss possible extensions to this statistical
modeling approach and applications to research by human behavioral ecologists and

primatologists.



Social behavior has long attracted attention from both human and primate behavioral
ecologists (Gurven, 2004; Sussman et al., 2005; Boyd and Richerson, 2009; Silk et al.,
2013b). For the statistical analysis of dyadic social behavior, Hemelrijk (1990) developed
and promoted the use of matrix permutation methods, which continue to be used by both
human behavioral ecologists (Alvard, 2009; Koster, 2011; Nolin, 2011) and primatologists
(Adiseshan et al., 2011; Massen et al., 2012, Wakefield, 2013). Matrix permutation methods
have limitations, however. Most notably, matrix permutation methods account for the
structure of network data only when determining statistical significance, but otherwise
assume the independence of observations when estimating coefficients and model fit. Also,
while it is possible to adapt such methods to accommodate response variables other than
continuous outcomes, such as dichotomous network ties (e.g., Nolin, 2011), most
applications have either assumed normally distributed outcomes or have applied non-
parametric transformations that reduce the information available from the original data.

Owing to these limitations, behavioral ecologists have increasingly turned to multilevel
modeling, also known as generalized linear mixed models (GLMM) or hierarchical linear
modeling (Allen-Arave et al., 2008; Gomes et al., 2009; Gomes and Boesch, 2009; Cheney et
al,, 2010; Gomes and Boesch, 2011; Hooper et al., 2013; Silk et al.,, 2013a). Compared to
matrix permutation methods, multilevel models easily accommodate different response
types, including binomial proportion data (Jaeggi et al., 2010) and count data (Silk et al.,
2013a). They also advantageously allow multiple smaller networks to be pooled into a
broader dataset for a single analysis (e.g., Silk et al., 2013a) rather than analyzing each

group discretely with matrix permutation methods (e.g., Watts, 1997).



Despite the advances afforded by the use of multilevel modeling, the analysis of dyadic
reciprocity has remained problematic. In several analyses, researchers have modeled the
bidirectional flows within a dyad by regressing the flow in one direction on the flow in the
other direction (e.g., Jaeggi et al., 2010; Silk et al, 2013a). However, this creates a
fundamental problem as the flow entered as the covariate will be correlated with the
model’s error term, leading to endogeneity bias (Kenny et al. 2006). More complex versions
of this approach might allow additional covariates or include various random effects, but
this fundamental endogeneity problem will remain (Supplemental File 1). The multilevel
formulation of the Social Relations Model (SRM) presented by Snijders and Kenny (1999)
circumvents this problem of endogeneity by effectively modeling the two flows as two
separate response variables. Dyadic reciprocity is then captured by including correlated
random effects.

The primary goal of this paper is methodological, as we demonstrate the application of
the multilevel SRM to the kinds of dyadic network data that are common to research by
behavioral ecologists. Another goal of the paper is to replicate the analysis of Koster and
Leckie (2014), who show that an association index of behavioral interactions is a
significant predictor of food sharing among indigenous Nicaraguan horticulturalists.
Whereas primatologists frequently control for dyadic association (e.g., Gomes et al., 2009),
the use of such association indices is rare in food sharing research by human behavioral
ecologists, seemingly because these latter studies examine inter-household food sharing
via methods that do not necessarily permit the simultaneous collection of data on affiliative
behavior (Gurven et al., 2000; Ziker and Schnegg, 2005; Allen-Arave et al., 2008; Nolin,

2010).



Our response variable is the number of meals shared among eight Ye’kwana households
in Venezuela. Similar count data are quite common in studies of dyads by primate
behavioral ecologists, whether the sum of food exchanges, grooming bouts, greetings, or
agonistic interventions (Watts, 1997; Range and Noé, 2002; Whitham and Maestripieri,
2003; Ferreira et al., 2006; Mitani, 2006). We therefore present a multilevel formulation of
the SRM that is adapted for count outcomes and small samples, and we show how this
model can be estimated as a standard cross-classified (i.e., crossed random effects) Poisson
model using the MLwiN multilevel modeling software (Rasbash et al., 2009). Finally, we
discuss possible extensions to our modeling approach and the opportunity for human
behavioral ecologists to expand their focus to currencies and cooperative activities other

than food sharing.

Methods

Data collection took place in Toki, a village of indigenous Ye’kwana horticulturalists in
Venezuela (for ethnographic background on the study site and observational methods, see
Hames and McCabe, 2007). During a 10-month period in 1975-1976, the village was
comprised of 81 residents, divided among 8 households. Throughout the study period, one
of us (RH) used instantaneous scan observations (or the “spot check” method) to document
the behavior of these residents at randomized times during daylight hours (Borgerhoff
Mulder and Caro, 1985). Both the behavior and the location of the observed individuals
were recorded. Approximately 1.5% of the 18,947 observations documented the
consumption of meals by individuals at others’ households. These observations of meal

sharing comprise our outcome variable, aggregated to reflect the total number of meals



provided from one household to another. Hames and McCabe (2007) likewise present an
analysis of these data using OLS regression, evaluating meal sharing as a function of
kinship, distance, and reciprocity. That analysis, however, does not consider the association
index that we develop in this paper.

After removing observations of meal sharing and large communal gatherings, we use
the remainder of the behavioral observation database to construct an inter-household
association index. ! Following Koster and Leckie’s (2014) method, we added all of the times
in which a member of Household A was observed interacting with Household B, which
produces a valued, symmetric 8 X8 sociomatrix.2 We then normalized the matrix using an
iterative process in UCINET (Borgatti et al., 2002), which reweights the values until the
marginal sums of all rows and columns are approximately equal to one. The resulting
association index provides a measure of interactions among members of the respective
households. When members of different households spend time together, the most
common behaviors were either idleness or leisure, which comprise approximately half of
such observations. Other common behaviors during inter-household affiliations include
routine housework and childcare (16%), hunting or fishing (8%), horticultural work (6%),
and food processing or cooking (3%).

Other covariates include the geographic distance between the households, measured in
meters, and the purported genetic relatedness between households, as derived from

genealogical interviews. Subsequently described as “kinship,” this latter measure is

1 Although some scan observations occurred on the same day, the briefest interval between scans was two
hours. It is therefore rare for two individuals to be recorded as interacting in the observation immediately
before or after an observation of meal sharing that involves one of those two individuals.

2 Interactions were inferred from location codes in the observational data. When individuals were
simultaneously in the same location, they were considered to be interacting unless their behavior at the time
precluded meaningful interaction (e.g., sleeping).



operationalized as the average coefficient of relatedness between all members of the
respective households (Hames, 1987; Allen-Arave et al., 2008). The association index is
moderately correlated with distance, as closer neighbors spend more time together, but the

association index is evidently uncorrelated with kinship (Supplemental Table 1).

Analysis

Following Koster and Leckie (2014), we treat meal sharing as a Poisson distributed
response (y) in a multilevel formulation of the social relations model (SRM) for count data.
Ideally suited for dyadic network data, the standard SRM decomposes the response
variance into separate giving (¢7), receiving (o), and relationship (03) variance
components (Kenny, 1994; Snijders and Kenny, 1999; Kenny et al., 2006). Furthermore, by
estimating the correlation of the respective relationship random effects, we obtain a
measure of “dyadic reciprocity” (p44), the degree to which transfers are reciprocated
within a dyad beyond the reciprocity expected from the households’ respective
propensities as givers and receivers. Analogously, estimation of the correlation of the
household-level giver and receiver random effects provides a measure of “generalized
reciprocity” (pg4,), the degree to which households who are net givers to the community are
also net receivers. Because Hames and McCabe (2007) found evidence for reciprocity in
Ye’kwana meal sharing, we expect dyadic reciprocity to be positive. There are no clear
evolutionary predictions for the estimate of generalized reciprocity, but we note that the
giver-level variance tends to exceed the receiver-level variance, suggesting a redistributive

pattern (Gurven, 2004; Koster and Leckie, 2014).



We also include three relationship-level “fixed effects” covariates in our model: the
association index (x; ), distance (), and kinship (x3). The association index and kinship
are predicted to have positive effects on meal sharing while distance is expected to exhibit
a negative effect, with greater sharing among closer neighbors.

Using the notation of Koster and Leckie (2014), we specify the following model for y;;,

the observed number of meals given from household i to household j (i,j = 1, ...,8):

yl-j~Poisson(ul-j)

log(pij) = Bo + Brxajij| + BaXaij + Baxsjij) + 9i + 17 + dyj
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where y;; denotes the expected number of shared meals, and g;, 7j, and d;; are the giver,
receiver, and relationship random effects. We distinguish between asymmetric (directed)
and symmetric (undirected) relationship variables by using the ij and |ij| subscipts,

respectively. We derive the generalized and dyadic correlations in the usual way:
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A limitation of the study is that with only eight households, we are not able to estimate p,
with any degree of precision.3 We therefore constrain this correlation to zero by imposing

agr = 0.

The above model cannot be fitted in standard multilevel modelling software (Koster
and Leckie 2014 use the WinBUGS software). However, because we choose to impose

pgr = 0 and are willing to assume 0 < p,y4 < 1, we can reformulate the model as a cross-

classified Poisson multilevel model, which can be estimated in the multilevel modeling

software, MLwiN. The reformulated model can be written as:

yl-j~Poisson(ul-j)

log(uij) = Bo + Bixujij) + BoXayj) + BsXsjj + i + 17 + wpij) + ey
_dv”_/
ij

gi~N(0,07)
r;~N(0, 0?)
u|l-j|~N(0, O'l%)

eij~N(0, O'ez)

where u;;| and e;; are intermediate random effects with associated parameters o2 and g2 .4

We can recover the remaining parameters of interest as follows:

3 Given the lack of a significant correlation (Pearson’s r = 0.36; p = 0.38; n = 8) between the households’ sum
of meals provided and the sum of meals received (i.e., the corresponding marginal sums of the meal sharing
sociomatrix), there is little reason to expect a more noteworthy estimate for the generalized reciprocity
correlation of the SRM.

* Note that whereas w;;| is a symmetric (undirected) relationship-level random effect, e;; is an asymmetric
(directed) relationship-level random effect. The former takes one value per dyad, the latter takes one value
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The formulation imposes p4, = 0 by specifying g; and 7; as independent random effects,

while it implicity assumes 0 < pgq < 1 since 62 = 0 and 62 = 0.

Estimation

We fit our models using Markov chain Monte Carlo (MCMC) methods, as implemented
in MLwiN. We specify “diffuse” prior distributions for all parameters. We run a burn-in of
50,000 iterations to allow the chains to converge to their stationary distributions, relying
on conventional MCMC diagnostics to confirm that the chains achieve stationarity. We then
sample 200,000 additional “monitoring” iterations as the basis for infererence. We call
MLwiN from within Stata using the runmlwin command (Leckie and Charlton, 2013). In
Supplemental Folder 1, we present the code for these commands and the equivalent code
for fitting these models using the RZMLwiN package within the R Project for Statistical

Computing (Zhang et al., 2014). We also include the data for replicative purposes.

Results
We present multiple models. The first model is an “intercept-only” model with no

covariates. We use this model to calculate variance partition coefficients (VPC) to quantify

per observation within the dyad. A unique random effect is therefore fitted for every observation in the
dataset (n = 56).



the relative importance of givers, receivers, and unique relationships as sources of
variation in meal sharing between households. Each VPC is calculated by dividing the
corresponding variance component by the total of the variance components.

We then present models with the three relationship-level covariates, first as
independent predictors and finally in a multivariate model that includes all of the effects.

Table 1 presents the results.

The intercept-only model

The giver, receiver, and relationship variances, agz, g2, and 05, are estimated to be 3.44,
0.18, and 1.76, respectively. The relationship-level VPC, 65 /(c2 + o2 + 03), is therefore
estimated as 1.76/(3.44 + 0.18 4+ 1.76) = 0.33 and so 33% of the variance in meal sharing
is attributed to unique household-level relationships. The giver and receiver variances are
estimated to account for 64% and 3% of the variance in meal sharing, respectively. In other
words, while relational effects account for a modest proportion of the total variation in
meal sharing, most of the variance pertains to household-level variation in providing meals,
which dwarfs the variation as receivers. This pattern is reflected in the raw data, which
show that 3 of the 8 households together provide 86% of the given meals (Supplemental
Figure 1).

Dyadic reciprocity pgq = 044/0% is estimated to be strong and significant (0.80), and so
when one household gives an especially high number of meals to another household, that

behavior is very often reciprocated.

The models with fixed effect covariates



As predicted, the association index exhibits a significant positive effect on meal sharing,
as seen in the estimated coefficient (§; = 16.14) in Model 2. In other words, households
whose members regularly spend time together also show a greater propensity for sharing
meals. Similarly, distance (8, = —0.007) exhibits a significant effect in Model 3, as closer
neighbors share more meals. In contrast, kinship (f; = —2.55) seemingly has little effect
on meal sharing, as seen in Model 4.

In the full model, Model 5, the association index (f; = 11.13) remains a strong and
significant predictor of food sharing whereas we no longer find a significant effect of
distance (8, = —0.006). Kinship remains uninformative (§; = —3.41).

The dyadic reciprocity correlation is substantially attenuated in models that include the
association index, but the correlation is stronger and significant in all other models.

In the full model, the giver, receiver, and relationship variances, agz, 02, and 05, are now
estimated to be 3.29, 0.26, and 0.84, respectively. Comparing these results to the intercept-
only model shows that the inclusion of the covariates explains (1.76 - 0.84)/1.76 = 0.52,
or 52% of the relationship-level variation in inter-household meal sharing. In contrast, the
estimates for the giver and receiver variance are largely unchanged by the inclusion of the
covariates. The VPCs indicate that 75% of the remaining unexplained variance in meal

sharing is attributable to households in their role as givers.

Discussion
The Multilevel Social Relations Model for Dyadic Network Data
We have illustrated a multilevel modeling approach to dyadic data that would be well

suited for analyses by behavioral ecologists. The model is appropriate for count data, but



we note that the model can be easily adapted to accommodate other response types,
including continuous and dichotomous outcomes. Whatever the response type, the
multilevel SRM exhibits the advantages of other multilevel modeling methods used recently
by behavioral ecologists while avoiding the aforementioned endogeneity problem of
estimating dyadic reciprocity via entering reciprocal flows as a fixed effects covariate. The
inclusion of dyadic random effects further allows for the partitioning of variance, which
provides information on the sources of variation in the data and insight about the extent to
which covariates account for the variance. Instead of treating the estimated variances as
unreported nuisance parameters, this application illustrates the insight that can be gained
from considering the variances and VPCs.

The second formulation of the SRM presented here assumes zero generalized
reciprocity and positive dyadic reciprocity, which permits the model to be estimated as a
cross-classified model in MLwiN and other standard multilevel modeling packages. For
behavioral interactions such as food sharing, positive dyadic reciprocity may be a safe
assumption. For other behaviors, however, negative dyadic reciprocity might be expected.
When individuals vary in status and dominance, for example, agonistic interactions could
exhibit negative dyadic reciprocity (Scott and Lockard, 2006). In such cases, we encourage
researchers to use the first formulation of the SRM, which permits the correlation to be
either negative or positive and can be fitted in specialized software packages, such as the
Bayesian statistical modeling WinBUGS software (see Koster and Leckie, 2014). Similarly,
although the generalized reciprocity correlation typically lacks a clear theoretical
interpretation for behavioral ecologists, researchers who wish to estimate this correlation

will again need to specify the first formulation of the model.



Further extensions of the multilevel SRM are possible. For instance, behavioral
ecologists are interested in the extent to which reciprocal food transfers are contingent on
other variables, such as kinship or begging frequency (Allen-Arave et al., 2008; Silk et al,,
2013a). In principal, one can specify a model that allows the magnitude of the dyadic
reciprocity correlation to vary as a function of the covariates (Leckie et al., 2014) where an
inverse-tanh link function (or some other suitable function) can be used to ensure the
resulting correlation lies between —1 and +1. Typically one would then also model the
dyadic variance-component as heterogeneous, for example, by specifying it as a log-linear
function of the same set of covariates. A second extension would be to model two
currencies (e.g., food sharing and non-food gifts) simultaneously. This could be achieved by
specifying a bivariate response version of the multilevel SRM (Card et al., 2008). The
resulting model would have a four-by-four generalized reciprocity matrix and a four-by-
four dyadic reciprocity matrix allowing one to estimate cross-currency generalized and
dyadic reciprocity correlations as well as the usual same-currency correlations. A third
potential extension relates to the response variable in dyadic network data often being
“zero-inflated” (Gomes and Boesch, 2011; MacFarlan et al., 2012), and there being no
convenient link function or transformation for such data. Multilevel models can
accommodate mixture distributions, however, and it would be worthwhile to develop a
formulation of the SRM that does not require either dichotomization of the response

variable or the removal of data from the analysis.>

The correlates of food sharing in human societies

5 See McElreath and Koster (2014) for an example of a multilevel mixture model.



Behavioral ecologists have long acknowledged the possibility that shared food might be
repaid in another currency, such as childcare, political support, or contributed labor
(Winterhalder, 1996; Patton, 2005; Nolin, 2010). Partly owing to the challenges of
multifaceted data collection and the conversion of all goods and services into a common
currency, however, the subject of trade has received little empirical attention from human
behavioral ecologists (Gurven, 2004). By contrast, primatologists have explored the extent
to which altruistic behaviors among non-human primates are reciprocated in other
currencies, finding that chimpanzees provide political support in exchange for meat and
grooming, for example (Mitani, 2006; Gomes and Boesch, 2011). It is unclear whether such
trades serve to smooth imbalances in the exchange of other commodities, but at this early
stage of research, it would be beneficial for human behavioral ecologists to begin by testing
for correlations between the exchanges of different resources and services that typify
interpersonal relationships in small-scale societies.

This article advances that research agenda by showing that the residents of Toki more
commonly share meals when they have multidimensional inter-household relationships, as
reflected by the predictive effect of the association index. A previous analysis of these data
showed that meal sharing is significantly predicted by dyadic reciprocity and inter-
household distance (Hames and McCabe, 2007). Our reanalysis suggests that close
neighbors and members of reciprocating households interact in a variety of ways, and in
the full model, the association index is the most informative predictor of meal sharing.

Whereas this study replicates the significance of the association index as a predictor of
food sharing, what distinguishes the Ye’kwana from the indigenous Nicaraguans described

by Koster and Leckie (2014) is the apparent unimportance of kinship. Among the



Mayangna and Miskito of Nicaragua, close kin spend considerable time together, leading to
high correlations between kinship, the association index, residential proximity, and food
sharing. Such results are consistent with the view that genetic kinship is the principle basis
of social organization in small-scale societies (Alvard, 2009). In Toki, by contrast, kinship
predicts none of the other covariates, which is surprising given that the average inter-
household relatedness (0.06) exceeds the average in two other Neotropical settings where
kinship is highly predictive of food sharing and other cooperative interactions, namely an
Ache community in Paraguay (average inter-household relatedness = 0.02; Allen-Arave et
al,, 2008) and a Mayangna community in Nicaragua (average = 0.03; Koster, 2011). In other
words, despite exhibiting greater relatedness than comparable indigenous communities,
the residents of Toki generally share time and meals with people other than close kin.

The relative unimportance of kinship in this study is surprising because prior research
in this community shows that cooperative garden labor is predicted by inter-household
relatedness (Hames, 1987). Alloparental care in Toki is also predicted by genetic
relatedness (Hames, 1988). As noted, however, the association index aggregates these
behaviors and many other kinds of activities, including routine interactions in the
community, which are abundantly represented in the aggregated dataset. As in other
studies, these considerations suggest a pattern in which kin collaborate on high cost or high
benefit activities whereas cooperative activities with reduced costs or benefits are

transacted through friends (Hames, in press). Meal sharing seems to emerge from this



latter context, perhaps indicating that sharing food at meals serves to bolster casual,
amicable relationships among non-kin.t

Because of the small size of this dataset, we hesitate to draw extensive conclusions
about the results of the analysis. The estimated positive relationship between meal sharing
and the association index is a noteworthy finding that should spur further research into the
multidimensional relationships that characterize household dyads. The estimated variance
components, however, indicate that the unexplained variation lies primarily in household-
level propensities for sharing meals. The SRM can accommodate household-level variables,
and it would be preferable to replicate this study with a larger sample of households to
assess the robustness of these results and to include household-level characteristics that

could explain variation in meal sharing at this level of analysis.

6 Distance and proximity have sometimes been considered indicators of tolerated scrounging (e.g., Patton
2005). Our analysis does not preclude the possibility that meal sharing in Toki could stem from tolerated
scrounging, particularly given the prominence of idleness and leisure as the basis of the association index.
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FIGURE CAPTION

Supplemental Figure 1. Histograms of the household-level centrality measures of the
empirical data. Out-degree centrality measures the total number of meals that each of the
eight households provided to other households. In-degree centrality measures the total
number of meals that the households received from other households.
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The Endogeneity Problem

Consider a simpler linear regression model for y;; the flow from individual i to individual j
(i,j=1,..,n)

Yij = Bo + P1yji +eij (1)

where yj; is the reciprocal flow from individual j to individual i and e;; is the error term
capturing all other factors.

Equally we have
Vji = Bo + B1yij +eji (2)
Substituting (1) into (2) gives

Yji = Bo + B1(Bo + Bryji + i) + €

_ Bo + B1Bo + Breij + €ji
(1-89)

And so yj; is a function of e;;. Thus y;; and e;; in (1) are positively correlated and so yj; is
endogenous. The regression coefficients in (1) will therefore suffer from endogeneity bias.



Table 1. Results for Model 1 (the intercept-only model), Models 2, 3 and 4 (which each contain one predictor), and Model 5

(the full model)
Model 1 Model 2 Model 3 Model 4 Model 5
Parameter Mean SD Mean SD Mean SD Mean SD Mean SD
Bo Intercept 0.24 0.80 -1.85 0.97 1.24 0.91 036 0.78 -0.19 1.45
[1  Association Index - - 16.14 4.08 - - - - 11.13 5.14
B, Distance - - - - -0.007 0.003 - - -0.006  0.004
B;  Kinship - - - - - - -2.55  5.06 -3.41 3.97
o;  Giver variance 3.44 3.03 3.84 3.74 3.40 3.70 3.45 297 3.29 3.00
02 Receiver variance 0.18 0.33 0.49 0.57 0.12 0.26 0.26 0.46 0.26 0.45
o’ Relationship variance 1.76 0.80 0.67 0.49 1.33 0.64 1.86  0.86 0.84 0.49
pgr Generalized reciprocity 0 0 0 0 0 0 0 0 0 0
paa Dyadicreciprocity 0.80 0.23 0.59 0.35 0.68 0.32 0.83 0.20 0.46 0.35
Giver VPC 0.64 0.77 0.70 0.62
Receiver VPC 0.03 0.10 0.02 0.05
Relationship VPC 0.33 0.13 0.27 0.33

Note: Reported means and SDs are the means and standard deviations of the parameter chains, analogous to the point

estimates and standard errors typically presented in frequentist analyses. Fixed effect parameters in bold represent estimates
whose 95% credible intervals do not include zero and are therefore viewed as statistically significantly different from zero.
Because the present formulation of the model constrains the dyadic reciprocity correlation to be positive (see text for details),
dyadic reciprocity is considered significant when the z-score exceeds 1.96. Generalized reciprocity is constrained to be zero.



Supplemental Table 1. Models that estimate the association index as a function of
the other covariates, kinship and distance.

Parameter Model 1 Model 2
Intercept 0.1495 (0.0187) 0.1778 (0.0271)
Kinship -0.0999 (0.16154)

Distance -0.0002 (0.0001)
Household-level variance 0.0013 (0.0014) 0.0022 (0.0027)
Residual variance 0.0025 (0.0008) 0.0021 (0.0007)

Note: Because all of these variables are symmetric, there is only one value for each of the 28
dyads. To account for the replication of households across dyads, we employ multiple
membership models, assigning a weight of 0.5 to each household in the dyad. We stipulate a
normal response variable, and we fit our models using MCMC estimation, as implemented in
MLwiN. We run a burn-in of 5,000 iterations, then sample an additional 10,000 monitoring
iterations for inference. During a diagnostic review of Model 2, it was apparent that one of
the household-level random effects deviated from the assumption that higher-level random
effects should be normally distributed around the mean. Following methods described in
Koster and Leckie (2014), we generated a binary “fixed” effect to account for all dyads in
which this household appeared. In the model that includes this binary effect for the outlier
(full model results not presented here), the effect of distance on the association index is
stronger and significant (posterior mean =-0.0005; posterior standard deviation = 0.0002).
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