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Abstract

Please note: after completion of this manuscript we learned that our
main results, Theorem 2.1 and 2.2, can be obtained as a special case of
Proposition 3.2 on Page 23 of Karlin’s book [6].

Take a random variable X with distribution µ with some finite expo-
nential moments, and weight it by an exponential factor eθX to get the
distribution µθ for the admissible θ-values. Define also the so-weighted ex-
pectation ̺(θ) := E

θX with inverse function θ(̺). This note proves that
for a convex function Φ, E

θ(̺)Φ(X) is a convex function of ̺, wherever it
exists and is finite. Along the way we develop correlation inequalities for
convex functions. Motivation for this result comes from equilibrium inves-
tigations of some stochastic interacting systems with stationary product
distributions. In particular, convexity of the hydrodynamic flux function
follows in some cases.
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Take a non-degenerate random variable X such that EeθX < ∞ for θ ∈ I, for
some open interval I. For these θ define the exponentially weighted distribution
Eθ(Y ) : = Eθ(Y eθX)/EeθX . The exponentially weighted expectation of X is
̺(θ) : = EθX . This function is strictly increasing due to the nondegeneracy
assumption. We denote its inverse by θ(̺).

Let Φ be a convex function for which Eθ(̺)Φ(X) exists in an open interval
of ̺-values. The first result of this note is the convexity of the function

̺ 7→ Eθ(̺)Φ(X).

Motivation for this result comes from a class of asymmetric stochastic interacting
systems that includes the zero range process (ZRP) and the bricklayer process
(BLP). We explain these informally before turning to precise statements.

The main application is related to the study of fluctuations of the current of
particles J (V )(t) as seen by an observer moving at a fixed speed V . Equivalently,
these are fluctuations of the height in the deposition formulation of the process.
A key fact that underlies some of this work is that the variance of the current
of a stationary process is linked to the deviations of a second class particle:

(1.1) Var(J (V )(t)) = C(̺)Ê|Q(t) − [V t]|.

The variance on the left is taken in the stationary process at a fixed density ̺.
The expectation on the right is taken with an altered initial product distribution:
the density ̺ invariant factor is put at each site other than the origin, while at
the origin there is a different measure we denote by νθ(̺), defined in (3.1) below.
Q(t) is the position of a second class particle in the system. [V t] is not the usual
integer part but rather the integer between V t and the origin that is closest to
V t.

Identity (1.1) has been known for the totally asymmetric simple exclusion
process since the pioneering work of Ferrari and Fontes [5]. It was recently
extended to the broader class of processes in [4]. For a complete discussion we
refer the reader to [4], where the measures νθ(̺) are defined in equation (2.6)
and denoted by µ̂θ.

The presently relevant point is that for coupling purposes it is important that
the measures νθ(̺) are stochastically monotone in the parameter ̺. In the case
of the asymmetric simple exclusion process (ASEP) this is immediately obvious.
This fact was utilized in a recent coupling-intensive proof [3] that established
the order t2/3 for the variance in (1.1) for ASEP when the observer travels at
the characteristic speed. The first step in a program to extend the variance
bounds to ZRP and BLP is to develop the coupling framework. However, the
stochastic monotonicity of the measures νθ(̺) is not at all obvious for ZRP and
BLP. This we derive from the main convexity result in Section 3.2.

The conserved quantity in these asymmetric processes (typically viewed as
particle counts, but also discrete gradients of the interface height) satisfies a
hydrodynamic scaling limit where the limiting evolution is the entropy solution
of a scalar conservation law of the form

∂t̺ + c∂xH(̺) = 0.
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(We refer the reader to [7] for general theory.) The key quantity is the flux
H(̺) which is computed as the expected jump rate in the stationary process at
particle density ̺. The constant c is the mean increment of a particle that has
decided to jump.

A second application of the main convexity result is to give an alternative
proof of the convexity of the hydrodynamic flux function H for zero range and
bricklayer processes when the jump rate is convex. (See [1] for the original
proof.) Concavity of the hydrodynamic flux also follows for concave jump rates
in the zero range process. Strict convexity or concavity are also discussed.

The characteristic speed referred to above is V ̺ = cH′(̺). So the issue can
also be framed as the monotonicity of this quantity in the particle density.

The rest of this note is organized as follows. We rewrite the convexity
problem in terms of correlation inequalities of functions of X . These we handle
via separation of positive and negative parts and further correlation inequalities.
This is done in Section 2. In Section 3 we derive the consequences for stochastic
interacting systems.

2 Derivatives and correlations

As in the introduction, let X be a nondegenerate real-valued random variable
and Φ a convex function on some interval that contains the range of X . The
standing assumption throughout this section is that for some open interval I ⊆
R,

(2.1) E(eθX) < ∞ and E(X2|Φ(X)|eθX) < ∞

for all θ ∈ I. Define the exponentially weighted distribution as Eθ(Y ) =
Eθ(Y eθX)/EeθX . The function ̺(θ) = EθX is strictly increasing (justifica-
tion below in Corollary 2.4). It has an inverse function θ(̺) defined in some
nontrivial open interval J . The expectation Eθ(̺)Φ(X) is well defined for ̺ ∈ J .

Theorem 2.1. The function ̺ 7→ Eθ(̺)Φ(X) is convex on J .

Our main interest lies in discrete distributions so we state a further condition
for strict convexity for that case. Suppose the distribution µ of X is supported
on a discrete subset S of R. So S is either finite or countably infinite but locally
finite. Let Φ be a function defined on S. Extend Φ to a function on the smallest
closed interval that contains S by connecting adjacent points on the graph of
Φ with line segments. Assume the function Φ thus defined is convex. Say Φ
is strictly convex at a point z ∈ S if the slope of the extended Φ jumps at z.
Such a point z cannot be the maximum or minimum of S because we have not
defined Φ outside the smallest interval that contains S. If no such point exists
then Φ is linear.

Theorem 2.2. Consider the discrete case described in the paragraph above. The
function ̺ 7→ Eθ(̺)Φ(X) is strictly convex throughout its interval of definition
if and only if S contains at least three points and Φ is strictly convex at some
point of S. In the complementary case the function ̺ 7→ Eθ(̺)Φ(X) is linear.
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The remainder of this section covers the proofs. Throughout we only consider
values θ ∈ I for which assumption (2.1) guarantees that the derivatives and other
operations we perform are justified. In particular, since |X |k ≤ k!ε−k(eεX +
e−εX), X has all moments under Eθ for each θ ∈ I because θ ± ε ∈ I for small
enough ε > 0.

We start with a preliminary lemma, repeated from Lemma A2 of [2].

Lemma 2.3. For any function ϕ, we have

d

dθ
Eθϕ(X) = Covθ(ϕ(X), X)

provided the expectations exist in a neighborhood of θ.

Proof.

d

dθ
Eθϕ(X) =

d

dθ

E(ϕ(X) · eθX)

EeθX

=
E(ϕ(X) · X · eθX)

EeθX
− E(ϕ(X) · eθX) ·

E(X · eθX)

[EeθX ]2

= Covθ(ϕ(X), X).

Recall that we exclude the degenerate case where µ is supported on a single
point.

Corollary 2.4.

d̺(θ)

dθ
=

d

dθ
EθX = Covθ(X, X) = VarθX > 0, and

dEθ(̺)ϕ(X)

d̺
=

dEθϕ(X)

dθ
·

dθ(̺)

d̺
=

Covθ(̺)(ϕ(X), X)

Varθ(̺)X
.(2.2)

Now we proceed by rewriting the second derivative of Eθ(̺)Φ(X) in terms of
covariances. We omit the notation (X) from Φ(X).

Lemma 2.5. The following are equivalent:

a) For any convex function Φ, Eθ(̺)Φ is a convex function of ̺.

b) For any convex function Φ,

(2.3) Covθ(Φ̃ · X, X) · Covθ(X, X) ≥ Covθ(Φ, X) · Covθ(X̃ · X, X),

where ·̃ stands for centering w.r.t. Eθ.
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Proof. We write, as in the corollary,

d

d̺
Eθ(̺)Φ =

Covθ(̺)(Φ, X)

Varθ(̺)X
.

We need to see if this is nondecreasing in ̺ or, equivalently, nondecreasing in θ.
That happens if and only if

0 ≤ VarθX ·
d

dθ
Covθ(Φ, X) − Covθ(Φ, X) ·

d

dθ
VarθX

= VarθX ·
[
Covθ(ΦX, X) − Covθ(Φ, X) ·Eθ(X) − Eθ(Φ) ·Covθ(X, X)

]

− Covθ(Φ, X) · [Covθ(X2, X) − 2EθX ·Covθ(X, X)]

= Covθ(Φ̃X, X) · Covθ(X, X) − Covθ(Φ, X) · Covθ(X̃X, X).

Next we concentrate on proving that part b) of the last lemma holds for any

distribution. Therefore we omit the superscript θ.

Lemma 2.6. Part b) of Lemma 2.5 is further equivalent to each of these two
statements:

c) For any convex function Φ that is uncorrelated with X, Cov(Φ, X2) ≥ 0.

d) For any convex function Φ,

(2.4) Cov(Φ, X2) ·Cov(X, X) ≥ Cov(Φ, X) ·Cov(X2, X).

Proof. Given a convex function Φ, let Φ̂(X) : = Φ(X)−C ·X with C chosen so

that Φ̂ is uncorrelated with X . Φ̂ is also convex, and we note that (2.3) holds for

Φ if and only if it holds for Φ̂. Hence b) is equivalent to the statement obtained
by restricting b) to convex functions that are uncorrelated with X . For such
functions this statement becomes

0 ≤ Cov(Φ̂X, X) − EΦ̂ · Cov(X, X)

= Cov(Φ̂, X2) + EΦ̂ ·E(X2) − E(Φ̂X) · EX − EΦ̂ ·E(X2) + EΦ̂ ·EX · EX

= Cov(Φ̂, X2).

Thus b) is equivalent to c).
Condition c) is a weakening of d), and we see that c) implies d) by deter-

mining the constant in the transformation that led to Φ̂:

Cov(Φ̂, X) = Cov(Φ, X) − C ·Cov(X, X) = 0,

therefore

Φ̂ = Φ −
Cov(Φ, X)

Cov(X, X)
· X.

Substituting this into Cov(Φ̂, X2) ≥ 0 of c) leads to d).
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Next we show that for part d) of the above lemma it suffices to consider the
special case Φ(X) = |X |.

Lemma 2.7. Part d) of the above lemma is implied by this statement:

e) For any distribution (with finite third absolute moments) we have

(2.5) Cov(|X |, X2) ·Cov(X, X) ≥ Cov(|X |, X) · Cov(X2, X).

Proof. Consider functions of the form

(2.6) φ(x) = c + a · [x − x0]
+ − b · [x − x0]

−

for some a > b and x0, c ∈ R. Notations + and − stand for positive and negative
parts, respectively. These functions are convex. The first claim is that if (2.4)
holds for functions of this special form, then it holds for any convex Φ.

This follows because Φ can be approximated from below in a pointwise fash-
ion by a sequence of functions of this type:

g(x) = c − a0[x − y1]
− + a1[x − y1]

+ +

m∑

k=2

(ak − ak−1)[x − yk]+

with a0 < a1 < · · · < am and y1 < · · · < ym. The function g above is a
sum of convex functions of type (2.6). To see the approximation, take points
z0 < z1 < · · · < zm and let ai be the slope of a tangent to Φ at the point
(zi, Φ(zi)). Pick the zi’s so that the ai’s are strictly increasing. (This entails
no loss of generality because a linear approximation to Φ is exact throughout
any interval with constant slope.) Let gi (0 ≤ i ≤ m) be the linear function of
slope ai that passes through the point (zi, Φ(zi)). Let yi (1 ≤ i ≤ m) be the
x-coordinate of the point where the graphs of gi−1 and gi intersect and set

c = Φ(z0) + a0(y1 − z0) = Φ(z1) + a1(y1 − z1).

Then it can be checked that g from above is the pointwise maximum of the gi’s,
or equivalently, that g = gi on (yi, yi+1) with y0 = −∞ and ym+1 = ∞. By
choosing the zi’s carefully one can create a sequence of convex functions g(m)

such that g(m) ր Φ pointwise. By (2.1) monotone convergence applies to show
Cov(g(m), Xb) → Cov(Φ, Xb) for b = 1, 2.

Thus we can derive (2.4) for Φ by checking it for each g(m). Since (2.4) is
linear in Φ, it is then enough to know that it holds for each term of the type
(2.6). This we now check.

With suitably chosen constants A > 0, B and C, the transformation

(2.7) φ(x) 7→ Aφ(x) + Bx + C

turns φ of (2.6) into the function |x − x0|. (Note that a > b is needed for
this.) The left and right-hand sides of (2.4) are, up to the multiplying factor A,
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invariant under these transformations. Hence (2.4) holds for φ if and only if it
holds for |x − x0|:

Cov(|X − x0|, X2) · Cov(X, X) ≥ Cov(|X − x0|, X) · Cov(X2, X).

Introduce now Y = X − x0, and write this inequality in the form

Cov(|Y |, (Y + x0)
2) · Cov(Y, Y ) ≥ Cov(|Y |, Y ) · Cov((Y + x0)

2, Y ).

Subtracting 2x0 · Cov(|Y |, Y ) · Cov(Y, Y ) from both sides leads to e) (for the
distribution of Y = X − x0).

Some elementary computations will now finish the proof of Theorem 2.1.

Lemma 2.8. Part e) in Lemma 2.7 holds.

Proof. For this proof, we introduce the positive and negative part moments:

Pi : = E
(
(X+)i

)
, Ni : = E

(
(X−)i

)
.

Expanding (2.5) gives

[
P3 + N3 − (P1 + N1) · (P2 + N2)

]
·
[
P2 + N2 − (P1 − N1)

2
]

≥
[
P2 − N2 − (P1 + N1) · (P1 − N1)

]
·
[
P3 − N3 − (P2 + N2) · (P1 − N1)

]
.

Somewhat tedious factoring shows that this is equivalent to

0 ≤ N1 · (P3P1 − P2P2)(2.8)

+ P1 · (N3N1 − N2N2)(2.9)

+ P2N3 − P1P1N3 − P2N2N1(2.10)

+ P3N2 − P3N1N1 − P2P1N2.(2.11)

We proceed by showing that each line above is non-negative. Clearly if P{X >
0} or P{X ≤ 0} is zero, then Pi’s or Ni’s are zero and the statement is triv-
ially true. Assuming the contrary and dividing (2.8) by [P{X > 0}]2 makes
conditional expectations out of the Pi’s:

P3P1 − P2P2

[P{X > 0}]2
= E(X3 |X > 0) ·E(X |X > 0)−E(X2 |X > 0) ·E(X2 |X > 0).

To show that this is non-negative, introduce the expectation

Ê(·) : =
E(· × X2 |X > 0)

E(X2 |X > 0)
,

with which the previous formula becomes a constant multiple of

ÊX · Ê
1

X
− 1 = −Ĉov

(
X,

1

X

)
.
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Notice that the ̂ measure is concentrated on positive values, where 1/X is a
decreasing function of X hence the above covariance is non-positive. A similar
argument shows that (2.9) is non-negative.

Separate (2.10) into the sum of two terms:

[
P2P{X > 0} − P1P1

]
· N3 + P2 ·

[
N3P{X ≤ 0} − N2N1

]
.

Divide the first bracket by [P{X > 0}]2 to get

E(X2 |X > 0) − [E(X |X > 0)]2 ≥ 0.

Dividing the second bracket by [P{X ≤ 0}]2 leads to

E(|X |3
∣∣ X ≤ 0) − E(X2

∣∣ X ≤ 0) · E(|X |
∣∣X ≤ 0)

= Cov(X2, |X |
∣∣X ≤ 0) ≥ 0

(2.12)

since X2 is an increasing function of |X | on non-positive numbers. The term
(2.11) is treated in a similar manner.

Tracing the lemmas backward shows that we have verified part a) of Lemma
2.5 and thereby proved Theorem 2.1.

To prove Theorem 2.2, note first that in the complementary case Φ(X) = aX
on S, and then (2.2) implies that the derivative dEθ(̺)Φ(X)/ d̺ is constant.

To prove the main statement of Theorem 2.2 we retrace some earlier steps.
Let x0 ∈ S be a point of strict convexity whose existence is assumed. Namely,

(2.13) P{X < x0}P{X = x0}P{X > x0} > 0

and the slopes b = Φ′(x0−) and a = Φ′(x0+) satisfy a > b. Then we can write

Φ(x) = Φ(x0) + a(x − x0)
+ − b(x − x0)

− + Ψ(x)

for another convex function Ψ that vanishes on an interval around x0. Since
we already have Theorem 2.1 for Ψ, it suffices to prove strict convexity of ̺ 7→
Eθ(̺)φ(X) for

φ(x) = Φ(x0) + a(x − x0)
+ − b(x − x0)

−.

After an application of the transformation (2.7) the question boils down to
showing strict inequality in (2.5) for the new variable Y = X − x0. For this
it suffices to check that at least one of the quantities (2.8)–(2.11) is strictly
positive. From (2.13) follows that each Pi and Ni is strictly positive. Schwarz
inequality shows that P2P2 < P3P1 if Y has two distinct strictly positive values,
and N2N2 < N3N1 if Y has two distinct strictly negative values. If both these
requirements fail, then (2.13) forces Y to take one positive value, one negative
value, and the value zero with positive probability. But then this makes the
quantity in (2.12) strictly positive for Y .

Thus we conclude that strict inequality holds in (2.5) for Y = X − x0, and
strict convexity of ̺ 7→ Eθ(̺)φ(X) follows. We have proved Theorem 2.2.
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3 Application to stochastic interacting systems

To keep this note short we give a minimal possible introduction to the applica-
tions of the convexity result and refer the reader to [1] and [4] for the complete
picture. Let −∞ ≤ xmin ≤ 0 and 1 ≤ xmax ≤ ∞ be (possibly infinite valued)
integers, and consider the discrete interval I = (xmin − 1, xmax + 1) ∩ Z. Fix a
function f : I → R

+. For I ∋ x > 0 we set

f(x)! : =

x∏

y=1

f(y),

while for I ∋ x < 0 let

f(x)! : =
1

0∏
y=x+1

f(y)

,

finally f(0)! : = 1. Then we have

f(x)! · f(x + 1) = f(x + 1)!

for all x ∈ I. Let

θ̄ : =

{
log

(
lim inf
x→∞

(f(x)!)
1/x

)
, if xmax = ∞

∞ , else

and

θ : =





log

(
lim sup

x→∞

(f(−x)!)
−1/x

)
, if xmin = −∞

−∞ , else.

We require f to be such that θ < 0 < θ̄. In this case

µ(x) : =

1
f(x)!∑

y∈I

1
f(y)!

defines a probability measure on I, and the exponentially weighted version

µθ(x) : =

eθx

f(x)!∑
y∈I

eθy

f(y)!

is also well defined for any θ < θ < θ̄. This latter is the marginal of a stationary
product distribution of many stochastic interacting systems, see e.g. [4].
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3.1 Convexity of hydrodynamic flux for zero range and

bricklayer processes

In particular, the attractive zero range process is an example where I = [0, ∞)∩
Z, f(0) = 0 < f(1), and f is non-decreasing. The rate for a particle to jump from
a site with x particles is f(x). Its hydrodynamic (macroscopic) flux function
H : R

+ → R
+ is given by

H(̺) = Eθ(̺)f(X)

with the notation of the Introduction. The results of the previous section for f
now read as follows:

Proposition 3.1. If the jump rate f of the zero range process is convex (or
concave), then the hydrodynamic flux H is also convex (or concave, respectively).
Moreover, in this case H is strictly convex (or concave, respectively) if and only
if f is not linear.

The bricklayer process has I = (−∞, ∞) ∩ Z and f non-decreasing such
that f(x) · f(1 − x) = 1 for all x ∈ Z. Its jump rate for a brick to be laid
on a column between negative discrete gradients x on the left and y on the
right is f(x) + f(−y), see [4] for more details. The hydrodynamic flux function
H : R → R

+ is now

H(̺) = Eθ(̺)
(
f(X) + f(−Y )

)

where X and Y are i.i.d. variables with distribution µθ(̺). Notice that non-
decreasingness and non-negativity of f on Z excludes concave functions with
the exception of the constant one function. Our result for this process is

Proposition 3.2. If the function f of the bricklayer process is convex and not
constant one, then its hydrodynamic flux H is strictly convex.

Parts of these two propositions were proved with coupling methods in [1].

3.2 Monotonicity of a special distribution

We come to the primary motivation of the note. As explained in the Introduc-
tion, the study of current fluctuations uses couplings of processes whose initial
particle number at the origin obeys the following type of distribution:

(3.1) νθ(̺)(y) =
1

Varθ(̺)X

xmax∑

x=y+1

[x − Eθ(̺)X ] · µθ(̺)(x) (xmin ≤ y < xmax).

(See [4, eqn. (2.6)] for the original definition.) To create couplings with useful
monotonicity properties, one needs these distributions to be monotone in the
parameter ̺, in the sense of stochastic domination. This we can now derive as
a consequence of the main result.
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Proposition 3.3. The family of measures νθ(̺) is monotone in ̺.

Proof. By Corollary 2.4,

νθ(y) =
1

VarθX
· E

(
[X − Eθ(X)] · 1{X > y}

)

=
Covθ(X, 1{X > y})

VarθX
=

d

d̺
Pθ(̺){X > y}.

Let us denote the νθ(̺)-expectation by Eν, θ(̺). Monotonicity of the family νθ(̺)

is equivalent to the property that, for any bounded non-decreasing function ϕ,

0 ≤
d

d̺
Eν, θ(̺)ϕ(X).

We compute a different expression for this derivative. Passing the derivative
through the sum in the third equality below is justified because the series in-
volved are dominated by certain geometric series, uniformly over θ in small open
neighborhoods. This follows from the definitions of θ and θ̄ and the assumption
θ < 0 < θ̄.

Eν, θ(̺)ϕ(X) =

xmax∑

y=xmin

ϕ(y) ·
d

d̺
Pθ(̺){X > y}

=

xmax∑

y=xmin

ϕ(y) ·
d

d̺
[Pθ(̺){X > y} − 1{0 ≥ y}]

=
d

d̺

xmax∑

y=xmin

ϕ(y) · [Pθ(̺){X > y} − 1{0 ≥ y}]

=
d

d̺
Eθ(̺)

xmax∑

y=xmin

ϕ(y) · [1{X > y} − 1{0 ≥ y}]

=
d

d̺
Eθ(̺)

xmax∑

y=xmin

ϕ(y) · [1{X > y > 0} − 1{0 ≥ y ≥ X}]

=
d

d̺
Eθ(̺)

[X−1∑

y=1

ϕ(y) −

0∑

y=X

ϕ(y)
]

=
d

d̺
Eθ(̺)Φ(X).

Above we introduced the function

Φ(x) =

x−1∑

y=1

ϕ(y) −

0∑

y=x

ϕ(y),

with the convention that empty sums are zero. To conclude the proof, notice
that Φ(x + 1) − Φ(x) = ϕ(x). Thus a non-decreasing function ϕ determines a
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(non-strictly) convex function Φ with Φ(1) = 0, and vice-versa. Hence Section
2 establishes that

d

d̺
Eν, θ(̺)ϕ(X) =

d2

d̺2
Eθ(̺)Φ(X) ≥ 0.
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H. Poincaré Probab. Statist., 39:639–685, 2003.

[2] M. Balázs, F. Rassoul-Agha, T. Seppäläinen, and S. Sethuraman. Existence
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