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a b s t r a c t

The freezing temperatures of hundreds of water drops with radii 20–50 lm containing known average
concentrations of suspended, mostly micron- to submicron-sized, volcanic ash particles composed of
SiO2-rich glass were recorded using optical microscopy. As expected, the ash suppresses supercooling,
and in contrast to earlier studies of much larger ash particles, the median freezing temperature clearly
scales with the available ash surface area per drop. The heterogeneous nucleation rate coefficient per unit
mass of ash (jm) increases exponentially with decreasing temperature (T) (increasing supercooling) with a
possible change in the slope of a plot of log jm against T at T ¼ 245� 1 K. Although uncertainties in the ash
surface area limit quantitative comparisons, we conclude that volcanic glass is a less effective
ice-nucleating agent than feldspar crystals and more similar to other minerals previously studied.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Water droplets in clouds readily supercool to temperatures
below 273 K and can reach temperatures as low as 235 K before
ice crystals form [1]. Ice crystals affect the formation of clouds,
their lifetime, radiative properties and precipitation [2]; conse-
quently ice crystal formation has been studied both in the field
and under controlled conditions in laboratory experiments for
many years [3,4]. Recent reviews may be found in [2,5], and there
has been considerable work since these appeared. The formation of
ice crystals at temperatures significantly higher than 235 K can be
initiated by particles in the atmosphere that act as ice nuclei. Since
the 2010 eruption of the Icelandic volcano, Eyjafjallajökull, there
has been renewed interest in volcanic ash and the role of these par-
ticles as ice nuclei [6,7]. Ice nucleation on volcanic ash affects
radiative properties as well as ash aggregation and sedimentation
e.g. [8,9], and consequently is important for understanding how
volcanic eruptions affect climate and for predicting and detecting
the location and concentration of ash clouds during eruptions.

Laboratory studies can provide important insight into the abil-
ities of different particulates to reduce supercooling. Particular
attention has been paid to ice nucleation in the immersion mode,

whereby a solid material immersed in a drop of supercooled water
induces ice formation by heterogeneous nucleation. Atkinson et al.
[10] recently compared the freezing temperatures of droplets of
diameter �10 lm containing suspensions of micron-sized mineral
particles by optical microscopy, and showed that feldspars were
significantly more effective at ice nucleation than the other miner-
als studied. Further recent work supports this conclusion [11–13].
Other workers have studied volcanic ash, either using optical
microscopy (typically with much larger ash particles) [9,14] or
cloud chambers [6,7]. Typically only the bulk chemical composi-
tion of the ash is reported in ice nucleation studies although vol-
canic ash may contain a variety of minerals as well as silicate
glass fragments.

Here we use optical microscopy to study immersion mode ice
nucleation by a sample of glassy volcanic ash from the Minoan
eruption of Santorini, Greece. Since the individual ash particles
are too small for us to image optically, we cannot discriminate
between freezing where the ash particles are immersed in the bulk
of the fluid (volume immersion freezing) and freezing where the
ash particles accumulate preferentially at the drop surface
(surface-initiated freezing, as investigated by Fornea et al. [14]).

Heterogeneous nucleation on solid particulate matter is
expected to scale with the available surface area, assuming a fixed
distribution of active sites [1]. Since determining the effective sur-
face area of a dust or ash sample involves additional experimental
uncertainties, we characterise the ice-nucleating behaviour of our
ash sample in terms of the solid mass per drop. In general, the solid
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mass per drop is not proportional to the effective surface area,
because (for constant density) mass is proportional to volume
rather than surface area. However, if the particles under test are
sufficiently uniform, the effective surface area per drop will be pro-
portional to the number of particles and therefore to the solid
mass. We show experimentally that the particles comprising our
sample are sufficiently uniform for the median freezing tempera-
ture Tm for an array of drops to be function of the mean mass m
of ash per drop. We therefore determine the temperature
ðTÞ-dependent heterogeneous nucleation rate coefficient per unit
mass ðjmÞ rather than per unit surface area. We demonstrate that
the result does not change significantly when ash suspensions with
different concentrations are used. We further show that the slope
of a plot of log jm against T provides a useful means of comparing
ice-nucleating agents (materials that facilitate heterogeneous
nucleation of ice) even when their specific surface area is
uncertain.

2. Materials and methods

The ash studied was from a fine ash bed in the phreatomag-
matic Phase 2 deposit of the Minoan eruption of Santorini,
Greece [15]. It was collected on the caldera side of the Akrotiri
Peninsula, east of the town of Akrotiri, about 7 km south of the
eruption vent. Only the portion passing through a 22 lm sieve
was used. An uncoated subsample was imaged by scanning elec-
tron microscopy (SEM) using an environmental SEM. Prior to imag-
ing, the ash was suspended in ultrapure water, and a drop pipetted
onto the SEM stub.

SEM images such as Fig. 1 show ash particles with sizes ranging
from 0.5 to 12 lm, with the most common appearing to have a
radius of about 1 lm. However, grain size analyses carried out
using a Mastersizer 2000 laser diffraction particle size analyser,
assuming a particle refractive index of 1.52 and particle absorption
index of 0.1, suggest that 85% of the particles within the solution
were smaller than 1 lm. The light patches upon larger ash particles
in SEM images (clearly seen on the large particle in Fig. 1a) are
smaller ash particles apparently adhered to them. The particles
are fragments of rhyolite glass, which based on glass analyses of
other samples from the same eruption, are 73 wt% SiO2, 14 wt%
Al2O3, 5 wt% Na2O, 3 wt% K2O, 2 wt% FeO and 1.5 wt% CaO [15]. If
there are crystals present in our sample then they are in trace
quantities. The erupted magma did contain about 10 vol% crystals
but these are not represented in the sample used in our experi-
ments, which is of a finer grain size than the crystals.

Suspensions containing different weight concentrations of ash
were produced and thoroughly mixed. An array of drops of radius
in the range of some 10 lm was sprayed using a liquid atomizer
(sold as a travel spray) onto a borosilicate glass cover slip, which
had been coated with Dimethyloctadecyl [3-(trimethoxysilyl)

propyl] ammonium chloride (DMOAP) to make it hydrophobic
(the measured contact angle was 104 ± 5�). A drop of silicone oil
was placed over the water drops with a pipette in order to prevent
evaporation. The sample was then positioned on a Linkam
THMS600 cold stage with a silver heating/cooling-block (see
Supporting information). The cold stage was supplied with a con-
trolled flow of nitrogen from a 25 L dewar. The sample was imaged
using a Brunel IMX Zoom Stereomicroscope with LED variable
lighting and a coarse and fine focus stand. The microscope has
40� zoom and was fitted with a 1.3 MP digital camera.

Freezing was observed in the range 235–252 K. A cooling rate of
1 K min�1 was used, pausing and keeping the temperature con-
stant for one minute after each 1 K decrease. During each
one-minute hold, a digital image of the sample was captured and
the drop freezing temperatures were determined from the set of
images (see Supporting information). Only drops with a radius in
the 20–50 lm range were considered and they were analysed in
bin sizes of 5 lm, with at least 10 drops in each bin and an average
of 28 per bin. When drops freeze inwards following nucleation,
pressure builds up as the water trapped inside the outer shell
expands on freezing. This can cause the ice shell to crack and eject
a spike of ice [16]. Any drops that were in contact with a spike were
ignored, as the spike could have caused them to freeze by contact
freezing.

3. Results

Fig. 2 shows the fraction of drops that freeze as a function of T in
a given experiment. At each ash concentration, the data form a sig-
moidal curve, as observed previously for a range of different min-
eral dusts [10,11,17]. The figure clearly shows that the ash
suspensions freeze over a far greater range of temperatures than
the ultrapure water. This large temperature range suggests that
the ash particles incorporate sites with a considerable range of
ice-nucleating abilities. Note that for the ultrapure water sample,
the drops froze within a very small temperature range, close to
the expected homogeneous freezing level, with less than 4% of
the drops freezing at temperatures above 237 K.

Fig. 3a shows how the freezing behaviour, characterised by the
median freezing temperature Tm, depends on the drop size as well
as the concentration of ash in the sample. The freezing tempera-
ture for ultrapure water is independent of the drop size. Clearly,
the presence of ash increases Tm, and therefore suppresses super-
cooling. This is consistent with the ash presenting sites at which
heterogeneous ice nucleation is favoured. Within error, a drop of
radius 20–25 lm from the suspension with the lowest ash concen-
tration (0.024 wt%) has the same Tm as ultrapure water. This sug-
gests that the probability of finding an ash particle within a
typical drop of this size is very small.

Fig. 1. Scanning electron microscopy images from the uncoated ash sample collected with a beam current of 0.6 nA and an accelerating voltage of 10 kV (a) or 7 kV (b).
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Upon re-plotting the data of Fig. 3a as a function of the mass of
ash per drop, to a good approximation, the data fall on a single line
(Fig. 3b). This shows that Tm scales with the mass of ash per drop,
as expected if (i) the probability of nucleation is a function of the
surface area of ash to which the drop is exposed and (ii) the ash
particles are sufficiently uniform that surface area scales with
mass. We return to this point in the following section.

4. Discussion

Our results show that Tm scales with the mass of ash per drop
(Fig. 3b). A previous study of immersion mode nucleation by vol-
canic ash reported that the measured freezing temperature
depended only weakly on the amount of ash present (ash particle
surface area) [9]. However, this study differed from ours, not only
in the source of the volcanic ash, but probably more importantly in
that they studied drops containing single very large particles (typ-
ically with a long axis � 500 lm [9]) rather than a few small ones.
This could place their experiments in a regime where Tm varies less
rapidly with the amount of ash present. Indeed, Fig. 3b shows that
Tm varies less rapidly with the mass of ash per drop as the latter
quantity increases.

The dependence of freezing temperature on mass of ash per
drop m may be quantified on the basis of classical nucleation the-
ory [1,2] as follows. Let the number of drops initially unfrozen at
any temperature T be nðTÞ, the number of heterogeneous nucle-
ation events per unit mass of ash per unit time at temperature T
be jmðTÞ, and the time interval for which the drops are held at this
temperature T be Dt. jm is the heterogeneous nucleation rate coef-
ficient, but defined per unit mass. Then the number of drops freez-
ing at T due to heterogeneous nucleation ¼ jmnmDt. In this
equation we are approximating dn

dt by Dn
Dt , where �Dn is the number

of drops observed to freeze during Dt. We can estimate the number
freezing at T due to homogeneous nucleation from the freezing
data for ultrapure water. Let the initial number of unfrozen drops
for the pure water experiment at any temperature T be n0ðTÞ, the
time interval the ultrapure water drops are at that temperature T
be Dt0 and the number of drops frozen during that time interval
be �Dn0. Then the number of homogeneous nucleation events
per unit time per drop is �Dn0=n0Dt0. Finally, the additional

number of nucleation events (per unit mass of ash per unit time)
due to the presence of ash particles is:

jm ¼ �
1
m

Dn
nDt
� Dn0

n0Dt0

� �
: ð1Þ

Fig. 4 shows jmðTÞ calculated for our data. Values determined
from experiments using different ash concentrations agree well
with each other with the possible exception of the most dilute
sample, which is most sensitive to the corrections for homoge-
neous nucleation given by Eq. (1). This is consistent with our
assumption that the volcanic ash sample is sufficiently uniform
that the surface area scales with mass, and therefore that jmðTÞ is
a useful quantity for describing its heterogeneous ice nucleation
properties. log jm varies linearly with T showing that jm increases
exponentially with decreasing T. However, there is an apparent
change of slope at T � 245 K. The increase of slope means that
the probability of ice nucleation falls away more rapidly at high
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Fig. 3. (a) Median drop freezing temperature Tm (K) as a function of median drop
radius (lm) for ultrapure water and a range of ash concentrations. The data for
ultrapure water were obtained at a cooling rate of 0.5 K min�1 followed by a minute
hold after each minute of cooling while the data for the ash suspensions were
obtained at a rate of 10 K min�1 until 253 K, then at a rate of 1 K min�1 with a one
minute hold after each decrease of 1 K. For each sample, drops were analysed in
bins corresponding to a 5 lm radius range. The median drop radius and median
drop freezing temperature were calculated. Only bins with at least 10 data points
contribute to the figure. (b) Tm data from (a) re-plotted as a function of the mass of
ash per drop. The error in the mass of ash per drop was approximated as the
product of the estimated mass of a single ash particle multiplied by the square root
of the expected number of ash particles per drop (Poisson error).
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temperatures. There is evidence for a similar effect e.g. for quartz
in Fig. 1b of Atkinson et al. [10] or Fig. 3 of Augustin-Bauditz
et al. [11]. Note that the slope of a plot of log jm against T is the
same whether the heterogeneous nucleation rate coefficient is
quoted per unit mass of the ice-nucleating agent or per unit surface
area, because the two quantities differ only by a constant factor,
providing the ash particles are sufficiently uniform that surface
area scales with mass. In fact, when the experimental relationship
between log jm and T is linear, the slope of the corresponding plot
should be the same as the more frequently presented log ns versus
T plot (where nsðTÞ is the number of sites per unit area which
become active on cooling from 273 K to T [18] according to the sin-
gular model). For example, comparison of our Fig. 4 with Fig. 6 of
Murray et al. [18] shows that for our volcanic ash sample this slope
is significantly smaller than for kaolinite, except in the high slope
region above T � 245 K where it is comparable.

As we have not determined the exact surface area per unit mass,
we cannot compare the absolute value of jm with values of the
heterogeneous nucleation rate coefficient determined by other
workers with any degree of precision. Nevertheless, if we assume
that a representative ash particle is spherical with a radius of
1 lm, then from Fig. 3(b) a median freezing temperature of
245 K corresponds to an ash surface area of several hundred
lm2. Since Atkinson et al. [10] report higher median freezing tem-
peratures for much smaller surface areas of feldspars, we conclude
that our volcanic ash is significantly less effective at nucleating ice
than these feldspars, and more comparable to the other mineral
dusts studied by these authors. Feldspar crystals often make up a
substantial fraction of erupting magmas and can be a major com-
ponent of volcanic ash, although not in the Santorini ash sample
studied here, which is composed of silicic glass shards. As the pro-
portions of components of volcanic ash could substantially affect
ice nucleation, studies of ash as agents for ice nucleation should
report the componentry of the ash in addition to its bulk chemical
composition.

5. Conclusion

We have shown that fine glassy silicic volcanic ash particles
from Santorini Volcano are effective in raising the freezing point
(suppressing the supercooling) of water drops with diameters in

the lm range, though not to the same extent as feldspar dusts.
We show that the median freezing temperature Tm is a function
of the mass of ash per water drop, and that values for the number
of nucleation events per unit time and unit mass of ash, jðTÞ, deter-
mined using ash suspensions of different concentration agree rea-
sonably well with each other.
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