
                          Caldwell, D., Dias, S., & Welton, N. (2015). Extending Treatment Networks
in Health Technology Assessment: How Far Should We Go?. Value in
Health. 10.1016/j.jval.2015.03.1792

Publisher's PDF, also known as Final Published Version

Link to published version (if available):
10.1016/j.jval.2015.03.1792

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/33131174?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jval.2015.03.1792
http://research-information.bristol.ac.uk/en/publications/extending-treatment-networks-in-health-technology-assessment-how-far-should-we-go(dd621830-082b-4068-9fa4-9d0c79e5a7ea).html
http://research-information.bristol.ac.uk/en/publications/extending-treatment-networks-in-health-technology-assessment-how-far-should-we-go(dd621830-082b-4068-9fa4-9d0c79e5a7ea).html


Avai lable onl ine at www.sc iencedirect .com

journal homepage: www.elsevier .com/ locate / jva l

Extending Treatment Networks in Health Technology
Assessment: How Far Should We Go?
Deborah M. Caldwell, PhD*, Sofia Dias, PhD, Nicky J. Welton, PhD

School of Social and Community Medicine, University of Bristol, Bristol, UK

A B S T R A C T

Background: Network meta-analysis may require substantially more
resources than does a standard systematic review. One frequently
asked question is “how far should I extend the network and which
treatments should I include?” Objective: To explore the increase in
precision from including additional evidence. Methods: We assessed
the benefit of extending treatment networks in terms of precision of
effect estimates and examined how this depends on network struc-
ture and relative strength of additional evidence. We introduced a
“star”-shaped network. Network complexity is increased by adding
more evidence connecting treatments under five evidence scenarios.
We also examined the impact of heterogeneity and absence of
evidence facilitating a “first-order” indirect comparison. Results: In
all scenarios, extending the network increased the precision of the
A versus B treatment effect. Under a fixed-effect model, the increase
in precision was modest when the existing direct A versus B evidence
was already strong and was substantial when the direct evidence was
weak. Under a random-effects model, the gain in precision was lower
when heterogeneity was high. When evidence is available for all

“first-order” indirect comparisons, including second-order evidence
has limited benefit for the precision of the A versus B estimate. This is
interpreted as a “ceiling effect.” Conclusions: Including additional
evidence increases the precision of a “focal” treatment comparison of
interest. Once the comparison of interest is connected to all others via
“first-order” indirect evidence, there is no additional benefit in
including higher order comparisons. This conclusion is generalizable
to any number of treatment comparisons, which would then all be
considered “focal.” The increase in precision is modest when direct
evidence is already strong, or there is a high degree of heterogeneity.

Keywords: comparative effectiveness, health technology assessment,
literature searching, mixed treatment comparisons, network meta-
analysis, systematic review.

Copyright & 2015, International Society for Pharmacoeconomics and
Outcomes Research (ISPOR). Published by Elsevier Inc. This is an open
access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Introduction

Indirect comparisons and network meta-analysis (NMA) are
increasingly common in the evaluation of multiple competing
health technologies when interest lies in the relative rankings of
all treatments of clinical interest [1]. NMA is also used by health
reimbursement agencies worldwide, including the National Insti-
tute for Health and Care Excellence (NICE) Single Technology
Appraisals (STAs) program, where the objective is to assess
whether a treatment should be available for use on the National
Health Service in England and Wales. STAs are the mainstay of
the NICE health technology assessment (HTA) program; of the 33
appraisals published in 2013, 29 were completed under the STA
process (www.nice.org.uk). STAs typically evaluate a single treat-
ment close to marketing launch, and as such the focal compar-
ison of interest is with standard/usual care options. We note that
this is true even when multiple treatments are included in a
network and relative rankings reported [2].

NMA may be used in STAs when direct evidence from trials of
A versus B is either unavailable or sparse; however, no formal
guidelines exist to ensure transparency on which treatments
should be included, when to extend a network, or how far it
should be extended. In the absence of such guidelines, there are
concerns that networks could be defined specifically to favor a
particular treatment [3,4]. Proposals for the assessment of net-
work geometry have received attention [5,6], and network size
has been described as an “unsolved issue” in NMA [7]. In an
empirical study of 18 published networks, Mills et al. [8] exam-
ined the impact of retrospectively excluding treatments and note
how treatment effect estimates and treatment rankings were
modified. In STAs, however, the starting network consists of a
fixed “decision set” of treatments (i.e., treatment and comparator
(s) of interest) to which additional evidence (a “supplementary
set” of treatments identified a priori) may be prospectively
included to connect those already in the network. Such an
approach has been separately described by Ades et al. [9] and
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Hawkins et al. [10] and is referenced by ISPOR Task Force [11] and
NICE methodology guidelines [12].

A recent case study calls for further work to evaluate network
size and structure and provide generalizable findings on the
added value of extending treatment networks [13]. Indeed, there
is a practical need to ask how far to extend a network in STAs
[14], what is the benefit of doing so, and whether there is a
diminishing return for including additional treatments. NMA is
understood to be more resource intensive than traditional pair-
wise systematic review [15]. For example, literature searching,
screening, eligibility assessment, and data extraction may be
more cumbersome because of the increased number of studies to
review, although this will vary depending on the network. The
further a network is extended, the risk of bias, heterogeneity, and
inconsistency may also increase. This would further add to the
reviewer’s workload assessing whether the assumption of con-
sistency/transitivity holds across the network [16]. However,
previous empirical work suggests that combining direct and
indirect evidence may increase the precision of treatment effect
estimates across a network [17]. Taking the perspective that the
purpose of evidence synthesis is to reduce uncertainty in deci-
sion making, a key consideration in the development of guide-
lines on how far to extend evidence networks is the impact on
the precision of the focal treatment comparison(s).

In this article, we explore the effect of combining direct and
indirect evidence in an NMA on the precision of a single pairwise
comparison in a hypothetical six-treatment network. Our starting
point is to assume that a literature search has been conducted
and has generated a “star”-shaped starting network. We explore
the effects of “extending” the network by including additional
evidence situated at different points in the network. The article is
structured as follows. First, we define the statistical properties of
indirect comparisons. Then, we introduce the network structure
and describe the different evidence scenarios considered here.
The statistical method is described and findings are reported. We
conclude by discussing the practical implications of the findings,
make recommendations for the systematic review component of
HTA, and discuss implications for NMA, in general.

Methods

In a three-treatment network, an indirect estimate of the A
versus B treatment effect estimate is derived as follows:

θIAB ¼ θDAC � θDBC ð1Þ
where θ represents a treatment effect estimate (e.g., log-odds
ratio, mean difference) and where superscript I denotes an
indirect estimate and superscript D denotes a direct estimate.
The variance of θIAB is equal to the sum of the variances
V̂

D
AC and V̂

D
BC estimated from the direct A versus C and B versus

C comparisons, V̂
I
AB¼V̂

D
ACþV̂

D
BC. Here, we define A and B as our

focal treatments of interest. Any comparison of A or B to another
treatment (e.g., C) is defined as contributing “first-order” evidence
if it facilitates a triangular loop (e.g., A vs. C and B vs. C) [10].
A comparison that does not include either A or B but that
facilitates a quadrilateral loop of evidence (e.g., C vs. D in the
loop A-B-C-D) is defined as providing “second-order” evidence for
the focal treatments of interest A and B.

Network Formation

Our starting point was to assume that a literature search has
been conducted and has generated a network with six treatments
labeled A, B, …, F, where treatments A and B form the “decision
set” of treatments and the effect estimate of interest is θAB. For

simplicity, we assume a known network size, such that all
possible comparisons can be known a priori. Six is the median
number of treatments observed in published NMAs [18]. In a
standard systematic review, only direct evidence on contrast A
versus B (Fig. 1A) would be reported, which represents a single
pairwise meta-analysis here. Note that the solid lines connecting
each pair of treatments in Figure 1 indicate that there is direct
evidence available for that contrast. Drawing on the principles of
an iterative strategy for NMA [10], we assume that evidence
“closest” to the focal treatment comparison of interest will be
included first. Here we first add evidence on all comparisons
including treatment A, forming a “star” network structure
(Fig. 1B). We then add evidence that forms triangular “first-order”
loops for A versus B (B vs. C, B vs. D, B vs. E, and B vs. F) [19]
(Fig. 1C,D). Second-order indirect evidence, via treatment C, is
added next (Fig. 1E). The final level of network complexity (Fig. 1F)
is to include all evidence via D versus E, D versus F, and E
versus F.

Description of Evidence Scenarios

(i) Network with Evidence Available for All Contrasts
Here we concentrate on a network structure in which direct
evidence is available for θAB, albeit in differing amounts. Five
hypothetical scenarios are considered under an assumption of
consistency (Equation 1). In each scenario, we assume that values
for the observed precision of treatment effect estimates are
available for every pairwise contrast. The resulting precision of
the pooled NMA estimate for A versus B depends only on these
input precisions and not on the actual observed treatment effects
(see Appendix 1 in Supplemental Materials found at http://dx.doi.
org/10.1016/j.jval.2015.03.1792). No assumptions are made about
the observed treatment effects, and results are general for any
outcome measure with our assumed input precisions. Further-
more, our conclusions are based on the relative precision across
different parts of the network, rather than on the absolute value.
Input precision values for each scenario are reported in Table 1.

Scenario 1: Equal variance is assumed for each contrast across the
network. Here, each contrast θXY is informed by a meta-analysis
with variance, VXY ¼ 1, where VXY is the observed variance (SE2)
from a meta-analysis of X versus Y. The precision of X versus Y is
defined as PDXY¼1=VXY .

Scenario 2: A versus B comparison is the “weakest” link in the
six-treatment network. Contrasts contributing first-order indirect
evidence are also weak (imprecise), and second-order contrasts
contribute even weaker evidence for A versus B. This scenario is
sometimes seen when fewer trials are conducted for ethical or
practical reasons, for example, in pain management for women
in labor [20]. Note that values assigned in all scenarios are
hypothetical, and do not exactly replicate the illustrative HTAs.

Scenario 3: The A versus B comparison is the “weakest” link in
the six-treatment network, with the contrasts forming both first-
and second-order indirect comparisons being stronger. In HTA,
this scenario is seen when A versus B are interventions from rival
manufacturers that have seldom been compared, or are com-
pared only in a small study [21]. Evidence in such networks is
likely to be found on the newer technologies versus placebo/
standard care and on the standard versus older interventions.

Scenario 4: A versus B is the strongest link in the six-treatment
network, with the contrasts forming indirect comparisons being
weaker. This scenario may be seen in practice when both A and B
are older interventions, perhaps the criterion standards for the
clinical area, and have been trialed many times [22].

Scenario 5: A versus B comparison is the strongest link, with
the contrasts contributing to indirect comparisons also being
strong. This scenario may be seen in practice with “me-too”
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pharmaceutical treatments such as selective serotonin reuptake
inhibitors [23] and treatments for hyperphosphatamia [24].

(ii)Absence of first-order indirect evidence for θAB
In (i) above, we assumed that evidence is available for every
contrast in the six-treatment network. This, however, may not be
the case in practice. Here, we also explore the impact of absent first-
order evidence for θAB. The network is extended as follows and with
reference to Figure 2: We start with a network in which evidence is
available on five edges of the network, A versus B, A versus D, A
versus E, B versus C, and B versus F (Fig. 2A), but no loops—
triangular or quadrilateral—are available. In Figure 2B, we complete
a single first-order loop via A versus F and a single second-order

loop via C versus D. In Figure 2C, there are two quadrilateral loops
formed by adding E versus F and C versus D evidence to the
network. This allows second-order indirect comparisons for θAB.
This is compared with Figure 2D, which instead includes A versus C
and A versus F evidence to complete two triangular loops for θAB. In
Figure 2E, we include two quadrilateral and two triangular loops (i.
e., Fig. 2B,C combined). Alternative permutations of evidence
unavailability are considered in Figure 2F,G. Figure 2F considers a
network with four triangular and two quadrilateral loops for θAB.
This is compared with Figure 2G, in which the quadrilateral loops
are unavailable. For completeness, Figure 2H reports a fully con-
nected network; however, it is identical to that in Figure 1F. The
same hypothetical scenarios are considered as for (i) and the same
values used for the variances as reported in Table 1.

 Dir

 ‘Sta
treatm

 All

A

   E

rect pairwise c

ar’ network, ea
ent A 

l 1st order indi

D

   E

D

D

E

comparison o

ch treatment c

irect comparis

B

A

F

A

F

A

F

f treatment A

ompared to co

sons connecte

A

F

B

   C

   C

A versus B 

mmon referenc

ed via B  

B

C 

B

ce 

 ‘Star’ netw
evidence for 

 Adding 2

 Fully connec

D

  E

D

E

work: adding in
AB 

2nd order indi

cted 6-treatm

A

F

A

n BvC which cre

rect evidence

ment network

A

F

A

F

eates a “first-or

, via CD, CE, C

B

   C

B

   C

rder’ loop of

CF 

(A) (B)

(D)

(F)

(C)

Fig. 1 – Graphical representation of the star network and approach to connecting the network under the assumption of all
available evidence. The solid blue line indicates existing evidence. The dotted red line indicates evidence added at each step
of extension. (A) Direct pairwise comparison of treatment A versus B. (B) “Star” network, each treatment compared with
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Statistical Analysis

An algebraic solution for the posterior precision PNMA
AB for θAB for a

given scenario (network structure and input precisions) can be
written down for both fixed- and random-effects models (see
Appendix 1 in Supplemental Materials). This allows us to explore
this mathematical relationship without the need for a simulation
study. Appendix 1 shows how the posterior precision PNMA

AB can be
computed for the fixed- and random-effects models and provides
further technical details for the analysis.

Under each of Scenarios 1 to 5 outlined above, PNMA
AB is

computed for every level of “connectednesses” of the network
(Fig. 1). The increase in precision from the NMA over the direct
evidence, Δ¼PNMA

AB �PDAB, is calculated and reexpressed as a per-
centage increase. For the random-effects models, we explored the
effect of differing degrees of between-study heterogeneity var-
iances, τ2. We based our choice of τ2 ¼ 0.1, 0.5, and 1 (on the log-
odds scale) on findings from a meta-epidemiological database of
234 meta-analyses that provides a range of τ ¼ 0 to 1.33 on the
log-odds scale [25]. We might expect a similar range of values on
the standardized mean difference scale too, and the qualitative, if
not quantitative, results to apply on other outcome measures.
Appendix Table 1 in Supplemental Materials found at http://dx.
doi.org/10.1016/j.jval.2015.03.1792 provides further details on the
between-trial variance.

Results

Figures 3 and 4 report findings for both network structures and
every evidence scenario. Results for each network structure are
reported separately.

(i)Network Structure with Evidence Available for All Contrasts

Figure 3 reports the findings from the network structure in which
we assume evidence is available for all contrasts. The categories
on the horizontal axis correspond to the five evidence scenarios
outlined above. Within each scenario, different levels of network
connectedness are considered as represented in the network
diagrams shown in Figure 1. For example, the first category
corresponds to Figure 1A in which only direct evidence is
available for A versus B, and the second category corresponds
to Figure 1C, in which the B versus C evidence is added to the
network. The remaining categories introduce the treatment
comparisons in order of increasing complexity of the evidence
network. The vertical axis plots the difference in precision, Δ,
as a percentage increase. See also Appendix Tables 2 to 5 in
Supplemental Materials found at http://dx.doi.org/10.1016/j.jval.
2015.03.1792. Across all five scenarios, PDAB is obtained solely from
the direct A versus B evidence and therefore is always equal to
the observed pairwise precision as defined in the individual
scenarios. At the first level of the NMA (corresponding to
Fig. 1B), PNMA

AB is also equivalent to information gained solely from
direct A versus B meta-analysis and therefore Δ ¼ 0 (0% increase
in precision).

The results from the fixed-effect analyses are shown in the
top left-hand panel of Figure 3. Having added first-order indirect
evidence on B versus C to the network, a triangular loop A-B-C
(Fig. 1C) is formed, thereby allowing both an indirect and a direct
estimate of θ̂AB. Under Scenario 1, PNMA

AB is increased to 1.50, with
Δ ¼ 0.50 (50% increase). For this scenario only, this increase can
be interpreted as equivalent to additional information gained
from a trial of half the size of the “direct” A versus B study. As
network complexity increases, we note that evidence on each
additional first-order comparison increases PNMA

AB by 0.5. For

Table 1 – Precision input value for structure with evidence available for all contrasts.

(a) Evidence scenario and description (b) Precision (variance) input by
level of evidence

(c) V̂AB obtained for an IC using
values in (b)

Scenario Description Direct A
vs. B

(Fig. 1A)

All first-
order

indirect
(Fig. 1D)

All
second-
order

indirect
(Fig. 1F)

Direct
evidence

First-
order
IC

Second-
order IC

1 Evidence available in equal amounts for all
comparisons

P ¼ 1
(V ¼ 1)

P ¼ 1
(V ¼ 1)

P ¼ 1
(V ¼ 1)

1 2 3

2 Sparse network; a few small trials/weak
evidence available for direct and first
order. Stronger evidence for second
order

P ¼ 0.5
(V ¼ 2)

P ¼ 0.75
(V ¼ 1.33)

P ¼ 1
(V ¼ 1)

2 2.66 3.66

3 Few trials/weak direct evidence on focal
treatments. More evidence for first- and
second-order comparisons

P ¼ 0.5
(V ¼ 2)

P ¼ 2
(V ¼ 0.5)

P ¼ 5
(V ¼ 0.2)

2 1 1.2

4 Strong direct evidence available for focal
treatments. All other evidence weaker

P ¼ 5
(V ¼ 0.2)

P ¼ 2
(V ¼ 0.5)

P ¼ 1
(V ¼ 1)

0.2 1 2

5 Well-populated network; several trials.
Strong evidence available for each
comparison

P ¼ 5
(V ¼ 0.2)

P ¼ 3
(V ¼ 0.33)

P ¼ 3
(V ¼ 0.33)

0.2 0.66 0.99

Notes. Evidence scenarios and corresponding precision input values for each level of evidence in the six-treatment network. “All first-order
indirect” refers to evidence on a treatment contrast that contributes to a first-order IC, i.e., A vs. C, …, B vs. F. The variance

_
V

I
AB for a first-order

IC is formed, e.g.,
_
V

I
AB¼

_
V

D
ACþ

_
V

D
BC “All second-order indirect” refers to evidence on a treatment contrast that contributes to a second-order IC, i.

e., C vs. D, …, E vs. F. The variance
_
V

I
AB for a second-order IC is formed, e.g.,

_
V

I
AB¼

_
V

D
ADþ

_
V

D
CDþ

_
V

D
BC.

IC, indirect comparison; P, precision; V, variance.
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example, having added first-order evidence B versus C and B
versus D, we see PNMA

AB has increased to 2.00 (Δ ¼ 1.00 or 100%
increase). This can be interpreted as having increased the
precision by the equivalent of one additional randomized con-
trolled trial “worth” of information. When evidence on B versus E
and B versus F is added to the network (Fig. 1E), however, we note
a “ceiling effect” after which including further evidence does not
increase PNMA

AB .

Figure 3 also reports the results from four further scenarios for
the “star” network under the fixed-effect model. When the
A versus B comparison has the largest variance (i.e., is the
weakest link in the network), the additional benefit of including
indirect evidence is substantial (Scenario 3). For example, includ-
ing evidence on all first-order indirect comparisons results in an
800% increase in PNMA

AB . Conversely, under Scenario 4, when the
A versus B comparison already has the greatest amount of
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information, including further evidence to facilitate an indirect
comparison results only in a modest increase in the A versus B
precision. For example, including evidence on all first-order
indirect comparisons (B vs. C, ..., B vs. F) results in an 80%
increase in PNMA

AB . A ceiling effect is again evident across all
scenarios. Once all evidence facilitating a first-order indirect
comparison has been included in the network, there is no further
increase in precision gained from including the second-order
indirect evidence for θAB.

Figure 3 also reports the findings under an assumption of
random treatment effects, and varying amounts of heterogeneity.
Across all levels of heterogeneity, the observed pattern is similar
to that seen under a fixed-effect assumption and we again note a
ceiling effect. The largest increase in precision is seen when the A
versus B evidence is uncertain and the evidence contributing to
indirect comparisons is strong (Scenario 3), and the smallest
increase is observed under Scenario 4 when the A versus B
evidence is already precise. Across all scenarios we note that
the absolute increase in PNMA

AB is greatest when τ2 ¼ 0.1 and is least
when τ2 ¼ 1. If one considers the most conservative scenario

under considerable heterogeneity (Scenario 4, where τ2 ¼ 1), the
increase in PNMA

AB is still a substantial 161% (see Appendix Table 4
in Supplemental Materials). Comparing the percentage increase
in precision, we note that smaller relative gains in precision are
observed between each level of network connectedness when
direct evidence is weak (Scenarios 2 and 3) and heterogeneity is
“large” (τ2 ¼ 1) than when τ2 ¼ 0.1. When direct evidence is strong
(Scenarios 4 and 5), the reverse is observed.

For completeness, Appendix 2 in Supplemental Materials found
at http://dx.doi.org/10.1016/j.jval.2015.03.1792 reports the findings
from a series of sensitivity analyses to investigate the impact of
both increasing the size of the variance inputs and varying them
within the level of evidence for the six-treatment network.
Although the increase in PNMA

AB is dependent on the strength of
the data inputs, we note that the observed “ceiling effect” remains
evident when all first-order evidence has been included.

(ii)Absence of First-Order Indirect Evidence for θAB

Figure 4 reports the findings from the network when we assume
that indirect evidence is unavailable (for some contrasts) under
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percentage increase in the precision of A vs. B treatment effect estimate from a network meta-analysis (NMA). The horizontal
axis reports each increasing level of the network under each of the five scenarios. Read left to right—Each bar relates to the
structure of the network in terms of which evidence is included. Scenario 1: “One trial per comparison”: Equal variance across
the network. Each comparison XY represents one meta-analysis with variance equal to 1. Scenario 2: “AB weakest link, IC
trials weaker”: AB comparison is the “weakest” link, with the comparisons forming ICs being weaker. Scenario 3: “AB
weakest link, IC trials strong”: AB comparison is the “weakest” link, with the comparisons forming ICs being stronger.
Scenario 4: “AB strongest link, IC trials weaker”: AB comparison is the “strongest” link, with the comparisons forming ICs
being weaker. Scenario 5: “AB strongest link, IC trials strong”: AB comparison is the “strongest” link, with the comparisons
forming ICs also being strong. IC, indirect comparisons.

V A L U E I N H E A L T H ] ( 2 0 1 5 ) ] ] ] – ] ] ]6

http://dx.doi.org/10.1016/j.jval.2015.03.1792


the five evidence scenarios. Results are reported with reference to
Figure 2. Numerical results are reported in Appendix 1 in
Supplemental Materials (see Appendix Tables 6–9 in Supplemen-
tal Materials found at http://dx.doi.org/10.1016/j.jval.2015.03.
1792).

Focusing on the fixed-effect model, under Scenario 1, in the
absence of evidence facilitating a first-order indirect comparison,
there is a small benefit achieved by including second-order
evidence; PNMA

AB is increased to 1.33, with Δ ¼ 0.33 (33% increase).
For Figure 2C, in which there are two second-order indirect
comparisons available, we observe PNMA

AB ¼ 1.67, with Δ ¼ 0.67
(67% increase). In Figure 2B, in which only one first-order indirect
comparison and one second-order comparison are available
(Fig. 2B), PNMA

AB is increased to 1.83 (83% increase). Therefore,
PNMA
AB has increased by 33% by including one second-order

comparison; however, recall from Figure 1C that PNMA
AB increased

by 50% if only one first-order comparison is included (Fig. 1C).
If two first-order comparisons are available (Fig. 2D), PNMA

AB is
increased to 2.00, a 100% increase over that afforded from the
direct evidence alone. We observe a marginal benefit of including
second-order evidence in the presence of two first-order loops
(Fig. 2E) as PNMA

AB is increased to 2.20.
This exploration again illustrates a “ceiling effect” as observed

in the “all available” evidence structure—there is no additional

increase in PNMA
AB once all first-order evidence has been included

in the network. In Figure 2H, a fully connected network increases
PNMA
AB to 3.00. If this is compared with Figure 2G, however, the

removal of second-order evidence does not affect the precision
gained. Figure 4 also reports the findings under an assumption of
random treatment effects, and varying amounts of heterogeneity.
Across all levels of heterogeneity, the observed pattern is similar
to that seen under a fixed-effect assumption. For completeness,
all numerical results are reported in Appendix 1 in Supplemental
Materials (see Appendix Tables 6–9 in Supplemental Materials).

A sensitivity analysis was also conducted to investigate the
impact of allowing information on the second-order evidence to
outweigh that available for the direct and first-order evidence.
Under a fixed-effect assumption, we note that it is only when
the precision of the second-order evidence outweighs the first-
order evidence by 400:1 that the precision gained by a single
first-order loop is equivalent to the precision gained by a single
second-order (quadrilateral) loop. We also note that the increase
in precision achieved via both a first- and second-order loop of
evidence is the same as that achieved by either two second-
order loops or two first-order loops. Complete findings for the
six-treatment network are reported in Appendix 3 in Supple-
mental Materials found at http://dx.doi.org/10.1016/j.jval.2015.
03.1792.
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Fig. 4 – Star network with six treatments when first-order indirect evidence is unavailable. Comparison of percentage increase
in precision (y-axis) for treatment contrast A vs. B from expanding network of treatments under five separate scenarios over
that achieved from a standard, pairwise meta-analysis. Scenarios considered under fixed- and random-effects models.
Random-effects models assume “low,” “medium,” and “high” levels of heterogeneity as defined in the main text. The height
of each bar denotes the percentage increase in precision of A vs. B treatment effect estimate from a network meta-analysis
(NMA). The horizontal axis reports each increasing level of the network under each of the five scenarios. For graph colors:
Read left to right—Each bar relates to the structure of the network in terms of which evidence is included. Scenario 1: “One
trial per comparison”: Equal variance across the network. Each comparison XY represents one meta-analysis with variance
equal to 1. Scenario 2: “AB weakest link, IC trials weaker”: AB comparison is the “weakest” link, with the comparisons
forming ICs being weaker. Scenario 3: “AB weakest link, IC trials strong”: AB comparison is the “weakest” link, with the
comparisons forming ICs being stronger. Scenario 4: “AB strongest link, IC trials weaker”: AB comparison is the “strongest”
link, with the comparisons forming ICs being weaker. Scenario 5: “AB strongest link, IC trials strong”: AB comparison is the
“strongest” link, with the comparisons forming ICs also being strong. IC, indirect comparision.

V A L U E I N H E A L T H ] ( 2 0 1 5 ) ] ] ] – ] ] ] 7

http://dx.doi.org/10.1016/j.jval.2015.03.1792
http://dx.doi.org/10.1016/j.jval.2015.03.1792
http://dx.doi.org/10.1016/j.jval.2015.03.1792
http://dx.doi.org/10.1016/j.jval.2015.03.1792


Discussion

In this article, we explored the effects of extending a six-
treatment network under two structures and five different evi-
dence scenarios, in which the amount of information available
for direct and indirect evidence was varied. Under both evidence
structures, extending the network increased the precision of the
treatment comparison of interest, θAB. This finding supports
previous empirical investigations [17,26,27] and builds on those
examining simpler evidence structures or single case studies
[13,28,29]. We note that precision increased under all five scenar-
ios, suggesting that regardless of the initial strength of the direct,
first-order and second-order indirect evidence, combining them
in an NMA increases the precision of θAB. For the structure for
which all evidence was available, the percentage precision gained
was most striking under a fixed-effect model in which the initial
direct evidence was weak, the first-order indirect evidence was
marginally stronger, and the second-order indirect evidence was
strongest (Scenario 3). Conversely, the smallest increase (albeit
still an increase of 80%) was observed under Scenario 4 when the
θAB direct evidence was already strong. These findings suggest
that even when first-order indirect evidence is imprecise it
should still be combined with direct evidence to increase the
overall precision. Of interest, however, was the observation of a
“ceiling effect” beyond which no further increase in precision was
achieved by including comparisons contributing to a higher-
order loop.

For the fixed-effect analyses assuming the absence of
first-order indirect evidence, we observed that including
second-order evidence affords a small increase in precision
only if first-order indirect evidence is unavailable and even then
this gain is minimal. This can be termed a “weakest link” effect,
and similar findings have been observed in simulation studies
[29]. In a sensitivity analysis, we observed that even when the
precision of the second-order indirect evidence was 400 times
greater than that of the first-order, the precision gained from the
second-order loop did not exceed that gained from the first-order
loop (should it be available).

Similar to Song et al. [28], we noted that the increase in
precision was attenuated under extreme heterogeneity. Under all
five scenarios and in both evidence structures, our findings were
robust to increasing the number of studies per comparison in the
random-effects analyses (holding overall precision constant). In a
standard random-effects meta-analysis, a large heterogeneity
variance typically leads to greater uncertainty in treatment effect
estimates. Within an NMA, in which the heterogeneity parameter
is shared (common) across all comparisons, this has generated a
concern that the presence of extreme heterogeneity of treatment
effects in an NMA may decrease the precision of effect estimates.
We did not explore this possibility in our analysis because we
assumed that the heterogeneity parameter was unchanged by
the addition of extra trials. Here, we also assumed that the
heterogeneity parameter is common across treatment compar-
isons. Relaxing this assumption by introducing a heterogeneous
variance model [30] will change the strength of the evidence from
each pairwise comparison in the network, and will therefore have
an impact on precision of the focal A versus B comparison. We do
not anticipate, however, that the general conclusions we draw
from this article will change.

The observed “ceiling effect” occurred when all first-order
evidence had been included in the network. This effect was
evident under both fixed- and random-effects models, and was
not dependent on the strength or position of information in the
network. Although we used a different approach, this effect is
consistent with König et al.’s [31] observation that networks can
be reduced to first-order comparisons. In explaining the ceiling

effect, we find it instructive to use the analogy of Rücker [32] in
which an NMA is likened to an electrical network. Under an
assumption of equal variance, we observed that information in a
network follows a “path of least resistance.” Where a shorter
“path” to the comparison of interest exists in a network, includ-
ing a treatment that facilitates an additional longer “path” did not
increase PNMA

AB . That is, in a network with both an A-B-C and an
A-B-C-D loop of evidence, the greatest gain in PNMA

AB will be
achieved via the shorter “path” A-B-C. Because the B versus C
edge must also be used for the C versus D comparison to
contribute to A versus B, the additional gain in PNMA

AB will be
limited. This observation has important implications for the
debate surrounding the inclusion of older treatments and placebo
in NMAs [4] and crucially whether to include trials comparing one
with the other. Certainly, any comparison of an older and placebo
treatment will be second-order indirect evidence, and the results
here suggest that they are unlikely to contribute to the precision
of the effect estimate(s) of interest. Unless treatments are of
direct interest to the decision maker, there may be a diminishing
return for including second-order evidence comparing older
versus placebo in an NMA.

Although a limitation of our approach is that we focused on
the single comparison A versus B, we note that conclusions will
generalize to networks in which multiple treatments are of
interest. For example, if the focal treatments of interest are A,
B, and C, then all first-order comparisons for A, all first-order
comparisons for B, and all first-order comparisons for treatment
C should be included. These conclusions have implications for
the scoping and searching stages of a systematic review and are
supportive of the iterative search strategy proposed by Haw-
kins et al. [10]. Although their proposal allows for any number of
higher order indirect comparisons to be included, they speculate
that reviewers may decide that it is not worthwhile to do so. Our
results confirm that to maximize the cost-of-searching versus the
value-of-the-evidence “trade-off,” systematic reviewers should
include only those additional nonfocal treatments that have been
compared with at least two of the focal treatments, that is, first-
order evidence, to form a triangular loop in a network. Beyond
this, our results show little merit, in terms of precision, in
searching for further higher order evidence—except in the
absence of first-order indirect evidence (although the gain in
precision is small). For further discussion of the Hawkins
approach, readers are referred to Dequen et al. [13] and Hawkins
et al. [33].

Our objective in this article was to explore the increase in
precision from including additional evidence. This does not
depend on the observed effect estimates (see Appendix 1 in
Supplemental Materials), and hence not on whether the addi-
tional evidence is inconsistent with the observed A versus B data.
Nevertheless, the potential for increased bias/inconsistency as
the network is extended further from the focal comparison(s) of
interest is an important question to address. Previous work has
examined the impact on treatment effect estimates and whether
they are over- or underestimated in the presence of bias/incon-
sistency [34,35]. Our results suggest that first-order indirect
evidence increases precision; therefore, if there is inconsistency
between direct and indirect evidence, effect estimates will be
influenced. We note, however, that including second-order indi-
rect evidence adds little precision in the presence of the first-
order evidence. As such, if there is inconsistency between the
second-order indirect and direct evidence, we would expect the
effect estimate to be driven by the direct first-order evidence, and
not greatly influenced by the inconsistent second-order evidence.
This is reassuring if we expect evidence further from the focal
comparison to be at a higher risk of bias.

In the context of HTA, in which a cost-effectiveness model is
informed by the NMA estimates, even small gains in precision
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may have implications for reimbursement decisions. This can be
explored using value of information calculations [36], which
measure the impact of increased precision in model inputs on a
resulting reimbursement decision. If there is a high value in
reducing uncertainty in the relative treatment effects, it may
be worth initially extending the network to obtain an increase
in precision before considering conducting further primary
research. Similarly, if different point estimates are obtained from
including different evidence networks, the resulting decision may
change.

Of course, which treatments to include in an NMA should be
primarily determined by the decision question. Treatments are
not included in an NMA solely for the purpose of increasing the
precision of effect estimates. Higher order indirect comparisons
are likely to be included to link networks and estimate hetero-
geneity and meta-regression parameters. They may also facilitate
treatment effect estimates when there is no head-to-head evidence
and allow simultaneous comparison of all competing treatments,
for example, by ranking them according to relative efficacy [37].
At present, there are no formal guidelines to ensure trans-
parency on when to extend a network or how far it should
be extended. Optimizing precision, while keeping networks
manageable, is a principle that could be applied to develop such
guidelines.
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Population Health Scientist postdoctoral award (grant no. G0902118).
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