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Abstract

Objectives: To develop a model of disease progression using multiple sclerosis (MS) as an exemplar.

Study Design and Settings: Two observational cohorts, the University of Wales MS (UoWMS), UK (1976), and British
Columbia MS (BCMS) database, Canada (1980), with longitudinal disability data [the Expanded Disability Status Scale (EDSS)]
were used; individuals potentially eligible for MS disease-modifying drugs treatments, but who were unexposed, were selected.
Multilevel modeling was used to estimate the EDSS trajectory over time in one data set and validated in the other; challenges ad-
dressed included the choice and function of time axis, complex observation-level variation, adjustments for MS relapses, and
autocorrelation.

Results: The best-fitting model for the UoWMS cohort (404 individuals, and 2,290 EDSS observations) included a nonlinear function
of time since onset. Measurement error decreased over time and ad hoc methods reduced autocorrelation and the effect of relapse. Repli-
cation within the BCMS cohort (978 individuals and 7,335 EDSS observations) led to a model with similar time (years) coefficients, time
[0.22 (95% confidence interval {CI}: 0.19, 0.26), 0.16 (95% CI: 0.10, 0.22)] and log time [—0.13 (95% CI: —0.39, 0.14), —0.15 (95% CI:

—0.70, 0.40)] for BCMS and UoWMS, respectively.

Conflict of interest: M.L. had his expenses paid by the MS Trust
to attend a meeting of the UK MS RSS scientific advisory group to
outline the plan for these analyses and also his travel and accommo-
dation expenses for visiting Vancouver to analyze the BCMS data set;
M.L. received support from MS trust and funding from NIHR HTA.
K.T. had her expenses paid by the MS Trust to attend a meeting of
the UK MS RSS scientific advisory group outline the plan for these
analyses. K.T. is a principal investigator on grant from NIHR HTA to
develop the MS model. N.R. has declared no conflict of interests.
H.T. is funded by the Multiple Sclerosis Society of Canada (Don Paty
Career Development Award), is a Michael Smith Foundation for
Health Research Scholar, and is the Canada Research Chair for Neu-
roepidemiology and Multiple Sclerosis. H.T. has received research
support from the National Multiple Sclerosis Society, Canadian Insti-
tutes of Health Research, and UK MS Trust; speaker honoraria and/or
travel expenses to attend conferences from the Consortium of MS
Centres (2013), the MS Society of Canada, endMS Summer School
(2012 and 2014), the National MS Society (2012 and 2014), Bayer
Pharmaceutical (speaker, 2010, honoraria declined), Teva Pharmaceu-
ticals (speaker 2011), ECTRIMS (2011, 2012, and 2013), UK MS
Trust (2011), the Chesapeake Health Education Program, US Veterans
Affairs (2012, honorarium declined), Novartis Canada (2012), Biogen
Idec (2014, honorarium declined), and American Academy of Neurol-
ogists (annual meeting speaker, 2013, 2014, honorarium declined).
Unless otherwise stated, all speaker honoraria are either donated to
an MS charity or to an unrestricted grant for use by her research

http://dx.doi.org/10.1016/j.jclinepi.2015.05.003

group. F.Z. has declared no conflict of interest. K.H. has declared
no conflict of interest. J.O. has carried out consultancy work for
and obtained grants to run clinical trials (both unrelated to this work)
from Bayer, BIOGEN-IDEC, EMD Serono, Novartis, Aventis, and
Teva-Neuroscience. Y.B-.S. had his expenses paid by the MS Trust
to attend a meeting of the UK MS RSS scientific advisory group
to outline the plan for these analyses and has a relative with MS
who is currently on treatment for the disease. Y.B-.S. is a coapplicant
on grant from NIHR HTA to develop the MS model.

Funding: The BCMS database has been funded through various
grants over the years, including, Canadian Institutes of Health
Research, the MS Society of Canada, US National MS Society, UK
MS Trust, MS/MRI Research group, and unrestricted grants from
Dr Donald Paty. This project was funded by the NIHR Health Tech-
nology Assessment programme (project number 10/55) and will be
published in full in the Health Technology Assessment journal series.
Visit the HTA program Web site for more detailswww.hta.ac.uk/link
to project page. This report presents independent research commis-
sioned by the National Institute for Health Research (NIHR). The
views and opinions expressed therein are those of the authors and
do not necessarily reflect those of the NHS, the NIHR, MRC, CCF,
NETSCC, the HTA programme or the Department of Health.

* Corresponding author. Tel.: +44-117-9287255; fax: +44-117-
9287325.

E-mail address: Michael Lawton @bristol.ac.uk (M. Lawton).

0895-4356/Crown Copyright © 2015 Published by Elsevier Inc. This is an open access article under the Open Government Licence (OGL) (http://www.

nationalarchives.gov.uk/doc/open-government-licence/version/3/)


Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
http://www.hta.ac.uk/
mailto:Michael.Lawton@bristol.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jclinepi.2015.05.003&domain=pdf
http://dx.doi.org/10.1016/j.jclinepi.2015.05.003
http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
http://dx.doi.org/10.1016/j.jclinepi.2015.05.003
http://dx.doi.org/10.1016/j.jclinepi.2015.05.003

1356 M. Lawton et al. / Journal of Clinical Epidemiology 68 (2015) 1355—1365

Conclusion: It is possible to develop robust models of disability progression for chronic disease. However, explicit validation is impor-
tant given the complex methodological challenges faced. Crown Copyright © 2015 Published by Elsevier Inc. This is an open access
article under the Open Government Licence (OGL) (http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/)
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1. Introduction

Prognostic models for chronic diseases [1] are needed to
guide management decisions and counseling of patients and
their families. Such models can consider outcomes ranging
from treatment response to changes in disability [2—4] and
may model individual disease trajectories. This poses tech-
nical challenges because progression may be nonlinear, the
outcome measure(s) may not be continuous or normally
distributed, and individuals may have been observed a
different number of times and at irregular intervals.

One example in which modeling long-term trajectories
poses challenges is multiple sclerosis (MS). MS is a chronic
inflammatory neurodegenerative disorder, with considerable
interindividual variation in the disease course. Most patients
present with relapsing-remitting MS (RRMS), in which symp-
toms appear for a varying amount of time and then disappear
(either partially or completely). However, over time individ-
uals with RRMS can progress to secondary progressive MS
(SPMS), where the frequency of relapses decreases and the
accumulation of disability increases steadily [5].

Disability in individuals with MS is commonly
measured using the Expanded Disability Status Scale
(EDSS) [6]. EDSS is an ordinal scale, based on a neurolo-
gist’s examination, ranging from O (normal neurologic ex-
amination) to 10 (death due to MS) in half unit
increments (but there is no score of 0.5). Previous studies
of EDSS progression have used survival analysis [7—9],
considering the time to specific milestones, for example,
an EDSS score of 6, which is equivalent to needing an
aid to walk. This ignores available data both before and af-
ter reaching the milestone and therefore fails to differen-
tiate two individuals reaching a milestone at the same
time but with different trajectories.

Empirical percentiles derived at yearly intervals and
data-smoothing techniques have been used to create
disability curves over time at different percentiles [10,11].
These methods do not model how a given individual
changes over time or the relationship between the centiles
and patient characteristics.

Markov models have been used to relate progression in
MS to age and disease duration as well as other baseline co-
variates [12,13]. However, such models assume that further
progression essentially depends only on the previous mea-
surement and may be less able to cope with issues such as
missing data and the need for imputation.

An alternative approach is using multilevel repeated
measure models where observations are clustered within

individuals [14]. We have used multilevel models to model
disability after stroke [4,15], and prostate-specific antigen
changes in men with localized prostate cancer [16,17].
Such models could account for both within and between pa-
tient variability of the EDSS measurements in MS. These
multilevel models are ideal to analyze unbalanced data, that
is, where observations are unequally spaced in time and
differ in number between individuals. Multilevel models
have been used to model the accumulation of disability in
MS using a transformation of EDSS [18], assuming a
quadratic curve for each individual and ignoring
observation-level (within individual) variation over time.
Our aim was to develop a generalizable model for the nat-
ural history of patients with relapsing-onset MS in two in-
dependent data sets who were not treated with any specific
disease modifying therapy (DMT) for MS but who would
have been eligible for a DMT. This was to facilitate future
comparisons with long-term cohorts of DMT-treated pa-
tients, such as the UK MS risk sharing scheme [13,19].
Here, we report how we have approached a variety of
analytical challenges and our proposed solutions for the
development of our natural history (untreated) model of
MS disease progression.

2. Methods
2.1. Study design and settings

We used data from the University of Wales MS
(UoWMS) cohort, United Kingdom, and the British
Columbia MS (BCMS) database, Canada, to develop and
validate the model.

2.1.1. UoWMS cohort

The University Hospital of Wales is the major tertiary
referral center for neurology in Wales, United Kingdom,
serving a local population of 1.2 million and provides a
network of MS clinics across South East Wales. Data were
initially collected in a cross-sectional study in 1985 [20]
and were updated periodically [21,22], until 2002 when
data were essentially collected prospectively [23]. Sociode-
mographic and clinical features at disease onset are re-
corded in a standardized fashion, including degree of
recovery and initial interrelapse interval. Approximately
1,000 patient contacts are documented annually, and clin-
ical data, including EDSS scores, are collected routinely
at presentation and at each visit. The database, at the time
of extraction, had around 2,000 registered MS patients with
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What is new?

e Considering different functions of time to find the
best-fitting trajectory of the Expanded Disability
Status Scale (EDSS).

e Accounting for nonconstant measurement error in
the multilevel model of EDSS.

e Adjusting data to avoid including the potential
confounding effects of short-term disease fluctua-
tions (i.e., multiple sclerosis relapses) on an indi-
vidual’s  background longer-term  disability
outcomes.

e Investigating autocorrelation and suitable ap-
proaches to minimize this.

e Replicating and cross-validating the model in an
independent cohort.

1,283 and 809 patients having at least 2 or 4 or more EDSS
scores over time, respectively.
2.1.2. BCMS cohort

BCMS database [8,24—30], established in 1980, is popula-
tion based, estimating to capture 80% of the BCMS popula-
tion. Strengths of the BCMS database include longitudinal
follow-up of both DMT-treated and untreated patients, and
consistent care provided by the same four core neurologists
who have examined over 85% of the patients considered for
this study. EDSS scores are recorded after a face-to-face
consultation with an MS specialist neurologist. As of 2009,
the database contained records for over 5,900 MS patients
spanning 28 years (>25,000 cumulative years) of prospective
follow-up, from four MS clinics in British Columbia.

2.1.3. Eligibility criteria

We included patients in either cohort (UoWMS and
BCMDYS) if they ever became eligible for DMTs. This eligi-
bility was according to the 2001 Association of British
Neurologists (ABN) criteria for interferon beta and glatir-
amer acetate (IFN-B/GA) use (adapted from online supple-
mentary appendix IV Health Service Circular 2002/2004),
defined as: aged >18 years, EDSS <6.5, and had >2
relapses during the previous 2 years. Similar criteria are
broadly adopted in other legislative areas as well as the
United Kingdom and British Columbia, Canada. All EDSS
observations before a patient reaching the ABN eligibility
criteria were excluded.

A relapse was defined as worsening neurologic symp-
toms lasting >24 hours, in the absence of fever or infec-
tion. The starting date of each relapse was recorded by an
MS specialist neurologist.

As we wished to model the natural history of MS, we
truncated the patient profiles once a DMT was initiated.

In addition, in the BCMS cohort, the data were truncated
to 1995, the last year in which the DMTs were not widely
available in British Columbia. This was to avoid ‘“‘indica-
tion bias” whereby a patient’s trajectory may influence
the decision as to whether they started a DMT [27].

2.2. General multilevel model

We modeled the EDSS scores of individuals with MS us-
ing multilevel models [14]. Our model had two levels: ob-
servations (level 1) within individuals (level 2). A simple
multilevel repeated measure model is a linear random inter-
cept and random slope model. This type of model estimates
a linear population mean along with a specific line for each
individual. A graphical representation of the model shown
below is given in Fig. 1.

Vi = Bo + uoi + (61 +uy;) -t + ey, (1)

where y; and t; are the EDSS score and the time variable
for the ith individual at the jth time point. Hence,
Bo + uo; is the ith individual’s baseline EDSS, whereas (3,
is the mean baseline EDSS, and (; + uy; is the ith individ-
ual’s slope over time, whereas (; is the mean slope over
time.

The u; (k = 0, 1) is often referred to as the individual-
level random effects and the e; as the observation-level

P
P

/-/ T
i individual
- specific line

Botuoi |

population mean
line

Bo

Time

observation-level
residuals e;;

Time

Fig. 1. Graphical representation of the simple multilevel model with
linear random intercept and random slope model as shown within
Equation (1). Squares are subject 1, circles subject 2, and triangles
subjects 3.
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random effects, whereas the §; (k = 0, 1) are the fixed ef-
fects. Conceptually, the individual-level random-effects
measure the deviation of the individual-specific line from
the population mean line, and the observation-level
random-effects measure the deviation of observations about
the individual-specific line.

The e;; is assumed normally distributed with mean zero
and variance ¢%, and ug; and u;; are assumed normally
distributed with mean zero and an unstructured covariance
matrix D,,.

Removing u;; from the equation would give us a linear
random intercept model, and removing both u,; and uy;
would give us a linear fixed effects only model.

2.3. Developing the model

We initially developed our model using the UoWMS
data set and then used the BCMS data set for replication.
The model was originally developed in UoWMS (the
smaller of the two cohorts) because access to the BCMS
data set was only possible at the University of British
Columbia, Canada. We cross-validated each model using
the other data set.

2.3.1. Choice of time axis

We considered modeling EDSS as a function of either
the age of an individual or the time since onset of MS at
each observation [8,24]. It is important to center the time
axis at a meaningful time point such as the minimum age
of the onset (18 years) or zero for the time since onset.
Models with different types of time are nonnested but use
the same data, so the Akaike information criterion (AIC)
was used to compare the models, selecting the model with
the lower AIC. In addition, we considered the root mean
square error (RMSE) for the difference between the
individual-specific predicted EDSS and observed EDSS,
and the proportion of these differences that were less than
0.5 or more than or equal to 2 EDSS points.

2.3.2. Choice of function of time

The next model choice was the best-fitting trajectory of
EDSS. A simple multilevel model (see Equation 1) allows a
random intercept and slope for each individual. Options for
more complex models include fractional polynomials to
choose the best-fitting curve [4,31], fitting cubic (or linear)
splines, finding a transformation of the outcome or time
axis (or both) which have a linear relationship, or
smoothing. We used fractional polynomials [4] to find the
best-fitting trajectory because these require all data to be
positive we added one to time. This procedure, see Web
Appendix A at www.jclinepi.com, tests what functions of
time best represent the individual trajectories of EDSS over
time. Fractional polynomials have the advantage that the
model has a simple algebraic form. Linear splines also have
a simple form but assume biologically implausible piece-
wise linear growth [32]. Cubic (or other complex) splines,

although more flexible, are more difficult for prediction
purposes than fractional polynomials as they require esti-
mation of the curves between each knot point rather than
one single global curve. Also, all splines involve the selec-
tion of knot points, which would further complicate the
multilevel model. Having selected the best-fitting fractional
polynomial for each time axis, we then compared these two
models using the same criteria as above.

As sensitivity analyses, we repeated the fractional poly-
nomial procedure on a restricted data set, only including
observations made within 30 and then 15 years from MS
symptom onset to check to what extent outliers were influ-
encing the choice of trajectory.

The model with both the best-fitting time axis and func-
tion of that time-axis is referred to hereafter as the ‘“best-
fitting” simple model.

2.3.3. Observation-level variation

Observation-level variation is the extent to which EDSS
observations on a given individual at any one time are
likely to differ and can be considered as a mixture of mea-
surement error and within-person fluctuation, which will
change over time, because there is greater interrater and in-
trarater variability for lower EDSS values [33,34]. To
examine complex measurement error empirically, we
plotted the observation-level residuals against time for the
best-fitting simple model. Fractional polynomials were then
used to obtain the best-fitting function of time for the
observation-level variance, in the same way as described
in the previous section, see Web Appendix B at www.
jelinepi.com. The best-fitting simple model, with the addi-
tion of the selected best-fitting observation-level variance
function, is referred to as the “complex” model.

2.3.4. Autocorrelation

Autocorrelation occurs when measures on the same indi-
vidual are correlated more than would be implied by the
overall within-individual correlation. We investigated auto-
correlation by examining the association in lagged differ-
ences between observations and the individual-specific
predictions. A large correlation coefficient for these lagged
differences can indicate autocorrelation.

As an ad hoc method to reduce autocorrelation, we
divided each individual’s time axis into quarter year inter-
vals. If there was more than one observation within that in-
terval, a new observation was created by taking the median
time and the median EDSS score of all the observations
within that interval.

Other possible methods to take into account autocorrela-
tion would be autoregressive-moving average models. We
could also have created a more complex model with an
autocorrelation parameter that is a function of the time
between observations within an individual [35]. Other
methods to account for autocorrelation usually require data
to be balanced, and more research is necessary to
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incorporate methods for measuring autocorrelation in un-
balanced repeated measure models.

2.3.5. Relapses

Our focus was to model the true accumulation of
disability over time and avoid short-term disability second-
ary to an acute relapse. Consequently, all EDSS observa-
tions recorded within 1 month postrelapse were removed
from both data sets. However, some patients may continue
to improve in physical disability beyond the 1-month post-
relapse window [36]. Therefore, we carried out sensitivity
analyses using the complex model taking account of auto-
correlation, by also removing all observations within 3
and then 6 months after a documented relapse.

2.3.6. Assessing model assumptions and fit

We assessed the normality of the residuals by using QQ
plots and the fit of the model by comparing the actual and
predicted EDSS values. All analyses were carried out using
Stata software (Texas, USA) [37], and all multilevel models
were estimated by the runmlwin command [38].

2.3.7. Indication bias

We could bias our results by censoring individual obser-
vations after they started treatment because individuals who
start treatment might differ to those who never started treat-
ment. We avoided ““indication bias” in the BCMS cohort
by truncating the data at 1995. However, because of the
smaller size of the UoWMS cohort, we instead tested for

indication bias by including “‘starting a DMT” as a covar-
iate within the multilevel model.

2.3.8. Conditional predictions for cross-validation

We carried out external validation using the model from
one cohort to predict the data from the other cohort, by pre-
dicting future trajectory based on the first observed EDSS
score for each individual [4,39]. We used the BCMS model
to predict the UoWMS data and the UoWMS model to predict
the BCMS data. The EDSS scores were predicted using the
complex model accounting for autocorrelation and relapses.

3. Results

Table 1 shows the characteristics of the MS patients
included in the two cohorts, that is, those reaching eligi-
bility for drug treatment. The BCMS data set included more
than twice as many individuals as the UoWMS and had a
larger number of EDSS observations per person. However,
the patient characteristics were similar for sex and propor-
tion ever starting a DMT. For age and disease duration at
ABN eligibility and the proportion of patients with SPMS
at ABN eligibility, there was some moderate evidence of
a difference between data sets (P-values between 0.018
and 0.052) although these differences were small. BCMS
patients were on average 2 years younger at the onset than
UoWMS patients, although the longer disease duration at
ABN eligibility meant that they were only 1.3 years
younger on average at ABN eligibility. A higher proportion
of the BCMS cohort reached secondary progressive disease

Table 1. Patient demographics of all those eligible® for disease-modifying drug treatment within the two multiple sclerosis cohorts from British
Columbia, Canada, and the University of Wales, United Kingdom, with all observations made within 1 month postrelapse removed

British Columbia, University of Wales, P-value
Mean (SD; range) or N (%) unless otherwise stated Canada United Kingdom difference
N 978 404
Number of EDSS observations; mean per person(range) 7,335; 7.5 (1-73) 2,290; 5.7 (1-72)
Females 728 (74.4%) 306 (75.7%) 0.611°
Age at the onset, yr 29.1 (8.6; 3.4—61.1) 31.1(8.7; 13.4—60.0) <0.001°¢
Age at eligibility, yr 37.3(9.3; 18.1-7.0) 38.6 (9.1; 18.8—80.1) 0.018°
Disease duration at eligibility, yr 8.2 (6.9; 0.2—-38.9) 7.4 (7.1; 0.5—-43.8) 0.052°¢
SPMS reached by eligibility date 150 (15.3%) 83 (20.5%) 0.019°
Ever reached SPMS® 563 (57.6%) 139 (34.4%) <0.001°
Relapses in 2 years before eligibility: median(quartiles; range) 2.9(1.2; 2-9) 3.5(0.9; 2-9)
EDSS at eligibility: median(quartiles; range) 2 (1,3.5; 0—6.5) 3.5(2,4.5; 0—6.5)
Year of EDSS at eligibility: range 1980—-1995 1976-2011
Year of last EDSS included in the present study: range 1981-1995 1984-2011
Prospective follow-up time?, yr (first eligible EDSS to last DMT-free EDSS) 5.8 (3.8, 0—15) 2.98 (3.9, 0—29.3) <0.001°
Prospectively followed?, >5 years 560 (57.3%) 92 (22.8%) <0.001°
Prospectively followed?, >10 years 159 (16.3%) 16 (4.0%) <0.001°
Time between observations, yr 0.9 (1.0; 0.0, 11.3) 0.6 (1.2; 0.0, 21.3) <0.001°
Ever prescribed a DMT® 232 (23.7%) 109 (27.0%) 0.201°

Abbreviations: SD, standard deviation; EDSS, Expanded Disability Status Scale; SPMS, secondary progressive MS; DMT, disease modifying

therapy; BCMS, British Columbia MS.

@ Using the Association of British Neurologists (ABN) criteria.
Chi-squared test.
T-test.

o

Cc
9 For the BCMS cohort only includes observations made within the dates of the truncated data set, that is, 1980—1995.
¢ Includes DMT exposure up until 2011 in the BCMS cohort, that is, beyond the 1980—1995 window.
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Table 2. Akaike information criterion (AIC), root mean square error (RMSE), and percentage of observations within 0.5 EDSS and 2 or more EDSS of
all the models fitted using the difference between the observations and individual-level predictions®

RMSE individual-level

% (N) within 0.5 EDSS % (N) =2 EDSS difference

Model AIC predictions individual-level predictions individual-level predictions
Linear fixed effects only (age) 9496.11 1.92 17.6 (404/2,290) 32.3 (739/2,290)
Linear random intercept (age) 6549.66 0.71 61.8 (1,416/2,290) 1.9 (43/2,290)
Linear random slope and intercept (age) 6256.66 0.59 69.7 (1,595/2,290) 0.7 (15/2,290)
Linear fixed effects only (time since onset) 9385.02 1.88 15.6 (357/2,290) 31.9 (731/2,290)
Linear random intercept (time since onset) 6525.80 0.71 62.1(1,421/2,290) 1.7 (38/2,290)
Linear random slope and intercept (time 6203.40 0.58 70.7 (1,619/2,290) 0.7 (16/2,290)
since onset)
V't log t (time since onset) 6063.25 0.55 71.2% (1,630/2,290) 0.5 (11/2,290)
t, log t (time since onset) 6066.72 0.54 72.5 (1,660/2,290) 0.5 (11/2,290)
t, log t (time since onset), adding ¢ to 6013.40 0.55 71.2 (1,630/2,290) 0.5 (11/2,290)
observation-level variance
t, log t (time since onset) adding ¢ to 6018.23 0.55 72.1(1,651/2,290) 0.5 (11/2,290)

observation-level variance with restriction
Var(t) = 0

Abbreviation: EDSS, Expanded Disability Status Scale.

2 Individual-level predictions are the fixed effects plus the individual-level residuals.

during follow-up, possibly due to the longer length of
follow-up. There were a slightly greater number of relapses
in the 2 years before ABN eligibility and a moderately
higher EDSS at baseline in the UoWMS compared with
the BCMS cohort. The BCMS cohort had a higher average
time between observations.

3.1. Choice of time axis

For the UoWMS cohort, Table 2 compares the linear
fixed effects, linear random intercept, and linear random
slope and intercept models with age and time since onset
as the time axes. The models with time since onset as the
time axis had a substantially lower AIC, a lower RMSE,
higher proportions of observations within 0.5 EDSS (apart
from the fixed effects only model), and a similar proportion
of observations out by two or more EDSS. The random
intercept and slope models had better fit by all the criteria
than the random intercept and fixed effects only models.
When comparing the best-fitting models with degree 2 frac-
tional polynomials for the individual trajectories (i.e., for
fixed effects and individual-level random effects) for age
vs. time since onset (Supplementary Table 1), the latter
consistently had lower AICs, implying that time since onset
should be chosen as the time axis.

3.2. Choice of powers of time

There was strong evidence of an improvement in model
fit when comparing degree 2 fractional polynomials to de-
gree 1 [P < 0.001, degrees of freedom (d.f.) = 3].
Supplementary Table 2 shows that models including linear
and log time, or square root and log time, are consistently
the models with the two smallest AICs. The exception
was for the data set restricted to 0—15 years since onset;
however, the AIC in this case was close to that of the best
model (a difference of only 5). Comparing the RMSE of

these two models, Table 2, however, shows that the model
with linear and log time tends to fit the observed data better.
Thus, the final simple model included time since onset and
log of time since onset for the individual trajectories (i.e.,
for the fixed and individual-level random effects).

3.3. Observation-level variation

The observation-level residuals from the best-fitting sim-
ple model appear to decrease over time (Fig. 2).

Fractional polynomials of degree 2 for the observation-
level random effects tended not to converge, so we only
considered fractional polynomials of degree 1. Adding a
linear time term to the observation-level random effects
showed a clear improvement in the model fit (P < 0.001,
d.f. = 3) compared with the model where observation-
level random effects had constant variance. The best-
fitting model included the square root of time in the

level 1 residuals

T T T T T T
20 30 40 50
time since onset (years) plus one

Fig. 2. Observation-level (level 1) residuals plotted over time since
onset for the UoWMS best-fitting simple model with linear and log
time since onset (n = 2,290).
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observation-level random effects. The difference between
the models with linear time and square root of time as
observation-level random effects was small (difference in

AIC = 1.1), so the model with linear time in the
observation-level random effects was included for ease of
interpretation.

We constrained the observation-level time variance term
to be equal to zero because its 95% confidence interval (CI)
included zero. Hence, we only allowed the covariance term
between the constant and observation-level time term to be
freely estimated, which amounts to the assumption that
observation-level variance decreases linearly over time.
This constraint had minimal impact on the model fit
(Table 2). Hence, the complex model is of the form

yij = Bo + uoi + ey + (51 + i+ ezljj)flj
+ (B, + ua) log t, (2)
Where {el,-j}’sz(O,De), {M],'}’“N:;(O,DM).

As described in the methods, we have added one to time
since onset, to ensure strict positivity of log time. Unstruc-
tured covariance matrices, D, and D,,, were used for the indi-
vidual and observation-level random effects with a slight
modification to the observation-level variance as discussed
above, see Web Appendix C at www.jclinepi.com.

3.4. Autocorrelation

Supplementary Table 3 shows that in our model, we
have some autocorrelation, with a correlation coefficient
between consecutive observation-level residuals of 0.17
with some evidence that this increases with an individual’s
number of observations presumably due to a greater
chance of having an observation close together. Using
quarter year intervals (see methods) reduced the UoWMS
data set from 2,290 to 1,876 observations with a maximum
number of observations for a single individual being
reduced from 72 to 26. Supplementary Table 3 shows that
the correlations between lagged residuals were lower in
this reduced data set.

3.5. Relapses

There was little difference in the fixed-effect estimates
and individual-level random effects between the three
models when EDSS scores were removed at 1, 3, or
6 months postrelapse, with all the 95% Cls overlapping
(based on Equation (2), see Supplementary Table 4). How-
ever, when we consider the observation-level random ef-
fects, there is some evidence that the variance of the
constant term is lower in the 6 month model compared with
the 1 month model. For our final model, we choose the
3 month model, which seemed to have similar variance in
the constant term when compared with the 6 month model.

3.6. Assessing model assumptions and fit

The QQ plots from the complex model (Equation (2))
with observations up to 3 months postrelapse removed
and accounting for autocorrelation are shown in
Supplementary Figure | and are close to normal.

Supplementary Figure 2 shows the observed vs.
predicted values from the complex model adjusted for
autocorrelation and relapses, which are all relatively close
to the reference line of perfect predictions. The difference
between observed and predicted values has an average of
—0.003, a 95% central range (2.5th to 97.5th percentiles)
of —1.13 to 0.97 and an RMSE of 0.48. Supplementary
Figure 3 shows the observations and fitted patient-specific
lines for six randomly chosen individuals with at least three
observations.

3.7. Indication bias

When including a binary variable “ever used DMT” as a
fixed effect, we found little evidence that those who started
treatment have a different intercept (P = 0.88) or different
progression (P = 0.83 for interaction with time and
P = 0.86 for interaction with log time). This provides some
evidence that ““indication bias” was not a major issue in the
UoWMS cohort.

3.8. Model development with the BCMS data

Developing the model on the BCMS data gave very
similar results. Time since MS symptom onset was found
to be a better time axis than age. Linear and log time for
the individual trajectories gave very good fit to the data,
although linear and square root time did give slightly better
fit. Adding a linear time term to the observation-level
random effects gave a model with better fit, and fractional
polynomials of degree 2 showed little improvement.

In contrast to the UoWMS results, the model fitted to the
data with all observations 1 month postrelapse removed
gave similar results as those with all observations 3 and
6 months postonset of relapse removed (data not shown).
Hence, our final BCMS model was based on the model with
observations 1 month postrelapse removed.

3.9. Comparison of UoWMS and BCMS models and
model validation

The UoWMS model had a higher fixed effect, higher
individual-level random effect, and lower observation-
level random effect for the constant term than the BCMS
model (Table 3).

This indicates that the UoWMS patient population had a
higher average EDSS at the presumed onset of disease,
greater variation between individuals in EDSS at the onset,
and slightly lower variation within individuals in EDSS at
the onset (Table 1). The coefficients for the trajectory of
EDSS over time and log time, and the other variances
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Table 3. Parameter estimates, mean (95% Cl), of the final UoWMS and BCMS models

Variable

BCMS (n = 6,447)

UoWMS (n = 1,589)

Fixed effects
Intercept
Time since onset
Log time since onset
Individual-level (level 2) random effects
Var(intercept)
Cov(intercept, time)
Var(time)
Cov(intercept, log time)
Cov(time, log time)
Var(log time)
Observation-level (level 1) random effects
Var(intercept)
Cov(intercept, time)
Var(time)

1.05(0.79, 1.31)
0.22 (0.19, 0.26)
—-0.13 (-0.39, 0.14)

2.80(1.87, 3.73)
0.09 (-0.05, 0.24)
0.10(0.08, 0.12)
—-2.73(-3.82, —-1.63)
—-0.65 (-0.81, -0.48)
6.14 (4.78, 7.49)

0.76 (0.70, 0.82)
—0.004 (—0.005, —0.002)
Set equal to zero

2.63 (2.00, 3.27)
0.16 (0.10, 0.22)
—0.15 (-0.70, 0.40)

8.67 (5.05, 12.29)
0.09 (-0.23, 0.40)
0.08 (0.05, 0.12)
-5.38 (-8.57, —2.19)
—0.60 (-0.92, —0.28)
7.13 (4.01, 10.27)

0.40 (0.35, 0.45)
—0.003 (-0.005, —0.002)
Set equal to zero

Abbreviations: Cl, confidence interval; UoWMS, the University of Wales MS; BCMS, British Columbia MS.

and covariances of the individual-level and observation-
level random effects are remarkably similar between the
two cohorts. The fixed effects would correspond to an
average increase over 10 years from the onset of 1.9 EDSS
and 1.3 EDSS points within the BCMS and UoWMS
models, respectively.

We used the coefficients from the final BCMS model to
predict EDSS in the UoWMS data set (with the EDSS
scores removed 3 months postrelapse) conditional on the
baseline EDSS, rounding the continuous prediction to the
nearest true EDSS score. We observed a reasonable model
fit with a mean difference between prediction and observed
being —0.44 [standard deviation (SD): 1.36] and an RMSE
of 1.46; 49.2% of predictions were within 0.5 units of the
observed EDSS, whereas 22.5% of predictions were out
by 2 or more EDSS units. These conditional predictions
from the BCMS model are shown along with the observed
EDSS in the UoWMS cohort, averaged within yearly
bands, in Fig. 3A and Supplementary Table 5.

We also used the coefficients from the final UoWMS
model to predict EDSS in the BCMS data set conditional
on the baseline EDSS. The mean difference between pre-
diction and observed was —0.61 (SD: 1.83), with some ev-
idence of underprediction over time and RMSE of 1.93.
Only 35.9% of predictions were within 0.5 units of the
observed EDSS, whereas 35.8% of predictions were out
by 2 or more EDSS. These conditional predictions from
the UoWMS model are shown along with the observed
EDSS in the BCMS cohort, averaged within yearly bands,
in Fig. 3B and Supplementary Table 6.

4. Discussion

We used two large independent cohorts of MS patients
from Canada and the United Kingdom to build a complex
multilevel model for EDSS trajectory. Using the same model
building strategy resulted in the models for both cohorts hav-
ing the same time axis, powers of time that were consistent
with each other and the same parameterization of

observation-level variation. The average levels of disability
in the two cohorts were different, but the average patterns
of change were similar. This provided evidence that our
model is transportable to other populations. When two co-
horts are not available, it may be necessary to use other vali-
dation techniques such as randomly splitting the data set or
using bootstrap or jackknife techniques.

Two key choices made here related to the functional
form of the time axis. When both “time since onset” and
“age” were considered, the best-fitting time axis was the
former. The pattern of EDSS progression was not linear
and fractional polynomials allowed us to identify the
best-fitting trajectory. This approach has been developed
and used for identification of nonlinear relationships in
nonrepeated measures regression [40,41]. However, their
use in multilevel models has been less widespread
[4,42,43]. This may be because of increasing complexity
of the models and also because of the additional need to
parameterize the individual-level and observation-level
random effects.

We found that observation-level variation (comprising
measurement error and short term fluctuations in the EDSS)
reduced as time progressed [i.e., as disability (EDSS)
increased]. Previous work has shown that measurement error
is lower for higher EDSS values [33,34] and that short-term
improvements in disability are more likely earlier in the dis-
ease course [29]. Identification of complex observation-level
variation highlights the importance of model checking when
fitting multilevel longitudinal models.

Our ad hoc approach to adjust for the autocorrelation pre-
sent was successful in reducing it further. A more robust
approach might be to adjust the interval for merging multiple
observations into one and then estimate the lagged residual
correlation for each different interval. However, this would
need to be balanced by the effect of concatenating too many
observations and reducing any real fluctuations in EDSS due
to using averaged data points. There is some evidence [44]
that moderate misspecification of the observation-level vari-
ation has little impact on the fixed-effects estimates. The
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Fig. 3. (A) and (B) The upper graph shows the observed EDSS within
the UoWMS cohort and the conditional predictions using the BCMS
model. The lower graph shows the observed EDSS within the BCMS
cohort and the conditional predictions using the UoWMS model.
The plotted data, over a 30-year period, are the annual means at each
year since time of the onset where data was grouped into yearly bins
that is 0—0.5, 0.5—1.5, and so forth. EDSS, Expanded Disability Sta-
tus Scale; UoWMS, the University of Wales MS; BCMS, British
Columbia MS; Cl, confidence interval.

moderate amount of autocorrelation present here had little
influence on our estimates of average EDSS progression
(the fixed-effect estimates were very similar in the models
with and without concatenated observations).

Removal of observation (EDSS) scores within 1 month
postrelapse appeared adequate for the BCMS cohort, but
in the UoWMS cohort, the optimal window was 3 months
postrelapse. This is consistent with the general approach
to data collection within the BCMS database (EDSS scores
were intended to be collected outside the influence of an
acute relapse [8]), as well as with previous findings from
the BCMS study [29]. Others have also shown that most
improvement in physical disability occurs within 2 months
postrelapse [36]. This underscores the importance of
exploring local effects within cohorts.

We treated the ordinal EDSS score as a continuous mea-
sure, which facilitates the interpretation of the model

parameters but does not imply that the meaning of a point
change in EDSS is equivalent in terms of disability progres-
sion across the range of scores. All the models showed
good fit to the observed data with normally distributed re-
siduals. Researchers seeking to model repeated measures
of ordinal scores should assess the normality of the resid-
uals as a key model check, but our results show that this
assumption may be satisfied even if the outcome measure
itself is ordinal and/or not normally distributed.

Modeling the trajectory of EDSS against the time since
MS symptom onset showed a good fit in both cohorts.
Cross-validating our models by predicting the future EDSS
trajectory conditional on the first observation in one data set
using the model derived on the other data set showed
reasonably good fit, with about half of all predicted EDSS
scores within 0.5 EDSS of the observed when validating the
BCMS model in the UoWMS data. However, the UoWMS
model performed less well in the BCMS data, with evi-
dence of underprediction at almost all time points. This is
not surprising given the relative sizes of the two data set.
The higher within-individual variation within the BCMS
data set means that predictions within the BCMS data are
likely to show greater variation than predictions made on
the UoWMS data. Our ability to examine model fit in
two different populations is important in validating any
prognostic model. Using a repeated measures model to pre-
dict individual trajectories based on one or more observa-
tions has been done before [4,15,45], but further research
needs to examine whether additional covariates can explain
why the trajectory of some subjects was not well predicted
in our current model. Bayesian methods could also be used,
such that the previous model estimates form priors for pa-
rameters to be estimated using a small number of observa-
tions from an individual [46].

Truncating data once a DMT was started (UoWMS) or to
1995 (BCMS data) resulted in an average follow-up time
for individuals of 3 and 5.8 years, respectively. We had
limited data with 10 years of follow-up or greater (16%
and 4% of individuals, respectively). However, because in-
dividuals enter the study at different times since onset, we
are able to model this without extrapolation. Examining
Fig. 3 shows little evidence that the fit to our data is worse
at the upper end of 20—30 years since time of the onset.

Although the models are generally similar for most
parameters, it seems there is higher between-individual
variation in the UoWMS model and higher within-
individual variation in the BCMS model. One reason for this
could be an inherent difference between individuals from
Canada and Wales or a difference in when and how
individuals accessed the health systems in each area. Also,
the BCMS cohort was mainly seen by the same four core neu-
rologists, which would reduce any between-rater variation.

The corresponding Markov model that was fitted to the
BCMS cohort [13] showed about a 2.2 EDSS increase over
a 10-year period since ABN eligibility. Looking at our fixed
effects over the same period (approx. 8—18 years since
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onset) would correspond to a similar average increase of
2.1 and 1.5 EDSS within the BCMS and UoWMS models,
respectively. Using the fixed effects, we would expect the
average time from the onset to reaching an EDSS of 6 to
be 23.1 and 23.4 years using the UoWMS and BCMS
models, respectively. Scalfari [7] reported a mean time
from the onset of 21.2 years (95% CI: 19.8, 22.6) to reach-
ing EDSS 6, and Tremlett [8], who looked at six studies,
reported the median times ranging from 15 to 32 years,
consistent with our estimates. Comparing our study to
one previous multilevel model for MS [ 18] is difficult given
their transformation of EDSS into weighted change of
EDSS. However, they did include a quadratic term whose
estimate was positive, which creates a similar shape to a
negative log term with rate of change increasing over time.

Our results have implications for the design and analysis
of MS intervention trials, leading to more sensitive assess-
ment of treatment effects over time than cross-sectional an-
alyses of EDSS at fixed time points. Average EDSS could
be similar in an intervention and control arm after a fixed
follow-up period, but if the trajectory was different, the
intervention might still be considered an effective treatment
in the short and medium terms.

The development of this multilevel model is an impor-
tant methodological achievement that will enable predic-
tion of the expected long-term disease trajectory in other
populations. This is especially necessary for extrapolating
the findings from randomized controlled trials (which are
often short term, lasting no more than 2—3 years) or for in-
terpreting findings from DMT exposed cohorts of patients
with no specific unexposed control cohort. In particular,
these models facilitate natural history predictions within
the UK MS risk sharing scheme to determine the efficacy
of DMTs. It is only by modeling longer term follow-up
of such studies that one can advise patients about the poten-
tial therapeutic benefits that accrue in the long term.
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