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Abstract

Backbone curves can offer valuable insight into the behaviour of nonlinear
systems along with significant information about any coupling between the
underlying linear modes in their response. This paper presents a technique
for the extraction of backbone curves of lightly damped nonlinear systems
that is well suited for the experimental investigation of structures exhibiting
nonlinear behaviour. The approach is based on estimations of the instanta-
neous frequency and the envelope amplitude of a decaying response following
a tuned steady–steady oscillation of the system. Results obtained from simu-
lations and experiments demonstrate that the proposed procedure is capable
of achieving an accurate estimation of the backbone curves and damping ra-
tios of the system provided that the premise of damping having low impact
on its oscillation frequency is met.

Keywords: Backbone curves, Resonance Decay Method, Nonlinear
structural dynamics, Nonlinear identification

1. Introduction

There has been much recent interest in predicting the behaviour of struc-
tures containing nonlinearities. This is, in part, the result of the latest de-
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velopments in new materials together with the increasing computational ca-
pabilities that have brought to light a variety of novel design solutions to
diverse engineering problems. For instance, a number of innovative struc-
tures, such as the civil aircraft A380 XWB and 787 Dreamliner, are notably
more efficient and lightweight. Such systems have less inherent damping
and are particularly flexible and therefore more susceptible to nonlinear ef-
fects. Consequently, the understanding of nonlinear dynamic systems and
their performance in operational and under extreme loading conditions is an
increasingly important research topic with potentially strong impact in many
industrial sectors.

The presence of nonlinearities can be detected via standard techniques
in experimental testing [1, 2]. For instance, the variation of conventional
Frequency Response Functions (FRF) obtained for different constant exci-
tation levels, and also differences in the reciprocity between pairs of driving
point FRFs, can be judged as clear evidence of non–linear behaviour. How-
ever, the localisation, characterisation and quantification of such nonlinear
behaviour are still open research topics [3]. A tool capable of offering a
better understanding of the behaviour of nonlinear systems is the backbone
curve [2, 4] which defines the natural frequency as a function of the ampli-
tude of the system response when neither damping nor forcing are present.
The backbone curves provide a valuable description of the system dynamics
that may allow for characterising and quantifying active nonlinearities whilst
highlighting the interactions that may occur within the system, enabling for
instance, the study of modal energy exchange due to nonlinearities, that can-
not be analysed by conventional linearised methods. In addition, it opens
up the possibility of using backbone curves to identify or update nonlinear
characteristics within a model based on the experimental response [5, 6].

A technique for extracting backbone curves consists in the estimation of
both the instantaneous amplitude and frequency along a free vibration re-
sponse of the nonlinear system. In this context, a key approach is based
on the application of the Hilbert transform to free vibration data, see for
example the significant contribution made by Feldman [7]. Therein, a set
of equations are proposed to estimate instantaneous characteristics such as
amplitude, frequency and damping. Feldman extended and improved the
method in [8], where the identification of nonlinear elastic forces acting in
asymmetric systems was studied, leading to an effective identification. How-
ever, as discussed later, high–frequency superharmonics components of the
Hilbert transform can be very sensitive to noise and so be detrimental to its
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estimation capabilities. Another approach is based on the use of Wavelets
Transform; in [9], a method for the identification of damping in MDOF sys-
tems was proposed by examining the system impulse response decomposed
into the wavelets’ time–scale domain. The method was further developed to
extract ridges and skeletons of the WaveIets Transform using optimisation
algorithms based on simulated annealing [10]. These features were then em-
ployed to obtain the system backbone curve with a view to identify the linear
and nonlinear parameters.

It is of interest to investigate structures that are at a first approximation
linear at low vibration levels, but contain active nonlinear elements which
become significant at larger excitation levels; typical of many industrial type
structures. The interest here is to study the free vibration response origi-
nated from initial conditions that lie on a particular steady–state response
of the nonlinear system. The Resonance Decay Method (RDM) [11] may be
used, as this enables the excitation of modes of the system independently.
Once the structure is vibrating at the desired resonance condition, the forcing
is removed and the resulting free vibration response analysed. This strategy
has proven to be able to isolate distinctive characteristics of several nonlin-
ear systems though the case of fitting system parameters to the transient
response [12, 13, 14].

In this paper, the RDM method is modified to estimate backbone curves
for nonlinear systems. A procedure for the estimation of instantaneous am-
plitude, frequency and damping from decaying responses originated from
steady–state oscillations is proposed. The approach enables measurements
to be made in regimes of large displacements, where nonlinearities are more
active. This facilitates more information to be deduced from the backbone
curves, thus potentially enabling a realistic identification of the nature of
nonlinearities. The approach is validated using a number of simulated sys-
tems with nonlinearities typically encountered in common engineering appli-
cations. Additional results are also included to show the applicability of the
procedure on real experiment data.

This paper is organised as follow. Section 2 introduces the procedure
proposed in this work. Simulated single–degre–of–freedom (SDOF) systems
with nonlinear elements are used in Section 3 to show how backbone curves
are estimated. The procedure is then validated using experimental data in
Section 4. The following section presents the extension of this procedure
to multi–degree–of–freedom (MDOF) systems, finishing with the final com-
ments and remarks in the conclusions.
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2. Estimation of backbone curves

In this section a method for measuring the backbone curves from appro-
priate structural responses and then for extracting frequency and damping
information are discussed.

2.1. Obtaining the decay response

Transient responses contain information about all of the underlying fun-
damental features of dynamical systems, including those properties that are
susceptible to change as a function of the oscillation amplitude. In particu-
lar, the interest is to examine free vibration records originated when setting
the system free after obtaining a desired resonant response under harmonic
forcing.

Consequently, in this procedure the signal used to extract the backbone
curves of the nonlinear system is generated in accordance with the Reso-
nance Decay Method (RDM) [11]. In this technique, individual modes of
the system can be excited independently by applying an appropriated force
pattern previously estimated. Such a force pattern is determined by using
the normal–force mode appropriation method, that enables for extracting the
undamped natural frequency and normal–modes shapes of a structural sys-
tem [15]. After the appropriated force pattern is computed, this is applied
to the system at the relevant frequency using harmonic excitation. When
the structure is responding at the desired resonance condition, the input is
removed and the model undergoes free vibration from the resonant response.
As long as the level of vibration in the steady–state is large enough to ac-
tivate the structural nonlinearities, the generated decaying response offers
significant information about the the system and related parameters.

Once the decay response of the system is obtained, two main features,
namely instantaneous frequency and amplitude envelope, can be estimated
in the interest of extracting the backbone curves of the system.

2.2. Instantaneous frequency assessment

Whist there are many procedures for calculating instantaneous frequency,
such as the Wigner–Ville distribution (WVD) [16] and the Hilbert transform
(HT) [7], the process presented here is based on the detection of the zero–
crossing points of the response signal and the use of a standard interpolation
algorithm to determine the crossing times. Noisy signals are firstly smoothed
out around the crossing points using a suitable moving average filter. This
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combined process reduces errors in the frequency assessment due to both the
unlikely event of having sampled points coinciding with zero–passing times,
and the undesirable consequence of having false crossing events caused by the
presence of noise. We found that this procedure provides a better frequency
estimation particularly towards either ends of the decay record, where proce-
dures such as WVD and HT lead to greater uncertainty as their estimation
are based on fewer non-zero points at both signal ends. In addition, HT
seems to be much more sensitive to noisy data, this could be explained as it
requires the derivative of the real and imaginary part of the transformation
to estimate the instantaneous frequency (See also Section 3.1).

Once the sequence of the crossing times (to) is determined, the first es-
timation of the instantaneous frequency at the i–th crossing point f̂(toi ) can
be computed such that

f̂(toi ) =
(

toi+1 − toi−1

)−1
(1)

Note that the frequency is estimated from the inverse of the instantaneous
period along one complete cycle and assigned to the crossing time at the
center of it.

One further process is needed to smooth out imperfect predictions of Eq.
(1). The final estimator delivers only the dominant frequency variation in the
decaying signal. A moving average (MA) filter is proposed to shape the final
instantaneous frequency estimation. In spite of its simplicity, the moving
average filter offers optimal properties in reducing random noise while is able
to retain a sharper step response. A N–th order MA filter is defined as

f(toi ) =
1

N

N−1
∑

j=0

f̂(toi+j) (2)

and the filter order needs to be selected on a case–by–case basis in accordance
with the level of noise present in the signal.

It is worth noting that a backbone curve corresponds to the solution
of the nonlinear system on the hypothesis that both forcing and damping
are null, or equivalently, that the forcing compensates the damping forces
in the system at those particular frequencies and amplitudes. In line with
this, the procedure described above assumes that the instantaneous frequency
estimated is not rapidly altered by the dissipative forces acting on the system.
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2.3. Instantaneous amplitude

A simple strategy for estimating the instantaneous amplitude over the
decay response is to extract the response envelope by tracking the peaks of
the signal within each individual zero–crossing time interval. In the proposed
procedure, the maximum absolute value of the signalX and its corresponding
occurring time (tai ) are retrieved within each interval {toi , toi+1} using the
equations

âi = max
∀t|{to

i
≥t≥to

i+1
}
|X(t)| (3)

tai = t
iff⇐⇒ âi = |X(t)| (4)

Now, define I(t) as a polynomial interpolating function of the sequence of
numbers [âi, t

a
i ] that defines the envelope of the decaying time signal. The

results presented in this paper correspond to a first–order polynomial inter-
polator. The instantaneous amplitude is estimated from the interpolating
function at the same times at which the instantaneous frequency has been
evaluated, thus

A(toi ) = I(t)∀t=to
i

(5)

Subsequently, the backbone curve can be obtained as a function of fre-
quency and amplitude parametrised by the time, since the forcing has been
removed. Thus, it is enough to pair the sequences A(toi ) and f(toi ) corre-
spondingly.

2.4. Effective damping ratio

The dissipative characteristics of the system can be assessed by exam-
ining the envelope of the decaying response. For a classical SDOF system
represented by the well–known equation

ẍ+ 2ξωnẋ+ ω2
nx = 0 (6)

and the envelope of the free vibration response can be written in terms of
the system parameters and the initial condition as

A(t) = A0e
−ξωnt (7)

Note that the damping action is accounted for by the exponential term. This
expression can be generalised to allow for the instantaneous frequency and
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damping to change, as would occur in a nonlinear system, by rewritten Eq.
(7) as

A(t) = A0e
−ξ(t)ω0(t)t (8)

From this, the effective damping can be computed as

ξ(toi ) =
1

ω0(toi )t
o
i

(ln(A0)− ln (A(toi ))) (9)

where ω0(t
o
i ) = 2πf(toi ) represents the instantaneous angular frequency in

rad/s. Thus, the effective damping ratio ξ can be estimated from the tangent
slope of the envelope of the decaying response plotted in semi–logarithmic
scale with respect to time.

As will be shown later, in the case of MDOF systems, the structural
response can be expressed in terms of the linear modal coordinates. Then, the
approach presented above can be applied to each modal response individually
to allow for the estimations of backbone curves in modal space. Note that
in doing so, it is assumed that the envelope of each mode is described by a
time–variable exponentially decaying function.

3. Application to Nonlinear SDOF systems

In this section a series of nonlinear SDOF systems are used to illustrate
the applicability of the procedure presented above. The aim is to show the
validity of this approach in estimating backbone curves of nonlinear systems,
along with its differences with respect to existing methods. The nonlinear
systems examined here are modelled as

mẍ+ cẋ+ kx+ fc(ẋ) + fk(x) = F (10)

where fc(x) and fk(x) represent generic nonlinear damping and nonlinear
restoring force respectively. A number of nonlinearities typically encountered
in common engineering applications are examined. Table 1 summarises the
type of nonlinearities and the numerical values used in each case. In addition,
the parameters of the underlying linear system named mass, damping coef-
ficient and stiffness are assumed to be: m=1.5 kg; c=0.8 Ns/m and k=6000
N/m respectively. These values have been taken from [17] to allow for a
direct comparison with the method presented therein.

In order to validate the results, analytical expressions for the stiffness and
damping functions have been derived using the Harmonic Balance method
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System’s nonlinearity fc(ẋ) (N) fk(x) (N)

Cubic stiffness 0 7× 106x3

Quadratic damping + cubic stiffness 8 ẋ|ẋ| 7× 106x3

Dry friction 0.85 sign(ẋ) 0

Table 1: Nonlinearities considered in the example SDOF systems.

to solve the nonlinear differential equations [2, pp. 81]. Table 2 presents the
true or nominal nonlinear stiffness and damping for each case as well as the
corresponding approximations, the so–called effective stiffness and damping
for the system in Eq. (10). Here, the first-order expansion of the Harmonic
Balance approximation has been considered, i.e., the effective expressions
correspond to the stiffness and damping of a linearised system under the
assumption that, in the state–steady, this responds at the same frequency as
the harmonic excitation F = F0 sin(ωf t).

Cubic stiffness Quadratic damping Dry friction damping

Nominal knx
3 c1ẋ|ẋ| c2sign(ẋ)

Effective k + 3

4
knx

2 c+ 8

3

c1ωnx

π
c+ 4

c2

πωnx

Table 2: Analytical expressions of the nominal (true) and effective (first-order approx.)
stiffness and damping for the system in Eq. (10) with the nonlinearities in Table 1.

Hence the backbone curve and damping skeleton estimated by applying
the procedure presented above are further processed to approximate: (i) the
effective stiffness by multiplying the square of the estimated instantaneous
angular frequency by the structural mass m; and (ii) the effective damping
using ceff = 2mξ(toi )ω0(t

o
i ). These approximations will be then compared

against their analytical predictions in Table 2. A numerical integrator based
on Runge-Kutta methods (Matlab ODE45) was used to solve the nonlinear
differential equation of motion under different loading conditions for each
of the aforementioned set of nonlinear parameters. An integration step of
0.001s was used in all of the simulations.

Case 1: Cubic stiffness. The initial step is to generate the decaying response
required to extract the skeleton curves of the system. For the case of SDOF
systems there is no need to start the decay from a steady–state harmonic os-
cillation as explained in Section 2.1, since only one main resonance frequency
is involved in the response. Therefore any initial displacement (or velocity)
large enough to activate the nonlinearity is adequate.
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Figure 1 presents the results of applying the procedure presented above
on the decaying response of the SDOF system with cubic stiffness from the
initial condition [4× 10−3m, 0m/s]. The left–hand panels illustrate how am-
plitude, instantaneous frequency and damping are tracked along the decay
using the procedures discussed in Section 2. Similarly, the right–hand pan-
els show the final results: the estimated backbone curve and damping ratio
skeleton. A sharp estimation of the backbone curve is achieved. The estima-
tion of the damping ratio is more sensitive to the fidelity of the response data,
particularly at smaller amplitudes where inaccurate measurements are more
likely to occur. Nevertheless, a clear trend of the damping ratio can still be
easily identified, allowing for applying subsequent curve–fitting approaches
if required.

0 2 4 6 8 10 12
−5

0

5
x 10

−3

x
(
m
)

 

 
Resp ons e
Envelop e A( toi )

0 2 4 6 8 10 12
10.05

10.1

10.15

F
r
e
q
u
e
n
c
y
(
H
z
)

 

 
Raw fr equency
In s t ant . Fr eq. f ( toi )

0 2 4 6 8 10 12
10

−4

10
−3

10
−2

ln
|A

(
to i
)
|

Time ( s )

 

 
Raw damping

10.05 10.1 10.15
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

x
(
m
)

Frequency (Hz)
0.415 0.42 0.425 0.43
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

x
(
m
)

Damping rat io (%)

Figure 1: SDOF with cubic stiffness. (Left) Estimation of envelope, instantaneous fre-
quency and damping. (right) Backbone curve and damping skeleton.

The estimated effective stiffness and damping are shown in Figure 2 as
continuous line. The corresponding analytical approximations are plotted
using dashed lines for comparison. Note that the identified effective stiffness
closely follows the theoretical prediction which implies that the estimation
of both the instantaneous frequency and amplitude, that together define the
backbone curve, have been accomplished successfully. In spite of minor dif-
ferences at larger amplitudes, the effective damping coefficient satisfactorily
matches its theoretical counterpart. As discussed later in Case 3, these mi-
nor differences stem from the noncompliance with the assumption of damping
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Figure 2: Effective stiffness and damping estimated from the backbone curve of the SDOF
with cubic stiffness.

having no influence on the system’s vibration frequency.

Case 2: Quadratic damping and cubic stiffness. The second case corresponds
to a SDOF system with a combination of quadratic damping and cubic stiff-
ness. As before, only the decay record from an initial condition large enough
to activate the combined nonlinearities is required. The initial condition used
in this example is [5 × 10−3m, 0m/s]. Figure 3 presents the results in terms
of the estimated effective stiffness and effective damping. Again the corre-
sponding analytical approximations are plotted in dashed lines. These results
show good agreement between the estimated and the analytical parameters.
Even though the processed decay response is affected by the two nonlineari-
ties blended together, the procedure is able to distinguish their influence and
produce a clear estimation of both the damping and stiffness behaviour.

Case 3: Dry friction. The case of a SDOF oscillator with dry friction is now
investigated. To estimate the backbone curve, the required decaying response
record is generated from the initial condition [0.2m, 0m/s]. Again an accurate
prediction of the nonlinear characteristic is achieved implying a successfully
estimation of the backbone curve. Interestingly, small differences can be seen
in the left panel in Figure 4 when comparing the predicted effective stiffness
at small values of amplitude. Note that as the amplitude of oscillation re-
duces, the dry friction produces damping forces that are increasingly more
significant in the system response. This balance of forces affects the observed
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Figure 3: Effective stiffness and damping estimated from the backbone curve of the SDOF
with quadratic damping and cubic stiffness.
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Figure 4: Effective stiffness and damping estimated from the backbone curve of the SDOF
with dry friction.

instantaneous frequency. The procedure proposed here assumes that the in-
stantaneous frequency is not significantly affected by damping, which is not
the case within low vibration amplitude regime.

3.1. Differences with existing methods

In the literature, several methods offer the possibility of approximating
backbone curves. For the sake of completeness, two established strategies
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well suited to extract backbone curves of nonlinear systems are considered in
this section to further validate the proposed procedure as well as to highlight
some differences.
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Figure 5: Approximation of decaying envelope and instantaneous frequency using Hilbert
transform and the procedure presented here.

Firstly, the approach presented by Feldman in [7, 8] that uses the Hilbert
transfom to estimate both envelope and instantaneous frequency is explored.
Figure 5 presents the results of estimating the amplitude envelope and in-
stantaneous frequency from decay records that correspond to the example
of a SDOF with a cubic stiffness. Note that the frequency was estimated
using the raw amplitude envelope computed using the formulas proposed in
[8]. The results show a comparable and satisfactory performance of both
procedures in terms of the estimation of the decay envelope. Only minor
differences can be observed being more pronounced around the initial and
final ends of the decay records and for cases where the nonlinear force affects
the structural response more significantly (See the zoomed plots in Figure
5). These small oscillations in the envelope cause larger dispersion in terms
of the instantaneous frequency when estimated using the Hilbert transform
approach. We note that this consequence tends to be more pronounced in
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the presence of noise.
Another approach for extracting backbone curves is presented by Carrella

and Ewins [17]. This method relies on the availability of a complete stepped
sine sweep response of the system around the resonance frequency of inter-
est. Both sides of the forced response are used to approximate frequency
and damping as a function of the response amplitude. Figure 6 presents
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Figure 6: Comparison between the backbone curves approximated using the procedure
presented here and in [17]. A low vibration level is considered.

results of the estimated backbone curve using the approach in [17] and the
one presented here. As before, the case of a SDOF with cubic stiffness is
investigated under different levels of external excitation. Results show good
match between both approaches when estimating the backbone curves in the
case of low vibration levels. However, when the vibration level is stronger,
the nonlinearity produces the characteristic jump in the forced response due
to the existence of a multiple solution region. As discussed in [17], this
discontinuity in the forced response results in giving poor results.

Since the procedure presented here uses a decaying record, it can poten-
tially be applied for any large level of vibration successfully. This offers the
possibility of extending the range where a nonlinear system is investigated.
It is worth noting that the larger the oscillations, the more the nonlinearities
are activated and in turn the more information will be present in the decay
response.
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4. Experimental example

A simple experimental rig is used to demonstrate the applicability of the
procedure and how it copes with real experimental data. Figure 7 shows
the set up of the experiment presented in this work. A base–excited mass
was mounted on low–friction linear bearings that slide along two parallel
steel shafts. The mass is attached to two grounded pretensioned transversal
springs. The springs produce a distintive nonlinear stiffness that can be
adjusted by changing either the static tension in the springs (fo) or the
spring stiffness (ks).

The dynamics of this system can be approximated by

mẍ+ cdsign(ẋ) + 2x

(

ks +
fo − ksa

(a2 + x2)1/2

)

= 0 (11)

where x is the displacement of the mass along the shafts; cd represents the dry
friction produced by the linear ball bearings and a=100mm is the distance
between the spring supports (see Figure 7b). The moving mass and spring
stiffness were measured being respectively 2.1Kg and 200N/m; and the static
tension was estimated to be 8.89N. After taking the first order expansion of
the Harmonic Balance method, it is found that the equivalent stiffness for

a)

t ✢

❨

❄
x

✲✛ a

α
ks

ks

m

bar

❯
tt

Threaded

b)

Figure 7: a) Experimental rig of a base–excited SDOF system with nonlinear stiffness and
friction. b) Schematic of the SDOF system with nonlinear stiffness.
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this system can be approximated by

keffective = 2

(

ks +
fo − ksa

(a2 + x2/2)1/2

)

(12)

From three arbitrary large initial conditions, the decaying response was
recorded using a DS1104 Dspace board. A PCB 33M07 piezoelectric ac-
celerometer was used to measure the mass response. The sampling rate
considered was 512Hz. The acceleration signals were numerically integrated
twice to obtain the system displacements. An offline zero–phase high–pass
digital filter was used to operate a baseline compensation (function filtfilt

in Matlab). This displacement measurement was verified using a laser vi-
brometer. The amplitude envelope, instantaneous frequency and damping
ratio were estimated using the procedure described above. The results for
the data recorded in the first test are shown in Figure 8 and the skeleton
curves extracted from all three tests are presented in Figure 9. The results
plotted in the right–hand panel accurately capture the characteristic shape
of damping ratio due to dry friction (see e.g., Figure 4). Nonetheless, some
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Figure 8: Estimation of envelope, instantaneous frequency and damping ratio from exper-
imental data.
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Figure 9: Skeleton curves estimated from experimental data.

dispersion can be seen in the estimated instantaneous frequencies of the three
tests at the range of displacements less than about 10mm. As discussed be-
fore, the approximation for the instantaneous frequency becomes inaccurate
at small amplitude oscillations due to the assumption that damping does
not influence the frequency not being fulfilled due to the presence of dry
friction (see case 3 in Section 3). Figure 10 presents a comparison between
the effective stiffness estimated from the backbone curve and the theoretical
approximation based on the model in Eq. (12). A satisfactory agreement
can be observed in the results for large and medium range of displacements.
This confirms a successful estimation of the backbone curve in that domain.
Note that some discrepancies at large mass displacements (≥ 65mm) can be
seen. This phenomenon is due to the fact that the hooks at the end of the
springs start to slide around the threaded anchoring bars for large angles α in
Figure 7b. This physical effect is not modelled in Eq. (11) but is observable
in the backbone curves measured. We also note that cd can be estimated by
curve-fitting the damping data in Figure 9 to the approximated expression
for dry friction damping presented in Table 2, this leads to the fit cd = 0.08N.

5. Application to MDOF systems.

A nonlinear MDOF system is now examined. The aim is to show how the
procedure introduced above can be extended to estimate backbone curves
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Figure 10: Effective stiffness estimated from the backbone curve of the experimental SDOF
with friction and nonlinear stiffness.

of multi–degree of freedom systems. This can be accomplished by applying
the proposed procedure either to responses of individual masses in physical
coordinates or to individual modal coordinates after projecting the system
responses into a linear modal space. The example model studied is taken from
[18] and consists of two masses connected to ground and between themselves
with a linear spring. A cubic spring is located between the first mass and
ground and has a positive coefficient of 0.5 N/m3 to produce a hardening
effect on the system response. The underlying linear system is symmetric
with masses of 1.0 kg and linear stiffnesses corresponding of 1.0 N/m. The
linearised natural frequencies are 1 and

√
3 rad/s and the mode shapes are

[1, 1]T and [−1, 1]T. The system dynamics are represented by the set of
equations

ẍ1 + 0.03ẋ1 + (2x1 − x2) + 0.5x3
1 = p1

ẍ2 + 0.01ẋ2 + (2x2 − x1) = p2
(13)

where x1 and x2 are the displacements of mass 1 and 2, and p1 and p2 are
the external loads applied to the corresponding masses.

As mentioned in Section 2.1, a suitable force pattern is needed to excite
the structure at one specific mode. It is essential to achieve the steady–
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Figure 11: Estimation of envelope, instantaneous frequency and damping for the sys-
tem in (13) from the decay records originated around the first resonance frequency. a)
Displacement of mass 1, x1. b) Displacement of mass 2, x2.

state response from which the decay record can be properly originated. This
ensures that the frequency content in the response signal will allow for a
correct identification of the skeleton curves. After applying the Normal–
Force Mode Appropriation method [15], the Multivariate Mode Indicator
Functions (MMIF) showed that only one input (either p1 or p2) is required
to isolate each vibration mode and to obtain the desired resonance condition
of the system. Thus without lost of generality, [p1, p2]=[p10 sinωt, 0] is used
as the force pattern. This force vector is applied to the system close to the
first linear natural resonance frequency and tuned in both amplitude and
frequency until the amplitude of the response is large enough to excite the
nonlinearity and the response is approximately resonant. When the system
response reached a state–steady condition, the force is removed and the decay
response recorded.

Figure 11 shows the resulting decay records measured from the resonance
condition for the first characteristic frequency. The amplitude envelope, in-
stantaneous frequency and damping are estimated for individual displace-
ment records in physical space, following the procedure proposed in this pa-
per. The process was then repeated for the second characteristic frequency
and the resulting decay responses recorded and analysed. Finally, the identi-
fied amplitude envelope and instantaneous frequency were combined to pro-
duce the backbone curves, these are plotted in solid black line in Figure 12.
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They are superimposed onto several synthetic stepped–sine sweep responses
for different levels of excitation (p10 = {0.005, 0.01, 0.02, 0.05, 0.1, 0.2}N). Both
the sweep up and down responses around the two natural frequencies of the
system are included in the figure. These results reveal an excellent match
between the estimated backbone curve and the trajectory that connects all
the maxima of the force responses of the nonlinear system. This strong
agreement can be seen in the displacements of both masses and for the two
resonance frequencies, indicating a successful and accurate estimation of the
backbone curves.

It could be argued that the backbone curves can be derived approxi-
mately from a complete set of stepped–sine sweep responses (see for instance
[17]), provided that shakers have sufficient control to ensure that the forces
amplitude remains constant despite the coupling with the nonlinear system.
Nonetheless, it is worth noting that each point of the forced response corre-
sponds to the steady–state of the system when excited at an specific frequency
and forcing level. It represents a large experimental effort to obtain a com-
plete set of frequencies responses, in particularly when testing lightly damped
systems at high forcing levels and around the resonance peaks. Conversely,
the proposed method offers the possibility of extracting the backbone curves
from single resonance decay responses for each resonance frequency.

One can use the matrix of mode shapes Φ of the underlying linear system
in (13) to transform the system responses into their representation in modal
space [1]. Following this, individual responses in modal coordinates can be
evaluated in accordance with the procedure described in Section 2. In this
case, the set of estimated backbone curves are a particular representation in
the modal space defined by the linear transformation Φ. Figure 13 shows the
backbone curves estimated in modal coordinates for both resonance frequen-
cies. The results around the first resonance frequency indicate that most of
the response (and so the information of the nonlinearity) is included in the
backbone curve estimated in terms of the first modal coordinate q1. However,
it can be seen that when the response becomes larger, the influence of the
nonlinearity is more significant with the backbone curve of the second modal
coordinate q2 starting to increase. This nonlinear effect is due to the inter-
action between the linear modes, in fact the backbone curve relates directly
to the nonlinear normal modes of the system [18]. A similar effect is seen
in Figure 13b with reference to the responses around the second resonance
frequency.

To further validate the estimated backbone curves, precise numerical so-
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Figure 12: Backbone curves estimated using the procedure proposed in this paper. a) For
the first resonance frequency. b) For the second resonance frequency.

lutions for the backbone curves are calculated using the AUTO1 [19], a nu-
merical continuation and bifurcation analysis software package. Figure 14
compares the backbone curves of the system in Eq.(13) using the procedure
presented in this paper with those results obtained using numerical contin-

1http://indy.cs.concordia.ca/auto
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Figure 13: Backbone curves in modal coordinates q1 and q2. a) For the first resonance
frequency. b) For the second resonance frequency.

uation. Note that the maximum error in the displacement prediction is 1%
and occurs for a medium amplitude of the first mass in the second resonant
response.

It is worth noting that more elaborated cases of nonlinear coupling could
be studied using techniques based on backbone curves [20]. However, this is
still a open research topic that needs to be further explored in order to identify

21



0.95 1 1.05 1.1 1.15 1.2 1.25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

D
is
p
la
c
e
m
e
n
t
(
m
)

Normalis ed fr equency

 

 

Mass 2, 1 s t Resonance →

Mass 1, 2nd Resonance →

↑
Mass 2, 2nd Resonance

↑
Mass 1, 1 s t Resonance

AUTO
Cur r ent procedur e

Figure 14: Comparison of the estimated backbone curves of the system in Eq.(13) with
respect to the solutions using numerical continuation (AUTO). Amplitudes are in physical
coordinates and frequencies are normalised with respect to the natural linear frequencies.

the limitations of the proposed method in estimating backbone curves when
more complex interactions occur.

5.1. Sensitivity to initial conditions

So far, arbitrary resonant responses, and so initial conditions, have been
selected to generate the structural responses examined. This section dis-
cusses how the use of different resonant responses when generating the decay
records could affect the estimation of backbone curves. This is relevant as for
experimental tests the system is first excited in a resonance condition before
being released.

Figure 15 presents the forced responses of the MDOF system in equation
(13) for a range of different levels of sinusoidal excitation. Three different
resonant conditions have been used to generate the decay response records
and estimate the corresponding backbone curves. The first resonant condi-
tion (IC1) corresponds to the forcing level p10=0.2N and the frequency at
which the maximum response is produced (this condition corresponds to the
fold bifurcation point). The second resonant condition (IC2) is on the same
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Figure 15: Forced responses of Mass 1 of the system in (13) for different levels of harmonic
excitation p10 and backbone (BB) curves computed from decay records generated from
different initial conditions (IC).

branch of forcing level p10=0.2N but at a frequency well below the fold bifur-
cation point. The IC3 is chosen for the forcing level p10=0.1N and a arbitrary
frequency lower than the corresponding fold bifurcation point. The backbone
curve estimated using the decay record generated from IC1 is plotted using
a thick red line, the one estimated from IC2 is plotted using blue dashed line
whilst the curve estimated from IC3 is plotted using black circles.

The three backbone curves follow the same path independently of the
initial condition used to generate the decay records. Several other resonance
conditions were investigated obtaining the same result; they are not plotted
here for simplicity in the figure. The results confirm that the initial condition
used to generate the decay records does not affect the resulting estimation of
the backbone curves as long as it lies on a resonant response of the system
and is large enough to activate the nonlinearity.
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6. Conclusions

The prediction of the performance of nonlinear structural systems is an
increasingly important research topic. Among other analysing tools, back-
bone curves stand out as they offer the advantage of a better understanding
of their dynamical behaviour. In this paper, a procedure has been presented
able to extract backbone curves of nonlinear system from decay responses.
This approach is well suited to investigate structures that are primarily lin-
ear, but contain nonlinear elements which become significant at larger exci-
tation levels. Such characteristics are typical of many industrial scale flexible
structures to which geometric nonlinearities occur.

Results obtained from simulated and real experiments demonstrated that
the proposed procedure is capable of achieving an accurate estimation of
the backbone curves and damping ratio skeletons. The case of dry friction
was discussed to show that the approximation of instantaneous frequency
can become inaccurate if the assumption of damping having low influence
on frequency is not nearly fulfilled. Results suggest that damping ratios
lower than 5% do not significantly affect the estimation of the instantaneous
frequency of the nonlinear system. However, more investigation is needed in
order to identify the amount of damping above which the method presented
here loses accuracy.

It was also shown that the initial condition used to generate the decay
records do not affect notably the resulting estimation of the backbone curve
as long as it lies on a steady–state trajectory of the system. It was shown
how the proposed approach can be successfully applied to a MDOF system.
Further work is required to establish a strategy to extract the non–linear
structural parameters from a set of backbone curves. This will allows for
full system identification. Further efforts will be addressed particularly to
identification in terms of the modal coordinates.

Further exploration is being done to identify the limitations of the pre-
sented methodology in case of more complex nonlinear interaction in MDOF
systems where the estimation of backbone curves may become challenging or
even impossible due, for instance, to two interacting closer modes.
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