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a b s t r a c t

Joint probabilistic characteristics of key structural demand variables due to intense ground shaking are
important for quantitative seismic loss estimation. Current damage–loss models require inputs of multi-
ple seismic demand parameters, such as maximum/residual inter-storey drift ratio (ISDR) and peak floor
acceleration (PFA). This study extends current seismic demand estimation methods based on incremental
dynamic analysis (IDA) by characterising dependence among different engineering demand parameters
(EDP) using copulas explicitly. The developed method is applied to a 4-storey non-ductile reinforced con-
crete (RC) frame in Victoria, British Columbia, Canada. The developed multi-variate seismic demand
model is integrated with a storey-based damage–loss model to assess the economic consequences due
to different earthquake loss generation modes (i.e. non-collapse repairs, collapse, and demolition).
Results obtained from this study indicate that the effects of multi-variate seismic demand modelling
on the expected seismic loss ratios are significant. The critical information is the limit state threshold
for demolition. In addition, consideration of a realistic dependence structure of maximum and residual
inter-storey drift ratios can be important for seismic loss estimation as well as for multi-criteria seismic
performance evaluation.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

An accurate assessment of potential impact of future
destructive earthquakes is essential for effective disaster risk
reduction. Probabilistic seismic risk analysis (PSRA) entails the
state-of-the-art understanding of regional seismic hazard informa-
tion, such as possible scenarios and likelihood of destructive shak-
ing intensity, and seismic vulnerability of structures, such as
damage accumulation and loss generation [1–4]. Using probabilis-
tic calculus, PSRA evaluates the potential damage and loss that a
certain group of structures is likely to experience due to various
seismic events. Two key components in PSRA are structural capac-
ity modelling and seismic demand characterisation. A structural
model that is used in the assessment is required to be capable of
simulating a wide range of structural behaviour from damage
initiation to collapse. In particular, realistic representation of ulti-
mate damage states and failure modes is of critical importance.
The complexity and hysteretic characteristics of structural systems
in interaction with ground motions having different amplitudes
and frequency content result in large uncertainty associated with
seismic fragility. Several studies have attempted to quantify such

uncertainty and assessed their impact on structural response pre-
diction [5–7].

Parameterisation of earthquake damage and loss generation
processes has major influence on the computation and modelling
of EDP that is adopted as structural response variable for damage
and loss assessment. Typical EDP parameters include the maxi-
mum ISDR and PFA for structural and non-structural components
[8,9]. In addition to transient EDP parameters, residual ISDR may
be a critical parameter in determining the usability of damaged
structures in a post-earthquake situation [10–12]. In PSRA, EDP is
either uni-variate or multi-variate. When a scalar parameter that
correlates well with damage severity is employed, detailed proba-
bilistic models are developed using seismic demand estimation
methods, such as IDA [13]. The multi-variate case is often imple-
mented using fragility models for different types of damage sensi-
tivity (e.g. drift-sensitive versus acceleration-sensitive). However,
fragility curves for different EDP parameters are evaluated sepa-
rately and thus dependence of EDP variables for a given seismic
intensity measure (IM; e.g. spectral acceleration) is not taken into
account explicitly. Ruiz-Garcia and Miranda [14] and Ramirez and
Miranda [9] highlighted that inclusion of residual drift as EDP, in
addition to maximum ISDR and PFA, can have major impact on
the economic consequence due to earthquake damage, because a

http://dx.doi.org/10.1016/j.strusafe.2015.05.004
0167-4730/� 2015 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.

Structural Safety 56 (2015) 39–51

Contents lists available at ScienceDirect

Structural Safety

journal homepage: www.elsevier .com/locate /s t rusafe

http://crossmark.crossref.org/dialog/?doi=10.1016/j.strusafe.2015.05.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.strusafe.2015.05.004
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.strusafe.2015.05.004
http://www.sciencedirect.com/science/journal/01674730
http://www.elsevier.com/locate/strusafe


severely-damaged building may be demolished due to expensive
repair costs. Moreover, performance matrices based on both max-
imum and residual ISDRs (denoted by MaxISDR and ResISDR,
respectively) have been proposed for use in seismic damage
assessment [11]. It is noteworthy that in the above-mentioned
studies, dependence of MaxISDR and ResISDR, which are physically
inter-related and thus statistically correlated, has not been elabo-
rated. Goda [15] and Uma et al. [16] investigated the joint proba-
bilistic modelling of the two inter-related parameters using
inelastic single-degree-of-freedom systems. However, rigorous
evaluation of joint probability distributions of MaxISDR and
ResISDR for realistic multi-degree-of-freedom systems has not
been carried out. Therefore, further investigations of joint proba-
bilistic modelling of multiple EDP parameters are warranted to
consider different modes of damage and loss generation.

This study investigates the joint probabilistic modelling of mul-
tiple EDPs by conducting detailed characterisations of marginal
probability distributions for MaxISDR, ResISDR, and PFA and copula
models between MaxISDR and ResISDR. A copula technique offers a
flexible way of describing nonlinear dependence among
multi-variate data in isolation from their marginal probability dis-
tributions, and serves as a powerful tool for modelling
nonlinearly-interrelated multi-variate data [17,18]. The method
is applied to a 4-storey non-ductile RC building located in
Victoria, British Columbia, Canada. Seismic vulnerability of
pre-1970 buildings constructed in British Columbia remains to be
a major concern because of the use of older design codes and poor
construction practices (e.g. lack of column confinement and poor
detailing) at the time of design and construction [19,20].
Moreover, Victoria is situated in an active seismic region, affected
by complex regional seismicity due to shallow crustal earthquakes,
deep inslab earthquakes, and mega-thrust Cascadia subduction
earthquakes [21,22]. Seismic demand modelling is conducted
based on IDA by developing a probabilistic relationship between
IM and EDP. To avoid bias due to excessive record scaling in assess-
ing seismic performance of a structure, a multiple conditional
mean spectra (CMS) method is implemented by reflecting regional
seismic hazard characteristics in British Columbia [23,24]. The
developed multi-variate seismic demand model is then integrated
with a storey-based damage–loss model for non-ductile RC frames
[9] to evaluate the effects of incorporating ResISDR in PSRA and
dependence modelling between MaxISDR and ResISDR on earth-
quake loss generation (including demolition). The novel contribu-
tions of this study are: (i) copula-based multi-variate modelling
of EDP parameters is developed for a realistic structural model,
and (ii) the impact of multi-variate seismic demand modelling is
assessed in terms of expected seismic loss and seismic perfor-
mance metrics. The former essentially extends the current
IDA-based seismic demand modelling approaches.

The paper is organised as follows. A brief summary of copula
modelling is presented in Section 2. Section 3 introduces an overall
seismic risk analysis framework (Section 3.1), followed by descrip-
tions of finite-element modelling of the 4-storey non-ductile RC
frame (Section 3.2), regional seismic hazard information in British
Columbia (Section 3.3), IDA and seismic demand modelling
(Section 3.4), and storey-based damage–loss assessment
(Section 3.5). In Section 4, results of multi-variate seismic demand
modelling for the non-ductile RC frame in Victoria are discussed,
and its effects on seismic loss are evaluated quantitatively. Finally,
main conclusions from the investigations are mentioned in
Section 5.

2. Dependence modelling using copulas

Consider the joint probability distribution of two random vari-
ables X1 and X2, H(x1,x2) = P[X1 6 x1,X2 6 x2], continuous marginal

probability distributions of which are denoted by F1(x1) (=u1) and
F2(x2) (=u2), respectively. u1 and u2 represent a sample of a stan-
dard uniform random variable U1 and U2, respectively, and P[�]
represents the probability. Sklar’s theorem dictates that a relation-
ship among H(x1,x2), F1(x1), and F2(x2) can be established by using
the copula function C(u1,u2) [17]:

Hðx1; x2Þ ¼ CðF1ðx1Þ; F2ðx2ÞÞ ¼ Cðu1;u2Þ ð1Þ

The joint probability distribution of the two random variables can
be characterised by a copula function in terms of their marginal
probability distributions. An important implication of this theorem
is that marginal modelling and dependence modelling can be car-
ried out separately.

For given data X1 and X2, their dependence can be characterised
by the empirical copula CE(u1,u2):

CEðu1;u2Þ ¼
1
N

XN

m¼1

I
rankðx1;mÞ

N þ 1
6 u1;

rankðx2;mÞ
N þ 1

6 u2

� �
ð2Þ

where N is the total number of data, I(�) represents the indicator
function, and rank(x1,m) (or rank(x2,m)) is the rank of x1,m (or x2,m)
among x1 (or x2) in an ascending order. The empirical copula is a
non-parametric description of dependence for a pair of random
variables, which can be used for fitting various copula functions
to data. A dependence measure that is suitable for copula modelling
is the Kendall’s s coefficient:

sðX1;X2Þ¼ P ðX1� eX1ÞðX2� eX2Þ>0
h i

�P ðX1� eX1ÞðX2� eX2Þ<0
h i

ð3Þ

where (eX 1; eX2) is an independent copy of (X1,X2). The Kendall’s s
measure is rank-dependent and invariant under strictly monotonic
transformation.

In dealing with multi-variate data, the use of the normal and t
copulas within a class of the elliptical copulas is popular. The
bi-variate normal copula with the linear correlation coefficient q,
Cq

N(u1,u2), is given by:

CN
qðu1;u2Þ¼UqðU�1ðu1Þ;U�1ðu2ÞÞ

¼
Z U�1ðu1Þ

�1

Z U�1ðu2Þ

�1

1
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�q2

p exp �s2�2qstþ t2

2ð1�q2Þ

� �
dsdt

ð4Þ

where Uq(�) is the bi-variate standard normal distribution with q,
and U�1(�) is the inverse standard normal distribution. The
bi-variate t copula with q and the degree-of-freedom parameter m,
Ct
q,m(u1,u2), is given by:

Ct
q;mðu1;u2Þ ¼ tq;mðt�1

m ðu1Þ; t�1
m ðu2ÞÞ ¼

Z t�1
m ðu1Þ

�1

Z t�1
m ðu2Þ

�1

� 1
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p 1þ s2 � 2qst þ t2

mð1� q2Þ

� ��ðmþ2Þ=2

dsdt ð5Þ

where tq,m(�) is the bi-variate t distribution with q and m, and tm
�1(�)

is the inverse t distribution with m. Both normal and t copulas are
symmetrical, and the normal copula is a limiting case of the t copula
when m becomes infinity. The advantage of the t copula is that it can
capture lower and upper tail dependence of data (i.e. joint
non-exceedance and exceedance probabilities for rare events). For
the t copula, the other parameter m can be obtained by maximising
the log-likelihood function.

Another widely-used copula family is the Archimedean copula.
Popular Archimedean copulas include the Gumbel, Frank, and
Clayton copulas, whose copula functions are given by:

Chðu1;u2Þ ¼ exp � ð� ln u1Þh þ ð� ln u2Þh
h i1=h

� �
; h � 1 ð6Þ
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Chðu1;u2Þ ¼ �
1
h

ln 1þ ðexpð�hu1Þ � 1Þðexpð�hu2Þ � 1Þ
expð�hÞ � 1

� �
;

�1 < h <1; ð7Þ

and,

Chðu1;u2Þ ¼ ðu�h
1 þ u�h

2 � 1Þ�1=h
; h > 1 ð8Þ

respectively. A distinction among these three copulas can be made
with regard to the capability of capturing tail dependence: the
Gumbel and Clayton copulas capture upper tail dependence and
lower tail dependence, respectively, whereas the Frank copula
shows no tail dependence. For the three copulas, the parameter h
can be estimated directly via s(X1,X2). Alternatively, h can be esti-
mated based on the maximum log-likelihood method.

A limitation of using the above-mentioned copulas is the sym-
metrical property with respect to diagonal lines of a unit square
(i.e. a domain defined by [0,1]2). To deal with asymmetrical data
in transformed space, a class of asymmetrical Archimedean copu-
las Ch,w1,w2(u1,u2) can be used [17]:

Ch;w1 ;w2 ðu1;u2Þ ¼ u1�w1
1 u1�w2

2 Chðuw1
1 ; uw2

2 Þ ð9Þ

where w1 and w2 are the weight parameters and range from 0.0 to
1.0, and Ch(u1,u2) represents the ordinary Archimedean copula. If
w1 = w2 = 1.0, Ch,w1,w2(u1,u2) equals the original Archimedean copula
Ch(u1,u2), while if w1 = w2 = 0.0, Ch,w1,w2(u1,u2) equals the indepen-
dence copula C(u1,u2) = u1u2. Various kinds of asymmetrical
Archimedean copulas can be constructed by varying values of w1

and w2. The fitting of asymmetrical Archimedean copulas can be
done based on the maximum likelihood method.

A suitable copula function can be selected quantitatively by
comparing the evaluated values of the Akaike Information
Criterion [25], which is defined as AIC = �2 � (sum of
log-likelihood) + 2 � (number of parameters); a copula associated
with the smallest AIC value is considered to be the best-fit copula.
For illustration, several examples of simulated copula samples for

the normal, t, Gumbel, Frank, Clayton, and asymmetrical Gumbel
copulas are shown in Fig. 1.

3. Probabilistic seismic risk analysis

3.1. Seismic risk analysis methodology

Key consideration in modelling seismic damage and loss is
proper treatment of uncertainty in quantifying seismic demand,
structural capacity, and damage cost incurred due to unsatisfactory
performance. The performance-based earthquake engineering
(PBEE) methodology has been developed to assess seismic vulner-
ability of structures probabilistically [1–4]. Typically, an analytical
procedure consists of hazard analysis, structural analysis, and
damage–loss analysis. Mathematically, the PBEE methodology
can be expressed based on total probability theorem [1]:

mðDVÞ ¼
Z Z

GðDVjEDPÞdGðEDPjIMÞjdkðIMÞj ð10Þ

k(IM) is the mean annual rate of exceeding a given IM level and is
obtained from probabilistic seismic hazard analysis. The structural
analysis develops a probabilistic relationship between IM and
EDP, which is denoted by the complementary cumulative probabil-
ity distribution function G(EDP|IM) in Eq. (10). The multi-variate
seismic demand modelling that is carried out in this study is
focused upon this component. It is based on IDA together with
the multiple-CMS-based record selection (Section 3.4). The dam-
age–loss analysis relates EDP to seismic performance metrics,
parameterised with decision variables (DV), such as repair/recon-
struction costs, downtime (loss of operability), and casualties. In
Eq. (10), an intermediate step related to damage measures is sup-
pressed because in this study, storey-based damage–loss (EDP–
DV) functions [9] are employed (Section 3.5). It is also important
to recognise that uncertainty enters the analysis at each step.

Fig. 1. Examples of simulated samples of the normal, t, Gumbel, Frank, Clayton, and asymmetrical Gumbel copulas.
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The main variables in Eq. (10) can be multi-variate. The advan-
tages of the multi-variate models are that the estimated quantities
are less biased and have smaller uncertainty, which is accompa-
nied by additional complexity in modelling efforts and implemen-
tation. In the PBEE framework developed in this study, a scalar IM
(i.e. spectral acceleration at the fundamental vibration period) is
considered. To achieve the sufficiency of IM [26], record selection
is carried out using the multiple-CMS-based method [24], where
earthquake characteristics in terms of magnitude, distance, spec-
tral shape, and event type are taken into account, in addition to
the information of spectral acceleration at the fundamental vibra-
tion period. The necessity for multiple EDP variables is directly
attributed to damage–loss models adopted in this study. The
EDP–DV functions by Ramirez and Miranda [9,12] involve three
loss generation modes, i.e. non-collapse repair, collapse, and demo-
lition, which are determined in terms of MaxISDR, ResISDR, and
PFA at different storey levels (Section 3.5).

3.2. Structural model

A 4-storey RC space frame for office occupancy, which was
designed and analysed by Liel and Deierlein [27], has a floor plan
measuring 125 ft by 175 ft and columns spaced at 25 ft. The total
height of the structure is 54 ft, having the storey heights at ground
floor and at higher floor levels of 15 ft and 13 ft, respectively
(Fig. 2a). The 1967 Uniform Building Code (UBC) seismic provisions
[28] are applied; the design base shear coefficient is 0.068 g. The
structure is designed as a space frame, such that all columns and
beams are part of the lateral resisting system, having concrete
strength fc = 27.6 MPa and reinforcing bar strength fy = 413.7 MPa
in both beams and columns. All beam and column elements have
the same amount of over-strength, such that each element is 15%
stronger than the code-minimum design level. The design is gov-
erned by strength and stiffness requirements, as the 1967 UBC
had few requirements for special seismic design or ductile
detailing.

Finite-element modelling of a structure can be achieved
through a fibre or lumped plasticity model. In the fibre model,
the element cross-section is discretised and corresponding
non-linear material properties of the core concrete, cover concrete,
and reinforcing bars are assigned. On the other hand, in the lumped
plasticity model, non-linearity of the beam-column element is
introduced at the two ends (hinges), which are connected by an
elastic element. The investigations carried out by Haselton et al.
[29] indicate that the lumped plasticity model, equipped with ade-
quate hysteretic models for plastic hinges, can simulate global

collapse behaviour well, whereas the fibre model may be numeri-
cally unstable when the responses become highly nonlinear. The
non-ductile structure by Liel and Deierlein [27] is modelled
through the lumped plasticity concept. The lumped plasticity
element models used to simulate plastic hinges in beam-column
elements adopt a nonlinear spring model developed by Ibarra
et al. [30]. This model is capable of capturing important modes of
deterioration that lead to side-sway collapse of RC frames. Fig. 2b
shows a tri-linear monotonic backbone curve of the plastic hinge
model. The detail of calibration of model parameters can be found
in [27,29]. Modal analysis of the finite-element model indicates
that the first three modal periods of the 4-storey frame are 1.92,
0.55, and 0.27 s, respectively. For this structure, spectral accelera-
tion at 2.0 s is adopted as IM, while MaxISDR, ResISDR, and PFA
at ground floor are selected as EDP. In the developed approach that
is explained later, EDP variables at storey levels above the ground
floor are approximated using response shape function over the
height of the structure; this introduces additional uncertainty in
characterising these EDP variables. The focus upon structural
responses at ground floor as key EDP variables is justified because
the storey height at the base is greater than other floor levels and
thus the structure tends to fail in a soft-storey sway mechanism
(Section 4.1).

3.3. Seismic hazard and ground motion in British Columbia, Canada

A case study site is focused upon Victoria, where
non-seismically designed vulnerable RC frames exist and are still
in use. There are mainly three potential sources of damaging earth-
quakes in British Columbia: shallow crustal earthquakes, deep
inslab earthquakes, and off-shore mega-thrust interface earth-
quakes from the Cascadia subduction zone [21]. The expected
moment magnitude (Mw) of the Cascadia events is in the range
of 8–9; its mean recurrence period ranges from 500 to 600 years
and the last event occurred in 1700. In this study, an updated
regional seismic hazard model by Atkinson and Goda [22] is
adopted to characterise seismic hazard in Victoria (site condition
is set to site class C). Fig. 3 shows uniform hazard spectra (UHS)
and seismic deaggregation results for Victoria from probabilistic
seismic hazard analysis. Two return period levels, i.e. 500 and
2500 years, are considered, and the spectral period for seismic
deaggregation results is set to 2.0 s, which is close to the funda-
mental vibration period of the 4-storey non-ductile RC frame. It
is important to recognise that the hazard estimates are based on
numerous earthquake scenarios that may occur in a seismic region
of interest, and different earthquake types are associated with

Fig. 2. (a) Nonlinear finite-element model of 4-storey non-ductile RC frame and (b) backbone curve of Ibarra element model used for beam-column elements.
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distinct event features in terms of magnitude and distance. With
the increase of return period, relative contributions from the
Cascadia events increase; for instance, at the return period of
2500 years, 50% of the dominant scenarios are originated from
the mega-thrust subduction zone. This is an important considera-
tion in selecting records for seismic performance evaluation of
(relatively flexible) structures in Victoria.

The input ground motion records for use in IDA need to be
selected carefully, because record scaling, as implemented in IDA,
may induce bias in calculated structural responses [31]. It is also
important that selected time-histories have similar record charac-
teristics (e.g. magnitude, duration, and spectral shape) as target
seismic hazard. For this purpose, a new ground motion database
has been compiled by including recent recordings from Japan, in
particular, the 2011 Mw9 Tohoku earthquake records. The Tohoku
dataset is relevant to the Cascadia event, because of anticipated
macro-level similarity between these two mega-thrust subduction
events, which is not present in ground motion data from other
smaller earthquakes. The new ground motion database combines
recordings from the Next Generation Attenuation dataset and from
three national/regional ground motion networks in Japan, i.e.
K-NET, KiK-net, and SK-net. An innovative aspect of the database
is that all time-history data are associated with actual main-
shock–aftershock sequences, and is an extended version of those
developed by Goda and Taylor [32] and Goda [33]. The combined
database is comprised of 606 mainshock–aftershock record

sequences; mainshocks within individual sequences are identified
as events having the largest earthquake magnitude, and all main-
shock records have moment magnitudes greater than 5.9, rupture
distances less than 300 km, and peak ground acceleration greater
than 75 cm/s2. In this study, mainshock records are focused upon
(note: seismic demand modelling for mainshock–aftershock
sequences is reported in [34]).

3.4. Record selection and incremental dynamic analysis

Using the constructed ground motion database, 50 records (two
horizontal components per record; i.e. 100 time-histories) are
selected based on the multiple CMS method [24]. The target CMS
for three earthquake types (crustal/interface/inslab) are derived
from probabilistic seismic hazard analysis (Fig. 3), and response
spectra of the selected records match the target CMS over the
vibration period range between 0.3 and 3.0 s in a least squares
sense. The number of records for each earthquake type, out of 50
records, is determined based on its relative contribution to seismic
hazard using deaggregation results. Specifically, at the return per-
iod of 2500 years, the number of records for crustal, interface, and
inslab events is 13, 25, and 12, respectively. Fig. 4 compares UHS
and CMS for three event types for Victoria at the return period of
2500 years. In addition, the figure shows the magnitude–distance
distribution of the selected 50 records. The CMS are usually lower
than the corresponding UHS. The response spectral shape for

Fig. 3. Probabilistic seismic hazard results for Victoria (site class C): (a) UHS at return periods of 500 and 2500 years, (b) seismic deaggregation at return period of 500 years,
and (c) seismic deaggregation at return period of 2500 years.

Fig. 4. (a) Comparison of CMS for crustal, interface, and inslab events with UHS for Victoria at return period of 2500 years, and (b) magnitude–distance plot of the selected 50
records.
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crustal events tends to have more spectral content in the short
vibration period range (i.e. slope becomes steeper), while that for
interface events tends to be flatter (i.e. more relative frequency
content in the long vibration period).

IDA is carried out for the 4-storey non-ductile RC frame using
the set of 50 records. The seismic intensity level (i.e. IM) ranges
from 0.05 to 0.7 g (in total, 30 levels). For each nonlinear dynamic
analysis, MaxISDR, ResISDR, and PFA at all storey levels are stored
for post-processing. In general, numerical instability is encoun-
tered when ISDR of the frame exceeds 0.10. The first occurrence
of such large-deformation responses in terms of seismic intensity
level is treated as ‘collapse’ in this study. This definition of collapse
capacity is consistent with [13].

Fig. 5a shows a collapse fragility curve obtained from IDA
results (raw data and fitted lognormal curve). The majority of col-
lapse occurs at seismic intensity between 0.2 and 0.4 g. The param-
eters of the collapse fragility curve are: median = 0.28 g and
logarithmic standard deviation = 0.38. It is noted that modelling
uncertainties related to structural capacities [5] are not included
in the logarithmic standard deviation. Moreover, Fig. 5b displays
four cases of damage state limits for demolition, which are based
on the lognormal probability distribution. The models are
expressed as a function of ResISDR. When ResISDR exceeds the
demolition damage state threshold, a damaged structure is demol-
ished, rather than repaired. Ramirez and Miranda [12] used median
of 0.015 and logarithmic standard deviation of 0.3 as a base case,
noting that this is based on expert opinion, rather than quantita-
tive investigations.

The main IDA results for MaxISDR, ResISDR, and PFA (ground
floor) are shown in Fig. 6. To present the uncertainty of the IDA
results succinctly, two sets of percentile curves, i.e. 16th–84th
curves and 2.5th–97.5th curves, are included in the figure. The
two sets approximately correspond to mean plus/minus one stan-
dard deviation and mean plus/minus two standard deviations. The
results shown in Fig. 6 suggest that the overall characteristics of
the IDA curves for MaxISDR and ResISDR are different; the former
increases gradually with the seismic intensity level, while the lat-
ter increases rapidly when the seismic intensity level reaches
about 0.15 g (at which the corresponding median MaxISDR is about
0.025). The results, in light of possible demolition damage state
limit curves shown in Fig. 5b, suggest that for some cases,
non-collapse structure may be demolished. It is noteworthy that
the uncertainty of ResISDR is much greater than that of MaxISDR
(as noted by Ruiz-Garcia and Miranda [14]). The IDA results for
PFA show linear trends. Looking at the EDP–DV functions for the
non-ductile RC frame (Section 3.5), impact due to acceleration
may be less significant in comparison with that due to drift. The
IDA results shown in Fig. 6 only illustrate marginal probabilistic
characteristics of EDP parameters as a function of IM. Their joint
characteristics are investigated and modelled in Section 4.

3.5. Storey-based damage–loss functions

The damage–loss analysis relates EDP to DV through probabilis-
tic loss models G(DV|EDP). In this study, following the storey-based
damage–loss models [9], building components are lumped into

Fig. 5. (a) Collapse fragility function, and (b) demolition damage state limit curves (parameters are median and logarithmic standard deviation).

Fig. 6. Incremental dynamic analysis results: (a) MaxISDR, (b) ResISDR, and (c) PFA. The EDPs are at ground floor.
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groups based on component type (e.g. structural elements and inte-
rior partitions), location within a building (e.g. storey level), and rel-
evant EDP (i.e. damage sensitivity). DV that is concerned in this
study is direct economic loss (building repair/replacement costs);
other seismic losses due to business interruption and relocation
are not included. The formulation of the storey-based seismic loss
estimation simplifies a process of calculating seismic loss (i.e. DV)
as a function of EDP, and it requires less information on structural
details and their costs, in comparison with a rigorous
assembly-based seismic loss approach [8]. The original EDP–DV
functions [9] are developed for 9 component-storey combinations:
three categories, i.e. drift-sensitive structural components (e.g.
beam/slab-column subassembly), drift-sensitive non-structural
components (e.g. partitions and windows), and acceleration-
sensitive non-structural components (e.g. ceilings and ventilation
systems), and three storey classes, i.e. ground floor, typical floor,
and top floor. The distinction of the building storey level stems from
different building layout and use at different levels (which affect
proportions of incurred seismic damage costs for different building
components).

The seismic loss LT for given EDP can be expressed as [12]:

LT ¼ LNC þ LD þ LC ð11Þ

where LNC, LD, and LC are the seismic losses for non-collapse repairs
(NC), demolition (D), and collapse (C) cases, respectively. The three
situations are disjoint and mutually exclusive. The numerical eval-
uation of LT in PSRA calculations is facilitated as follows: (i) collapse
probability is assessed for MaxISDR (Fig. 5a); if collapse is predicted,
then LT = LC; (ii) demolition of the structure is determined according
to a realised value of ResISDR in comparison with the (uncertain)
limit state function for demolition (Fig. 5b); if demolition is pre-
dicted, then LT = LD; and (iii) otherwise, LNC is assessed by using
EDP–DV functions for non-collapse cases. It is noted that LNC, LD,
and LC are random variables. The demolition and collapse (replace-
ment) costs LD and LC can be simulated as lognormal variable, hav-
ing the median cost of lLD and lLC and the coefficient of variation
(CoV) of mLD and mLC, respectively. The median demolition and
replacement costs can be estimated using mean unit-area construc-
tion cost and total floor area. The values for mLD and mLC can be
adopted from the literature (e.g. [35]), which ranges widely from
0.2 to 1.1; typically, 0.6–0.7 appears to be reasonable for general
situations.

The evaluation of LNC in Eq. (11) is conducted using EDP–DV
functions. Although mean EDP–DV functions for 9 component-
storey combinations are provided by Ramirez and Miranda [9],

no ready-to-use equations for CoV are given. As it is important to
consider all major uncertainties in PSRA, CoV estimates of the
EDP–DV functions are obtained using available information of fra-
gility and damage cost as provided in [9]. The derived EDP–DV
functions are for 27 subcontractor-sensitivity-storey combinations
(i.e. 9 subcontractor-sensitivity combinations and ground/typical/-
top). The subcontractor classification is concrete/metal/doors–win
dows–glass/finishes/electrical/mechanical, and the concrete/me
tal/doors–windows–glass category is applicable to drift-sensitive
components only (i.e. 6 subcontractor-sensitivity categories for
drift-sensitive components while 3 subcontractor-sensitivity cate-
gories for acceleration-sensitive components). This elaboration is
necessary because information of cost variability is available for
a subcontractor basis only. Fig. 7 shows mean EDP–DV functions
for 9 subcontractor-sensitivity combinations at ground floor (nor-
malised by storey-level loss). The corresponding CoV values are
indicated in the figure legend.

4. Multi-variate seismic demand modelling

Joint probabilistic modelling of MaxISDR, ResISDR, and PFA is
performed. Firstly, preliminary analysis results of the calculated
EDP parameters are presented in Section 4.1 to identify a suitable
approach for characterising multi-variate data. The marginal and
dependence modelling of MaxISDR, ResISDR, and PFA is carried
out in Section 4.2 to develop multi-variate seismic demand predic-
tion models. In Section 4.3, IM–DV functions are developed by inte-
grating IM–EDP seismic demand models with EDP–DV functions.

4.1. Preliminary analysis

The aim of the preliminary analysis is to identify the key EDP
parameters in developing inelastic seismic demand prediction
models. There are 12 parameters: MaxISDR, ResISDR, and PFA at
four storey levels. It is necessary to reduce the number of the
parameters as joint probabilistic modelling of 12 random variables
is challenging (except for the case of multivariate normal/lognor-
mal distribution). Because the consideration of MaxISDR,
ResISDR, and PFA is essential from a standpoint of damage–loss
analysis (Section 3.5), it is important to determine which storey
level to focus on. The building height variation between 15 ft
(ground floor) and 13 ft (second and higher floors) introduces stiff-
ness difference (�65%). This is constituted as soft storey floor [36],
and consequently, the demand at this floor will dominate. Fig. 8
shows normalised response ratios of MaxISDR, ResISDR, and PFA

Fig. 7. EDP–DV functions for 9 subcontractor-sensitivity combinations (ground floor). The number inside parentheses is the CoV of the EDP–DV function.
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with respect to the response at ground floor (i.e. response shape
function); for PFA, the shape functions are developed based on
the acceleration responses at the ceiling/roof height for individual
storeys. For ResISDR, the shape functions are developed for two
ISDR ranges, i.e. [0.0,0.0025] and [0.0025,0.1], to inspect the shape
functions in terms of response level. Fig. 8 indicates that: (i) the
shape function for MaxISDR is stable across different response
levels and has the maximum at ground floor, the latter reflecting
a typical failure mode of the non-ductile RC frame, i.e. column
hinging at low storey levels; (ii) the shape function for ResISDR

at the small response level is highly variable due to its high sensi-
tivity when the structure behaves elastically, whereas that at the
moderate-to-large response level has more common trends with
moderate variability; and (iii) the shape function for PFA is similar
at different response levels, involving moderate degrees of variabil-
ity (e.g. 0.5–1.5 with respect to the PFA response at ground floor).

To quantify the correlation of EDP parameters at different
storey levels, the Kendall’s s coefficient is evaluated and presented
for the same EDP parameter at different storey levels (Fig. 9a–c)
and for different combinations of EDP parameters at the same

Fig. 8. Normalised response ratios for MaxISDR, ResISDR (two ISDR ranges: [0.0, 0.0025] and [0.0025, 0.1]), and PFA.

Fig. 9. Kendall’s s coefficients for MaxISDR, ResISDR, and PFA by considering the same EDP parameters at different storey levels (a–c) and different EDP parameters at the
same storey levels (d–f).
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storey level (Fig. 9d–f). The results are shown for the cases where a
sufficient number of non-collapse data points are available for the
calculation of the s coefficient (i.e. 25 samples). Fig. 9 shows that
when two storey levels are physically close the correlation tends
to be higher, and that PFA responses at different storey levels are
more correlated in a consistent manner than MaxISDR and
ResISDR. The correlation for MaxISDR and ResISDR at storey level
1 or 2 is moderate, although such correlation is not clear at higher
storey levels. A different trend is observed for MaxISDR and PFA;
the correlation tends to increase with the storey level. For
ResISDR and PFA, the degree of dependence is low.

Based on the results presented in Figs. 8 and 9, it is decided that
three parameters, MaxISDR, ResISDR, and PFA at ground floor, are
focused upon in multi-variate seismic demand modelling. This
selection is consistent with the expected failure mode of the
non-ductile structure. Given the values of MaxISDR, ResISDR, and
PFA at ground floor (i.e. storey 1 in Fig. 8), response values at upper
floors can be obtained (or sampled) by using the response shape
factors (Fig. 8) together with the correlation coefficients (Fig. 9).
In the following, joint modelling of the three primary EDP param-
eters is examined further. Specifically, MaxISDR and ResISDR are
treated as dependent random variables, while PFA is modelled as
an independent one.

4.2. Marginal and dependence modelling of engineering demand
parameters

Marginal distribution modelling of MaxISDR, ResISDR, and PFA
at ground floor is carried out. First, suitable marginal probability
distribution types for MaxISDR, ResISDR, and PFA are examined.
Previous studies (e.g. [15]) suggest that the lognormal and
Frechet distributions are adequate for MaxISDR, whereas ResISDR
has a heavy right tail. To investigate this problem, six probability
distributions, namely, lognormal, Gumbel, Frechet, Weibull,
gamma, and generalised Pareto, are used for marginal probability
distribution modelling of the three EDP parameters. The model
selection is conducted by inspecting quantile–quantile (Q–Q) plots
and by comparing the calculated log-likelihood values (which is an
indicator for model fitness, noting that the number of model
parameters for these distributions is the same (=2); for the

generalised Pareto distribution, the shift parameter is set to
0.0025). The Q–Q plots for MaxISDR, ResISDR, and PFA at seismic
intensity levels of 0.15 and 0.25 g are shown in Fig. 10; for
MaxISDR and PFA, the lognormal and Frechet distributions are cho-
sen for illustration, while for ResISDR, the generalised Pareto and
gamma distributions are considered. By examining similar plots
at different seismic intensity levels and log-likelihood values, it is
concluded that the Frechet distribution may be used for MaxISDR
and PFA (note: the lognormal distribution performs well) and the
generalised Pareto distribution may be chosen for ResISDR. It is
noteworthy that the identified marginal distributions for the three
EDP parameters are non-normal (in particular, ResISDR); in such
cases, conventional multi-variate normal/lognormal distribution
modelling is not ideal (e.g. [37]), and a more elaborated approach
is preferred.

Next, copula modelling of MaxISDR and ResISDR is carried out.
To illustrate the data characteristics of the two parameters, scatter
plots of original data and transformed data at seismic intensity
levels of 0.15 and 0.25 g are presented in Fig. 11. The transformed
data (i.e. empirical copula samples) are obtained based on ranked
and sorted data (Eq. (2)). The visual inspection of the scatter plots
indicates that MaxISDR and ResISDR are dependent and that upper
tail dependence of the transformed data is appreciable (i.e. concen-
tration of transformed data points in the upper-right corner). To
model the observed dependence of MaxISDR and ResISDR, para-
metric copula functions are fitted to empirical copula samples
using the maximum likelihood method [17]. The parametric copu-
las that are considered in this study include: normal, t, Frank,
Gumbel, Clayton, and asymmetrical Archimedean copulas
(Section 2). The copula fitting of MaxISDR and ResISDR at various
seismic intensity levels suggests that overall the asymmetrical
Gumbel copula is suitable for the majority of the cases examined
in this study.

The final model component for probabilistic seismic demand
modelling is to develop prediction equations for parameters of
the marginal distribution functions and copula functions for a wide
range of IM levels (note: the model fitting above is carried out at
discrete 30 IM levels, whereas parameters at IM values that are
not considered in IDA are required in PSRA). For marginal distribu-
tions of MaxISDR, ResISDR, and PFA, mean and standard deviation

Fig. 10. Quantile–quantile plots for MaxISDR, ResISDR, and PFA at seismic intensity levels of 0.15 and 0.25 g (the lognormal and Frechet distributions are used for MaxISDR
and PFA, whereas the generalised Pareto and gamma distributions are used for ResISDR).
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need to be characterised. On the other hand, for the dependence
modelling of MaxISDR and ResISDR, three parameters of the asym-
metrical Gumbel copula and the Kendall’s s coefficient need to be
fitted using mathematical functions. Fig. 12 shows the curve fitting
results of the mean and standard deviation of MaxISDR, ResISDR,
and PFA as a function of IM. In conducting the fitting exercise, sev-
eral functional forms, linear and quadratic functional forms and
linear IM and logarithmic IM, have been tested. For MaxISDR
(Fig. 12a), both linear and quadratic functions work well for the
mean and standard deviation (the quadratic equations are
adopted). For ResISDR (Fig. 12b), the linear function provides a
more robust trend outside of the data range than the quadratic
function, and is appropriate for use in PSRA. The equations for
PFA (Fig. 12c) exhibit linear trends over a wide range of IM.
Overall, both linear and quadratic functions fit the data well (the
quadratic equations are adopted). The comparison of the CoV val-
ues for MaxISDR, ResISDR, and PFA (which are not shown directly,
but can be appreciated by inspecting the differences between
mean and standard deviation) provides quantitative information
of the variability of the EDP variables. The CoV for MaxISDR ranges
between 0.1 and 0.4, and that for PFA is relatively stable ranging
between 0.4 and 0.5. On the other hand, the CoV for ResISDR ranges
between 0.5 and 1.2 and has a decreasing tendency with respect to
IM; large CoV values at low IM levels reflect the significant sensi-
tivity of this variable, when the structure behaves elastically. The
main features of the three EDP variables can be captured by using
the developed equations for the statistics.

Fig. 13 shows the curve fitting to the Kendall’s s coefficient and
two parameters (h and w1) of the asymmetrical Gumbel copula
(w2 = 1.0 for all cases). The former can be used to estimate the cop-
ula parameters for the normal, t, and other Archimedean copulas.
Generally, scatter of the data points is large compared with the
statistics of MaxISDR, ResISDR, and PFA (Fig. 12). Based on the
obtained results, it is decided that constant models are appropriate
for the copula parameters.

To examine accuracy of the joint probabilistic modelling of
MaxISDR, ResISDR, and PFA at ground floor, simulated samples of
these variables are compared with the IDA results for various seis-
mic intensity levels. The size of simulated samples for a given IM
level is 1000. To evaluate the similarity/dissimilarity of the simu-
lated samples with the original IDA data, the two-sample
Kolmogorov–Smirnov test is carried out at a significance level of
0.1. The null hypothesis is that the simulated samples and the orig-
inal data are from the same probability distribution. For the major-
ity of the cases where sufficient data points are available for
probabilistic modelling, the null hypothesis cannot be rejected.
The exception includes the low IM level cases for which the model
parameters of the marginal probability distributions are not well
constrained. Overall, it is concluded that the marginal distribution
modelling of MaxISDR, ResISDR, and PFA is satisfactory.

Next, performance of dependence modelling for MaxISDR and
ResISDR pairs is examined. For this purpose, three fitted copula
functions, i.e. asymmetrical Gumbel copula, normal copula, and
independence copula, are considered, and scatter plots of
MaxISDR and ResISDR based on the IDA results and simulated sam-
ples at seismic intensity levels of 0.15 and 0.25 g are compared in
Fig. 14. Note that the marginal distribution modelling is identical
for the three cases. Thus differences of the MaxISDR and ResISDR
data pairs are attributed to the copula functions alone.

The results for the asymmetrical Gumbel copula indicate that
the general features of the simulated samples resemble those of
the original data. For some cases, there are ‘unrealistic’ pairs (i.e.
ResISDR exceeds MaxISDR); the boundary between realistic and
unrealistic cases is shown by a dotted line. Typically, 1–4% of the
samples may fall into unrealistic cases (note: although these pairs
are not physically possible, the difference between ResISDR and
MaxISDR is not large, distributed around the boundary line). In
PSRA, such unrealistic cases can be avoided by simply adopting
physically possible MaxISDR–ResISDR pairs only. The results based
on the normal copula show that generally, the upper tail

Fig. 11. MaxISDR–ResISDR scatter plots (original and transformed data) at seismic intensity levels of 0.15 and 0.25 g.

Fig. 12. Curve fitting to mean and standard deviation of EDP parameters: (a) MaxISDR, (b) ResISDR, and (c) PFA.
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characteristics of the original data are captured well. The chance of
generating unrealistic pairs is similar to that for the asymmetrical
Gumbel copula (i.e. typically, 1–4%). When the correlation coeffi-
cient is relatively high, the data points are concentrated along
the diagonal line in the transformed space (Fig. 1); this decreases
the chance of having copula samples in the off-diagonal corners.
Different features of the MaxISDR–ResISDR pairs can be seen in
the lower part of the scatter plots; not many samples are generated
for large MaxISDR and small ResISDR cases (which can occur in real
situations). This is one of the reasons that the normal copula is
associated with larger AIC values in model selection (thus not pre-
ferred). However, this difference may not have major impact on the
calculated seismic loss because large seismic demand cases have
more impact on the seismic loss. Moreover, the results for the inde-
pendence copula indicate that the upper tail characteristics of the
original data are not captured by the simulated samples, and
occurrence of unrealistic pairs is much more frequent than the
asymmetrical Gumbel and normal copulas. Therefore, the indepen-
dence copula is not suitable in PSRA.

4.3. Comparison of seismic loss ratios (IM–DV functions)

To verify that the fitted statistical models produce reasonable
estimates of the EDP parameters, the developed multi-variate seis-
mic demand models (i.e. IM–EDP functions; Section 4.2) as well as
storey-based damage–loss models (i.e. EDP–DV functions;
Section 3.5) are implemented in Monte Carlo simulation. This facil-
itates the construction of IM–DV functions for different types of
seismic failure modes (i.e. collapse, demolition, and non-collapse
damage; Eq. (11)).

The mean IM–DV functions are developed by generating 10,000
samples of (normalised) seismic damage costs for each IM level.
Fig. 15 compares four IM–DV functions for collapse, demolition,
non-collapse loss, and total loss by considering different copula
models (with the demolition damage limit state parame-
ters = [0.03,0.3]) (Fig. 15a) and different demolition parame-
ters = [0.03, 0.5], [0.015, 0.3], and [0.03, 0.5] (Fig. 15b–d). The
comparison of the IM–DV functions for demolition based on differ-
ent copula models shown in Fig. 15a indicates that the IM–DV

Fig. 13. Curve fitting to the Kendall’s s coefficient (a) and the model parameters h and w1 of the asymmetrical Gumbel copula (b and c) (w2 is set to 1).

Fig. 14. Comparison of MaxISDR–ResISDR scatter plots based on the IDA results and simulated samples at seismic intensity levels of 0.15 and 0.25 g by considering the
asymmetrical Gumbel, normal, and independence copulas.
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curves for the asymmetrical Gumbel and the normal copulas are
similar (as expected from Fig. 14), while that for the independence
copula differs significantly from the other cases. For the indepen-
dence copula, more failure cases occur as non-collapse loss, rather
than demolition. This is the consequence due to the independent
characteristics of MaxISDR and ResISDR and the avoidance of unre-
alistic ResISDR samples in simulation. This illustrates the impor-
tance of taking into account a realistic dependence structure of
MaxISDR and ResISDR. The effects due to the adopted demolition
limit state parameters are significant as illustrated in Fig. 15b–d.
When the limit state function is more uncertain (Fig. 15b), the
demolition loss increases by about 10–40%, depending on the IM
level. When the median limit state for demolition is small
(Fig. 15c), the demolition failure mode consists of about 30% of
the entire failures (peaked at around IM equal to 0.22 g). On the
other hand, when the median is large (Fig. 15d), the frequency of
the demolition becomes small (less than 5%) and the collapse fail-
ure mode becomes dominant.

5. Conclusions

This study developed multi-variate seismic demand models
using copulas, and applied them to a 4-storey non-ductile RC frame
in Victoria, British Columbia, Canada. Key hysteretic characteristics
of the non-ductile RC frame were captured in the finite-element
model, which was capable of simulating damage initiation to col-
lapse realistically. The method took into account multiple

damage–loss generation modes due to non-collapse repairs, col-
lapse, and demolition, which were evaluated in terms of
inter-related EDP parameters, i.e. MaxISDR, ResISDR, and PFA. As
the copula method captures upper tail and nonlinear dependence
of key seismic demand variables and facilitates the separate mod-
elling for marginal probability distributions and dependence func-
tions, it is suitable for characterising EDP variables with heavy
right tail whose marginal distributions cannot be represented by
the normal or lognormal distribution (e.g. ResISDR). The seismic
demand parameters were calculated based on IDA; thus the pro-
posed method can be viewed as an extension to current
IDA-based seismic demand estimation methods. Practically, the
developed seismic demand models are useful for conducting
detailed seismic loss estimation studies for a class of non-ductile
RC buildings in Victoria, because up-to-date regional seismic haz-
ard information and ground motion data were also incorporated
as part of model development (e.g. multiple-CMS-based record
selection and updated strong motion database that includes
records from the 2011 Tohoku earthquake). The main results from
the current investigations include that joint probabilistic mod-
elling of MaxISDR, ResISDR, and PFA (at ground floor) was imple-
mented successfully by adopting the Frechet/lognormal
distribution for MaxISDR and PFA and the generalised Pareto distri-
bution for ResISDR, while by adopting the asymmetrical Gumbel
and normal copula functions for MaxISDR–ResISDR data pairs
(note: PFA was modelled independently for the structural model).
The effects of multi-variate seismic demand modelling on the

Fig. 15. Comparison of IM–DV functions for collapse, demolition, non-collapse damage, and total cost by considering different copula functions and demolition damage state
limit parameters: (a) asymmetrical Gumbel, normal, and independence copulas with demolition parameters [0.03, 0.3], and (b) demolition parameters [0.03, 0.5], (c)
demolition parameters [0.015, 0.3], and (d) demolition parameters [0.05, 0.3]. For (b–d), the asymmetrical Gumbel copula is employed.
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expected seismic loss ratios (i.e. mean IM–DV functions) were sig-
nificant. The critical information is the demolition limit state curve
(which was defined more or less arbitrarily in this study). In addi-
tion, the results indicated that consideration of a realistic depen-
dence structure of MaxISDR and ResISDR can be important for
seismic loss estimation as well as for multi-criteria seismic perfor-
mance evaluation (where damage states are defined in terms of
both MaxISDR and ResISDR).
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