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Abstract 

To model the evolution in intensity of an ellipse image along randomly oriented profiles, this paper 

starts with the derivation of an analytical solution involving infinite summations of products of 

Hermite polynomials which is consequently argued to be impractical. Generation of profiles 

adopting Fourier analyses hamper the extraction of arbitrarily located intensity distributions as a 

direct result of equidistant spatial sampling and an alternative procedure is therefore presented to 

calculate the sought-for intensity at isolated spatial locations. The algorithm introduced is based on 

the overlap area between the ellipse and concentric circles which can be performed using basic 

trigonometric properties. The simplicity of the proposed method allows, contrary to Fourier-based 

analyses, the modelling of intensity profiles with high resolution while demanding minimal 

computational memory. The proficiency of the method is demonstrated numerically and its 

generality and applicability to real images in terms of motion-induced image blurring and 

digitisation is discussed. 

Keywords: Convolution, diffraction, ellipse, FFT, Hermite polynomial, blur. 

1. INTRODUCTION 

Ellipse detection is recognised as a key problem in image processing and has been 

consequently the focus of many research papers. Ellipses have a direct application 

in the field of camera calibration1,2 and many of the real world problems involving 

motion tracking can be simplified by decomposing objects into this geometric 

primitive3-5. Although the majority of detection algorithms are based on recorded 

intensity patterns, be it in terms of Hough transforms6, intensity gradients7 or higher 

order derivatives8, so far neither an inherent analytical model of the ellipse image 

nor an easy way of modelling intensity profiles has to the best of the author’s 

knowledge been presented. While analytical models exist for the straight edge-

response function9 involving the error-function, an analytical solution is not as 

straightforward for curved edges. 
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As will be shown in the remainder of this paper, the evaluation of derived analytical 

models quickly becomes computationally ineffective which can be considered a 

strong argument why the posed problem has received surprisingly limited attention. 

However, this paper sets out to present a simple approach to model recorded 

intensity profiles related to the imaging of an ellipse. It is stressed that the objective 

is to retrieve intensity values at prescribed locations or along randomly distributed 

profiles with user-defined resolution.  

The paper starts with a recapitulation of the imaging process and moves on to the 

derivation of an analytical model for the ellipse image. After summarizing 

elementary geometrical properties of the circle-ellipse intersection, a simplification 

of the posed problem is presented. In particular, it is shown that the convolution 

operation inherent to the image formation can be described as a weighted 

summation of overlap areas between circles and the ellipse in question. The validity 

of the obtained derivations is ascertained by a numerical assessment based on 

comparison with traditional FFT based methods. The effects of image digitisation 

and out-of-focus imaging are discussed and shown not to affect the validity or 

applicability of the proposed method. Finally, the conduciveness of the new routine 

is ascertained on the basis of an experimental application involving the imaging of 

ellipses of varying eccentricity at different degrees of focussing. Conclusions 

finalise the paper. 

2. Incoherent Image Formation 

The incoherent imaging process yielding the analogue intensity distribution IA(x,y) 

is mathematically described as the convolution (symbolised by ) between the 

object P(X,Y) projected onto the image plane and the Point Spread Function 

Sdif(x,y). Coordinates in the object plane are symbolised by (X,Y) and are related to 

the image coordinates (x,y) by the magnification M. 
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The Point Spread Function (PSF) is characteristic of the lens system and takes the 

form of the Airy irradiance distribution10 for diffraction-limited incoherent imaging 

through a circular aperture of diameter DA, which will be assumed throughout the 

rest of the paper; 
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where k=DA/f and 2=x2+y2. The constant I0 is a proportionality constant,  

represents the light wavelength, f is the focal length of the lens and Jn(∙) is the nth 

order Bessel function of the first kind. The radial position A≈1.22∙/k of the first 

minimum of Sdif(x,y) is generally considered as the Airy disk extent containing 

approximately 84% of the total incident light energy11. A generally accepted 

simplification is to model the irradiance pattern by a Gaussian12 with equal value at 

=0; 
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where 
k

w 2  and wA  71.2 .  

The assumption of a Gaussian-model for the PSF is not limited to ideal optics 

though. Claxton and Staunton13 have shown that the PSF of a focused lens subjected 

to diffraction effects and optical aberrations retains similarity with a Gaussian. 

Pentland14 also argues that defocussing can effectively be modelled as a Gaussian 

shaped PSF. Even considering the top-hat shaped kernel related to motion-blur15, 

the Gaussian retains validity as will be shown in the experimental application in 

section 7. For simplicity the notation Sm
dif is kept although it should be noted that 

in these cases the Gaussian variance w will not be related solely to diffraction. This 

will not restrict the generality of the proposed methodology as no explicit 

expression for w is required hereafter.  

3. Analytic Incoherent Ellipse Image 

In this paragraph an analytical expression describing the intensity distribution 

related to the imaged ellipse with incoherent point sources is deducted. The 

projection of an ellipse onto the image plane will remain elliptical with semi-axes 

a and b. Without loss of generality, the projection is assumed to be centred on the 

origin of the image coordinate system (x,y) allowing the object image P(x,y) to be 

defined as  
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A convolution in space (x,y) can be rewritten as a multiplication in the spectral 

domain (u,v), by which the exact expression (1) is transformed into Fourier 

constituents; 
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(5) 

where the Fourier transform of the ellipse equals 



 )(
),)}(,({ 1J

abvuyxP    (6) 

and 22 )()( bvau  . The Fourier transform of the PSF defined in (2), i.e. the 

Optical Transfer Function (OTF) of the lens, can be determined as the auto-

correlation of the scaled lens’ pupil function  
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The modelled irradiance pattern allows on the other hand a more manageable 

expression  
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Combining (6) and (8) into (5)  
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(9) 

The double integral in (9) can be further simplified by writing the Bessel function 

as a summation 
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using the identity 
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and defining the nth degree Hermite polynomial Hn(x) as 
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resulting in  
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(13) 

Equation (13) provides an analytical expression of the intensity distribution 

inherent to the incoherent imaging of an ellipse assuming a Gaussian shaped OTF 

of the lens system. From a practical perspective, accurate numerical evaluation of 

(13) is neigh impossible due to the double infinite summation of Hermite 

polynomials. According Boyd16 Hn(x) is bounded by (n!)1/2∙exp(½x2) indicative that 

the importance of the terms in the summation in (13) grows with n and that 

consequently all terms must be considered making the procedure computationally 

expensive. In addition, with increasing argument or polynomial degree accuracy 

will decrease as a result of limited machine precision.  

Evaluation of (1) or (9) can alternatively be performed by means of routines based 

on Fast Fourier Transforms17 (FFT) as per equation (5). In this case pseudo-images 

of P and Sm
dif are generated at a certain resolution, Fourier transformed, multiplied 

and the result is transformed back into the spatial domain. Because of finite 

computer memory the potential number of spatial samples and extent of the spatial 

domain (i.e. size of the pseudo-images) will be limited. Both Fourier transforms in 

(6) and (8) have infinite spectral extent however. The accompanying truncation in 

frequency domain and the under-resolved spectra will inevitably introduce aliasing 

artefacts and reconstruction errors. A similar reasoning applies to the re-

transformation of (9) to coordinate space. Such inaccuracies will be independent of 

elliptic eccentricity and especially prominent for small ellipse radii or small w. 

Moreover, the 2D intensity distributions obtained through FFT analyses are only 

defined at discrete, regular spaced locations. If the interest lies in well-resolved 1D 

intensity profiles along arbitrary direction, FFT will become too memory 

consuming due the needed increased sampling and consequently inefficient. This 

will be demonstrated by a numerical example in section 5. For this reason, a simple 

method to calculate the intensity at a single spatial location is presented in the 

following, allowing the calculation of intensity profiles along any direction at a 

predefined resolution. 
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4. Geometric Interpretation of Convolution 

4.1 Principle 

In the following an alternative to (9) and (13) is suggested focusing on increasing 

resolution in intensity profiles while limiting computational effort. The approach is 

inspired by Verbeek and van Vliet18 where the accuracy of higher order derivative 

based edge detection methodologies is assessed. The fundamental principle is the 

equivalence between the convolution (PC)(x,y) and the overlap area A(xc,yc,l) 

between the ellipse image (4) and circle C(xc,yc,l)  
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The concept is accordingly to represent the normal distributed irradiance Sm
dif(l) as 

a stack of concentric pillboxes of height dSm
dif and monotonic radius distribution 

l(Sm
dif), allowing the convolution (PSm

dif)(x,y) to be expressed as a summation of 

overlap areas for circles of different radii (Fig. 1); 
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(15) 

As an example, in case of a straight edge defined as P(x,y)=0 for x>0 and P(x,y)=1 

if x≤0, the overlap with a circle of radius l centred on (xc,yc) is readily given as  

222 )arccos(),,( ccl
x
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(16) 

which after substitution of (16) and dSm
dif/dl=-l/w2∙exp(-l2/2w2) in (15) yields the 

well-known edge spread function involving the complementary error function9; 

)(),(
20

2

, w

x

ccmA
cerfcIwyxI 

 
(17) 

4.2 Ellipse Edge 

In case of an object with continuous variation in curvature, such as an ellipse, there 

exist at least two radii, lt,min and lt,max (Fig. 2), for any position (xc,yc) such that the 

corresponding concentric circles will have exactly one tangent point with the 

ellipse. The integral bound in (15) can accordingly be partitioned and with Sm
dif(x,y) 

as defined in (3) follows 
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Equation (18) is graphically presented in Fig. 1 with the individual terms T1, T2 and 

T3 indicated. 

In (18), c is the radial position of the circle with respect to the ellipse and e() is 

the ellipse radius along the angle ; 
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with =arctan(yc,xc). The incomplete gamma function (a,x) in T1 is given by  
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(20) 

For sufficiently large lt,max T3 equals zero. For this reason a radius l can be 

introduced for which |dSm
dif(l)/dl|=; 
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where W-1(∙) is the -1-branch of Lambert’s W function and  approaches zero (≈10-

20). Combining (21) and (18) then allows a further simplification; 
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(22) 

Comparison between (1), (9) and (22) reveals that the double integral is reduced to 

a single integration in radial direction where lt,min, lt,max and A(xc,yc,l) are still to be 

determined. While terms T1 and T3 in (18) and (22) are exact expressions, T2 must 

be approximated by conventional numerical integration techniques. Currently the 

Simpson’s Rule approximation is incorporated yielding evaluation errors in the 

order of O(dl4) with dl=[min(l, lt,max)-lt,min]/N and N typically 103. 
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Note that by repeating the above procedure for ellipses with semi-axes a+t, b+t 

and a-t, b-t and subtracting the obtained intensity distributions, the intensity 

profile across an ellipse-shaped line of thickness 2∙t can be obtained. 

4.3 Tangent Circles 

Given a circle location (xc,yc), the approach of Emiris and Tzoumas19 allows the 

calculation of the tangent circle radii lt as the roots of the quartic polynomial 
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where 1=a2+b2, 2=a2b2, 3=b2xc
2+a2yc

2-2 and 4=2(xc
2+yc

2-1). The maximum 

and minimum in the obtained lt values then represent lt,max and lt,min respectively. 

4.4 Circle Ellipse Overlap 

For any radius lt,min≤l≤lt,max the intersection between a circle and ellipse centred on 

C and O respectively yields either two or four instances (Fig. 2). The x and y 

coordinates of the intersection points readily follow as the roots of two quartic 

polynomials20 obtained by simultaneously solving (4) and (14) for either 

coordinate. Note that in case of a tangent point, two of the four roots will be 

identical. The overlap area A(xc,yc,l) can now be defined based on simple Euclidean 

trigonometry.  

The straightforward calculation of the overlap area in case of two intersection points 

P1(x1,y1) and P2(x2,y2) where 1≤2 and i[0,2] consists of the sum of the circular 

arc segment area cA12  and the elliptical segment area eA12  subtracted by triangular 

area tA12 . The individual area contributions are readily given by 
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)( 12212   abeA   (26) 

with ))tan(arctan( ib
a

i    and i[0,2]. Depending on the relative positions of the 

points Pi and ellipse/circle origins the variation in area contributions defined above 

must be accounted for. Firstly, the limiting angle lim and radius llim are introduced 

symbolizing the maximum angle spanned between vectors OP1 and P1C and 

corresponding radius respectively. Note that llim represents the circle radius for 

which the intersection points are collinear with O. 
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The actual angle is denoted by  and evaluated as 
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Equations (20)-(25) are combined into a single parameter  defined as 
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Next, parameter  relating the relative linear distances from the midpoint of vector 

P1P2, (xm,ym), through C to the ellipse and circle is defined as 
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with 122 )(1  yxc  , x=xc-xm and y=yc-ym. Variable e is the largest real root 

of the second order polynomial c20+c21e+c22e
2=0 with coefficients 

c20=(xm/a)2+(ym/b)2-1, c21=(2xmx/a
2)+(2ymy/b

2) and c22=(x/a)2+(y/b)2
. Finally, 

the general expression for the overlap area A(xc,yc,l) in case of two intersection 

points is given by 
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For the case of four intersection points, derivations in the following assume the 

sequence of corner points Pi to be arranged according increasing angle i and to be 

cyclic i.e. P4+i=Pi. The area of the trapezoid defined by the points Pi consists of the 

combined area of the individual triangles P1P2P3 and P1P3P4 (Fig. 2). For each side 

of the trapezoid, arc segments and triangular areas are calculated applying equations 
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(24) to (26). Similar to the previous case additional parameters are needed to 

evaluate the relative point positions. Let i=arctan(yi-yc/xi-xc) denote the angle of 

point Pi with respect to the circle centre C with i[0,2] and define i as 1 if i+1-

i> or 0 else. Let xi=xmi-xmi+2, yi=ymi-ymi+2, xi=xmi+2-xc and yi=ymi+2-yc with 

midpoint coordinates xmi=½(xi+xi+1) and ymi=½(yi+yi+1). Parameters ci and ei are 

then the largest real roots of the polynomials 02
323130  ci
i

ci
ii ccc   and 

02
424140  ei
i

ei
ii ccc   respectively defined by the coefficients c30

i=xi
2+yi

2-l2, 

c31
i=2xixi+2yiyi, c32

i=xi
2+yi

2, c40
i=b2xmi+2

2+a2ymi+2
2-a2b2, 

c41
i=2b2xmi+2xi+2a2ymi+2yi and c42

i=b2xi
2+a2yi

2. The obtained roots are 

combined in parameter i, which equals 1 provided ei≤ci or 0 else.  

The overlap area between the circle and ellipse in case of four intersection points is 

then given as 
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(33) 

4.5 Implementation 

The stepwise algorithm is presented in pseudo code below, substantiating the 

advocated simplicity. Only inputs consist of the point location (xc,yc) of interest, 

ellipse semi-major axes a and b and the standard deviation w of the PSF Sm
diff. The 

author would like to emphasise that the implementation below is by no means 

restricted to ideal imaging or continuous images. The only assumption is the PSF 

to follow a normal distribution, which has been argued in section 2 to be a valid 

generalisation. No definition of w is required. The choice of (xc,yc) is free and can 

be selected to coincide with discrete instances as in digital images. Subsequent 

calculations are performed in continuous space but are unrelated to the image type 

and only reflect the continuous nature of the real-world imaging process. 

Consequently, image properties such as digitisation level and image size will not 

affect the method. 

 

calculate lt,min, lt,max, l, llim, lim, e(), c, T1, T3 

initialise n=0 

for l from lt,min to lt,max 
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 calculate dSm
diff/dl 

 update n=n+1 

 solve quartic to calculate intersection points Pi between (4) and (14) 

 sort Pi according increasing i 

 if #Pi=2 

calculate e(1), , , c, e, , cA12
, tA12

, eA12
, A  

  update T(n)=A∙dSm
dif/dl 

 elseif #Pi=4 

  calculate tA123 , tA134  

  for i from 1 to 4 

   calculate i, i, ci, ei, i, c
iiA 1

, t
iiA 1

, e
iiA 1

 

  end 

  calculate A 

  update T(n)=A∙dSm
dif/dl 

 end 

end 

calculate T2 using T (numerical integration) 

calculate IA,m(xc,yc) = T1+T2+T3 

 

5. Numerical Assessment 

A generic example is presented in Fig.3 where the radial intensity profile across the 

ellipse semi-major axis is depicted based on (9), i.e. adopting Fast Fourier 

Transforms. To avoid errors due to truncation of the PSF, the spatial domain 

considered extended from the ellipse boundaries by ten diffraction diameters and 

sampled by NFFT points. Obtained results are consequently representative for a 

constant frequency resolution but increasing sampling frequency 

fs=NFFT∙[2∙a∙(1+10∙w)]-1(read spectral extent). The author would like to emphasise 

that intensity profiles along angles different from multiples of /4 radians are 

impossible to obtain directly from FFT analyses due to the mismatch between the 

extraction line and original equidistant (pixel-) samples. The exact solution is 

represented by the proposed method where calculations are performed by dividing 

the considered domain [a-10∙w, a+10∙w] into 103 sections.  
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With increasing sampling frequency the discretisation and edge localisation of the 

intensity profile based on FFT analyses improves. Obtained results tend to the exact 

solution (solid line) only asymptotically proving the proposed method to be correct. 

The figure further substantiates poor sampling to lead to poor edge representations 

and erroneous edge localisation. Fig.3 further indicates an evident discrepancy 

between edge spread functions (ESF) across curved and straight edged objects 

(dotted line). It is well known that as a direct result of the local curvature of the 

imaged object a bias will be introduced in the edge localisation towards the centre 

of the ellipse. This is visible as a shift between the ESFs.  

Provided sampling is adequate, the maximum discrepancy max between the exact 

and FFT-based profiles depicted in Fig.4, is indicative of the degree of accuracy. 

As expected, discrepancies tend to decrease with increasing number of points 

considered in the FFT analyses and increasing normalised diffraction spot diameter 

w/a. 

Regarding computational effort, the pseudo code was implemented on a desktop 

PC (dual-core @2.67GHz, 4Gb RAM) in the commercial software package Matlab 

without further efforts to optimise the computational speed. Integrals were 

calculated adopting Simpson’s rule utilising 103 intermediate steps. The resulting 

computation time amounted to 0.2 seconds per sampling point and was partitioned 

in the solution of the quartic equation (4%), evaluation of the Lambert function   W-

1 (25%) and the calculation of the overlap areas (65%). The ratio in computation 

time between the FFT-based methodology (tFFT) and proposed method (tcurrent) is 

depicted in Fig.5 as a function of NFFT, imposing identical number of points across 

the methods to equal the spatial resolution. For NFFT≤212 the ratio increases quasi-

linearly implying the traditional method to be more computationally efficient as can 

be expected from the use of Fast Fourier Transforms. However, the poorer sampling 

drastically compromises the accuracy of the FFT-based method (Fig.4) whereas the 

convolution-based algorithm safeguards accuracy independent of NFFT. The 

concomitant requirement that images are NFFT
2 pixels2 in size increases memory 

usage and may become sufficiently restrictive to favour the new method. Fig.5 

effectively indicates that for NFFT=8192 the proposed method offers a gain in speed 

by a factor 10. This is an important finding. First the current technique takes the 

spatial distance between the profile points as an input and is therefore the method 

of choice when well-resolved profiles are needed. Second, the convolution based 
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calculation of the intensity profile may be more intense when requiring less spatial 

resolution but, contrary to the traditional methodology, does not compromise 

accuracy. Third, increasing computing power will not aid the conventional models 

but would instead make the proposed technique even more attractive given its 

computational simplicity. Even with enhanced computational performance, 

analyses invoking FFT cannot extract intensity profiles along random directions, 

contrary to the proposed method. 

6. Generalisation: Image Blur and Digitisation 

The PSF can be accurately modelled as a Gaussian even in the presence of lens 

aberrations and out-of-focus imaging, In the following it will be argued that the 

above modelling methodology can be easily adopted to include image blur due to 

motion and pixelisation effects. 

The PSF Smb in case of motion blur can be represented again as a pillbox of diameter 

Db
 15 which, following the previous analyses and noting that the result must remain 

axi-symmetric yields the combined response of the blurring system Sm
c; 
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(34) 

Because the combined PSF Sm
c is a monotonic function in radius l, equation (18) 

can still be used to calculate the imaged ellipse with the following substitutions  
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Equation (37) is valid provided c≤e or T1=0 otherwise. Because of missing 

explicit analytical solutions21, the infinite integrals (34)-(37) can only be evaluated 
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numerically by means of efficient algorithms22. Consideration of motion-induced 

blur with the presented methodology is consequently feasible though 

computationally more intense than conventional imaging (including blur and lens 

aberrations). 

The continuous image intensity distribution IA(x,y) is commonly discretised with an 

electronic imaging device (typically a CCD camera), integrating the light intensity 

over small sensor areas referred to as pixels. The pixels are characterised by their 

size  and the relative fraction p2 of the total pixel area that is light sensitive23. The 

generated electronic charge, and therefore the recorded light intensity, is assumed 

to be directly proportional to the incident light intensity. The digitisation can be 

represented as a convolution of IA(x,y) with the pixel-dependent sampling function 

(x,y) followed by discretisation with the Dirac function (s,t). With (1) and 

using the associative property of the convolution operator the digitisation process 

can be reformulated still involving a continuous diffraction-related PSF 
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



 




else0

||,||
),( 2

1
2
12 yx

yx

 

(39) 
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where (xn,yn)=(x/p,y/p), =p/w and erf is the error function. The maximum 

variation in normalised Sm,D
dif(,) with respect to the angular mean S() as a 

function of -1 is depicted in Fig.5(a). Fig.5(b) presents the random mean square 

(rmsfit) and mean error (fit) between the angular mean S() and its Gaussian fit 

with variance fit
2. The figures indicate angular variations in Sm,D

dif to decrease with 

increasing w/p ratio and to be marginal overall. Together with fit/w deviating only 

slightly from unity for w/p>1, Sm,D
dif(,) can be assumed axi-symmetric and be 

well approximated by the original irradiance distribution Sm
dif(). The proposed 

method to derive intensity profiles is thus argued to retain its validity in case of 

digital images provided diffraction disk diameters are in excess of approximately 
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one pixel. The applicability of the presented technique is thus ensured considering 

the tendency of decreasing physical pixel size in digital camera development. 

Discretisation consequently only implies the evaluation of the convolution between 

object P(x,y) and modified PSF at discrete spatial (i.e. pixel) locations as indicated 

by (38). 

7. Experiment 

An experiment was performed to test the validity of the proposed modelling 

technique. Images of ellipses of varying eccentricity (a=70mm, b/a=0.071 and 

b/a=0.286) were recorded by means of a standard Canon EOS 10D digital camera 

(3072×2048pix2, 24 bit depth, Δ=7.38μm) equipped with a fixed 28mm focal length 

lens and f-stop set at 5.6. By increasing the distance between the camera and ellipse 

blur due to out-of-plane focus was varied. In the following, once focused the 

distance was increased by a factor 1.33 (Fig.7(a)). The variance of the PSF, i.e. w, 

was in each case derived by fitting the intensity profiles across the rectangular 

blocks with the analytical edge spread function defined in (17) as illustrated in 

Fig.7(b). These rectangles further allowed the determination of the conversion 

factor between millimetre and pixels. Radial intensity profiles for the ellipses were 

extracted along the major semi-axis using quintic B-spline interpolation24 to enable 

comparison with the conventional method. FFT analyses were performed using 

NFFT=2048 yielding an normalised resolution Δx/w=2∙(a/w+1)∙NFFT
-1.  

Fig.8(a-d) compares the measured and calculated normalised intensity profiles, 

Inorm=(I-Imin)∙(Imax- Imin)
-1, for varying imaging conditions and the theoretical Edge 

Spread Function (17). For the larger in-focus ellipse (w/a=2.13∙10-3, b/a=0.286) 

both the ESF and current method provide a profile corresponding to the real image, 

whereas a discrepancy can be observed with the FFT method as per the numerical 

example in section 5 (Fig.4). In addition the FFT-based method yields an edge 

profile with a spatial resolution approximately equal to that of the original image 

(Fig.8(a)). The current method on the other hand yields a resolution Δx/w=20/103, 

equalled by the FFT-based method for NFFT=35065. This would impose a severe 

penalty on memory usage (cf. Fig.5). Consequently, the proposed method based on 

convolution provides a more accurate basis for edge localisation. A similar 

conclusion can be drawn for the more eccentric ellipse (Fig.8(b)), where it can be 

noted that neither the ESF nor the FFT-based date coincide with the current method, 
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although the latter continues to follow the real-life intensities. Increasing the 

distance between the object and camera (without re-focussing) widens the ESF. The 

blurred ellipse edge concomitantly becomes better resolved by the FFT-based 

method and discrepancies with the current method become marginal. Both 

methodologies agree with the real intensity distribution (Fig.8(c)). The ESF on the 

other hand becomes less suitable as a model, which is clearly visible when 

increasing the eccentricity of the ellipse (Fig.8(d)). These findings support the 

conclusions drawn from the numerical assessment. Furthermore, for in-focus 

images w amounted to approximately 2.5 pixels, thus allowing the PSF due to 

pixelisation to be well approximated by the normally distributed PSF as suggested 

in section 6. The current experiments corroborate this supposition since the 

proposed method is shown to provide intensity profiles in very close agreement 

with those obtained from the digital images.  

8. Conclusion 

In this paper an analytic expression is derived describing the intensity of an imaged 

ellipse. Because the solution to the mathematical model is impractical to evaluate 

one must resort to numerical techniques. Routines based on FFT analyses to predict 

intensity profiles only provide intensity values at discrete, regularly spaced intervals 

and are therefore inappropriate to model randomly oriented intensity profiles. An 

alternative method to calculate the image intensity at a particular point is presented 

in this paper, modelling the Point Spread Function by a Gaussian. The proposed 

technique involves the stepwise application of basic Euclidian trigonometry, 

advocating its simplicity. This method allows the prediction of image intensities 

along any line with predefined spatial resolutions previously impossible to obtain 

from FFT-based analyses due to involved memory costs.  

Numerical assessment has indicated the advantages of the routine with respect to 

FFT analyses in terms of accuracy and resolution, especially for small diffraction 

spot diameters. While the described methodology considered a continuous Point 

Spread Function, the method is argued to retain its validity in case of pixelisation 

effects in digital images provided diffraction disk diameters are in excess of 

approximately one pixel. This has further been supported by experiments. It is in 

addition shown that the technique can be easily extended to incorporate motion-

induced image blur.  
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Experiments have further shown the proposed method to consistently yield intensity 

profiles across the ellipse edge nearly identical to those recorded by a digital 

camera, contrary to the analytical Edge Spread Function. Unlike the FFT-based 

method the current routine does not compromise between accuracy and 

computational effort.  

Overall, the method is thought to be an effective alternative tool in image processing 

as it enables the accurate modelling of ellipse images allowing more accurate 

evaluations of intensity profiles and hence intensity or derivative based edge 

detection schemes.  

Because the fundamental concept is to represent the PSF as a series of pillboxes, 

the proposed method can be extended to incorporate geometric features other than 

ellipses. In this case only a redefinition of the overlap areas is required. This is part 

of future work. 
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Fig. 1: Equivalence of convolution with Sm
dif(l), assumed to be normally distributed, as a summation 

of concentric cylinders as expressed in (18). The minimum and maximum radius of the tangent 

circles are denoted by lt,min and lt,max. 

 

 

 

(a) (b) 

Fig. 2: Parameter definition in ellipse circle overlap area in case of (a) two and (b) four intersection 

points.  

 

 

Fig. 3: Generic radial edge intensity profile along the ellipse semi-major axis as obtained by FFT 

evaluation of (9) for varying sampling frequency. 
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Fig. 4: Evolution of maximum discrepancy between FFT-based intensity profiles and proposed 

methodology with varying diffraction spot diameter and sampling points. 

 

 

Fig. 5: Evolution in computation time ratio between FFT-based intensity reconstruction and the 

current convolution-based method with number of samples considered (both methods apply the 

same number of points). 
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(a) (b) 

Fig. 6: (a) Evolution of maximum normalised angular variation in Sm,D
dif and (b) fitting error in 

function of -1=w/p. 

 

 
 

 

 
(a) (b) 

Fig. 7: (a) Test images of ellipses to assess the suitability of the proposed intensity model - Top - 

b/a=0.286, w/a=0.00213. White lines indicate the profile extraction locations - Bottom - 

b/a=0.0714, w/a=0.00986 (b) Analytical and measured ESF from the ellipse depicted in (a)-Top.   
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(a) (b) 

  
(c) (d) 

Fig. 8: Measured and simulated intensity profiles across the ellipse major semi-axis as obtained from 

the analytical ESF (17), FFT-based analysis (NFFT=2048) and new proposed method. Thicker ellipse 

(a) in-focus (cf. Fig.7(a)-Top) and (c) out-of-focus. Thinner profile (b) in-focus and (d) out-of-focus 

(cf. Fig.7(a)-Bottom).   

 


