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Abstract

In this paper a number of related linearised water wave problems all involving thin submerged horizontal plates are considered. An

integral transform approach is adopted and used to formulate integral equations in terms unknown functions related to the jump in

pressure across the plate. A Galerkin method is applied to the solution of these integral equations leading to elegant expressions for

quantities of interest and a rapidly convergent numerical scheme. The focus of the paper is to demonstrate the application of this

method in a number of settings including both two-dimensional problems applied to infinitely-long plates of constant width and

three-dimensional problems involving circular discs. In the process we present new results including, for example, for wave-free

forced oscillations of plates.

Keywords: Thin submerged horizontal plates, wave diffraction, wave radiation, integral equations.

1. Introduction

In this paper a number of problems relating to the interactions of surface gravity waves with thin horizontal plates

are considered under the assumptions of linearised wave theory. These include: (i) the scattering of oblique waves

by a plate of constant width; (ii) radiation from forced motion of plates and (iii) the scattering of waves by a circular

plate. The main purpose of the paper is to demonstrate a new approach to solving a general class of problem involving

thin submerged horizontal plates which has some advantages over existing solution methods.

The interaction of surface waves with submerged thin horizontal plates has been the subject of numerous studies

over the past decades partly due to its potential application as either a submerged breakwater or underwater lens

and partly because of an intrinsic interest in methods for solving boundary-value problems involving thin structures.

Alongside numerical and experimental investigations, many different analytical solution methods and approximations

have been developed. Some of the studies relevant to the current work will be listed below; many others are cited

within these references.

Some solution methods are specific to the water depth being finite. For example, the popular eigenfunction

matching method divides the fluid domain into four rectangular subdomains: above and below the plate and to the

left and right of the plate. Expanding the velocity potential in each subdomain in terms of separation solutions and

then matching velocities and pressure across common vertical boundaries leads to infinite systems of linear algebraic

equations which can solved numerically by truncation. See, for example, McIver [1] or Mahmood-ul-Hassan et al [2].

As is often the case with so-called eigenfunction matching method, this approach is numerically intensive, requiring

large series truncation sizes for modest levels of accuracy. This can be attributed to the fact that the method does
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not explicitly take account of an essential requirement of the problem relating to the behaviour of the fluid at special

points within fluid domain, in this case at the edges of the thin plates.

A variant of the eigenfunction matching method (in that it is based on the same domain decomposition) is the

modified residue calculus approach (for a general description see Linton & McIver [3]) which does account for the

specific behaviour at the edges of the plate. This sophisticated method gives identical results to those found from the

Wiener-Hopf technique when applied to the problem of a semi-infinite plate where solutions are explicit (e.g. Greene

& Heins [4], Heins [5]); this equivalence is explicitly demonstrated in Williams & Meylan [6].

For plates of finite length, Fernyhough [7] and Linton [8] showed that the residue calculus method results in sys-

tems of equations that are exponentially convergent. Additionally, when truncated to leading order, they are equivalent

to a wide-spacing result which connects the scattering effects from the two edges of the plate using propagating waves

only, assuming each edge is characterised by the scattering from a semi-infinite plate.

Alternative approaches include using Greens functions either in finite or infinite depth (see, for example, Linton

& McIver [3]) where certain types of integral equation can be formulated. The main difficulty lies in how the integral

equations are solved, and this is expanded upon further below.

There are also a number of approximations that are used. The wide-spacing approximation referred to above (e.g.

McIver [1]), Linton & McIver [3]) is accurate when the wavelength over the plate is much less than the length of the

plate. The shallow water approximation of Siew & Hurley [9] based on matched asymptotics accurately captures the

solution in the long wavelength limit.

The method of solution presented here involves the use of either Fourier or Hankel transforms to formulate integral

equations for functions related to the unknown jump in pressure across the plate. It is natural to consider transform

methods when considering problems which possess coordinate-aligned geometry as is present here. The solution is

approximated accurately and efficiently by use of a variational approach (Galerkin’s method) in which the unknown is

expanded in an orthogonal basis which incorporates the anticipated square-root behaviour in the pressure jump at the

edges of the plate. Quantities of interest in the problem are readily expressed in terms of inner products involving the

solutions to the integral equations and, consequently, are second order accurate due to the variational approximation

adopted.

Perhaps unsurprisingly, there are a number of similarities in the approach presented here and methods based

upon Greens functions referred to above. The present approach sets itself apart from previous work primarily in the

way various equations are organised. The integral equation that is derived in this paper resulting from a transform

approach is equivalent to the integral equation resulting from the use of a Greens function once its integral transform

representation had been used. The introduction of a transform variable, either from the outset or, later, in a Greens

function representation, is crucial to the present development and the ordering of domain and transform integrals allow

the integral equation to be handled ‘normally’. If the order of domain and transform integrals are reversed, the integral

equations become hypersingular and immediately requires special attention. Hypersingular integral equations emerge

naturally in the application of Green’s functions to thin plates and can be dealt with by developing the appropriate

machinery (e.g. Parsons & Martin [10], Parsons & Martin [11], Farina & Martin [12]) or by using ‘regularisation

methods’ which integrate away the hypersingularity by switching normal to tangential derivatives to leave weakly

singular integral equations (e.g. Porter [13]). This latter approach has some common features with the work of Grue

& Palm [14] and Song & Faltinsen [15], for example, who use distributions of point vortices around submerged

plates to formulate non-singular integral equations which are solved numerically after expanding the unknown vortex

strength in terms of Fourier series. Many of the Greens function approaches described above have the advantage that

they have been applied more generally to geometries where transforms are not appropriate. However, the main point

of the present work is to demonstrate that this machinery is not necessary for the class of problem considered here.

In addition to the issue of the organisation of integral equations, we also show how it is possible to extract the

dominant logarithmic singularity embedded in the integral equation, thus rendering it an integro-differential equation.

Again, connections can be made to approaches described in the previous paragraph. For instance, the removal of the

logarithmic singularity (the main component of the Greens function) is an essential part of the hypersingular integral

equation approach, whilst the harmonicity of the function ln(r) (r being radial distance) allows a switching of deriva-

tives, and this bears some similarity to operations within the work of Porter [13], Grue & Palm [14]. The Galerkin

method, too, is reminiscent of Porter [13], Grue & Palm [14] and some of the results used in the development of the

numerical system of equations have similarities with the work on hypersingular integral equations although the body

of work described in Parsons & Martin [10], Parsons & Martin [11], Farina & Martin [12] opt for collocation instead
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of Galerkin methods. Farina & Martin [12] acknowledge that Galerkin methods are likely to provide simplication

when their general method was applied to simplified geometries and they may well have anticipated a formulation

similar to the one derived here. In particular they quote the work of Krenk & Schmidt [16] whose transformed-based

integral equation coupled to a Galerkin approximation applied to circular disks in elasticity is essentially the same

illustrated here for submerged disks in the water wave problem.

A by-product of the current approach is the development of an explicit long wavelength approximation to wave

scattering by submerged horizontal plates, formally valid in κa ≪ π where κ will come to represent the wavenumber

of travelling waves over the plate. This new approximation complements existing approximations which include the

long-plate (or wide-spacing) approximation, formally valid for κa ≫ π and the shallow-water approximation. The

performance of these existing approximations is described in McIver [1] and is not a focus of attention here.

In Section 2, the scattering of waves by a fixed plate is considered in finite depth. The case of infinite depth is also

found explicitly by letting the depth tend to infinity. Results are shown for reflection and transmission coefficients,

demonstrating the rapid convergence of the numerical approximation with increasing number of terms in the series.

In Section 3 the modification to the formulation is presented in the case of radiation of waves by the forced motion of

the plate. Here we demonstrate that plates in heave or roll motions about the plate centre can produce local wave-free

oscillations, and that off-centre rolling plates can radiate waves in one direction only. In Section 4 an integral equation

formulation is derived for the three-dimensional extension of the plate to a submerged horizontal circular disc. There

are some differences, particularly in the numerical solution method although the final numerical systems of equations

are remarkably similar to that required in the two-dimensional problem.

2. Scattering of oblique waves by a submerged plate of constant width

Cartesian coordinates are used with z = 0 in the mean free surface and the fluid extending into z < 0. A thin

horizontal plate is submerged to a depth d in water of depth h. The plate extends horizontally from x = −a to x = a

and uniformly in the y direction. Assuming time-harmonic incident waves of angular frequency ω making an angle θ

with respect to the positive x direction, the governing equation to be satisfied by the velocity potential φ(x, z) is

(∇2 − β2)φ(x, z) = 0, z < 0 (1)

where β = k sin θ where k is the positive root of the dispersion relation

ω2/g ≡ K = k tanh kh. (2)

The velocity field is reconstructed from the gradient ofℜ{φ(x, z)ei(βy−ωt)}. In addition to (1), on the free surface

φz − Kφ = 0, z = 0 (3)

and on the lower boundary of the fluid,

φz = 0, z = −h. (4)

The condition to be applied on the plate is

φz(x,−d±) = 0, |x| < a. (5)

We also define

φ(x,−d−) − φ(x,−d+) =

{
0, |x| ≥ a

P(x), |x| < a
(6)

and potential theory requires that P(x) ∼ C±(a2 − x2)1/2 as |x| → a for constants C±. In the case of infinite depth (2)

holds in the limit h→ ∞ giving k = K, and (4) is replaced by

|∇φ| = 0, z→ −∞. (7)

Finally radiation conditions are required as |x| → ∞. We write

φ(x, z) ∼

φinc(x, z) + Rφinc(−x, z), x→ −∞
Tφinc(x, z), x → ∞

(8)
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so that R and T are the complex reflection and transmission coefficients and

φinc(x, z) = eiαxψ(z) (9)

where α = k cos θ and

ψ(z) =

{
cosh k(z + h), (finite depth),

eKz, (infinite depth).
(10)

The Fourier transform of the scattered part of the potential is defined by

φ(l, z) =

∫ ∞

−∞
(φ(x, z) − φinc(x, z))e−ilx dx (11)

having the inverse

φ(x, z) = φinc(x, z) +
1

2π

∫ ∞

−∞
φ(l, z)eilx dl. (12)

where the contour of integration in the inverse transform will be defined in order to satisfy the radiation condition.

Applying (11) to (1) gives (
d2

dz2
− γ2

)
φ = 0 (13)

where γ2 = l2 + β2 with (
d

dz
− K

)
φ = 0, z = 0 (14)

and either
dφ

dz
= 0, z = −h, or φ→ 0, z→ −∞, (15)

depending on whether the fluid is finite or infinite depth (respectively). It is assumed in what follows that the fluid is

of finite depth and we comment later on the changes required for infinite depth. Finally, since φz is continuous across

z = −d for all x including across the plate, |x| < a – see (5) – it follows that

φz(l,−d−) = φz(l,−d+). (16)

Taking Fourier transforms of (6) gives

φ(l,−d−) − φ(l,−d+) =

∫ a

−a

P(x)e−ilx dx ≡ P(l). (17)

Solving (13) in −d < z < 0 with (14) and in −h < z < −d with (15) before matching across z = −d using (16), (17)

gives

φ(l, z) =



P(l) sinh γ(h − d)(γ cosh γz + K sinh γz)

(γ sinh γh − K cosh γh)
, −d < z < 0,

P(l) coshγ(z + h)(−γ sinh γd + K cosh γd)

(γ sinh γh − K cosh γh)
, −h < z < −d.

(18)

At this point is only remains to satisfy the final condition of (5) on the plate which only needs to be done from one

side since continuity of φz across the plate has been incorporated into the tranformed solution (18). We take some

time preparing the ground for this final part of the solution. First, taking inverse transforms of the representation (18)

in −d < z < 0 using (12) gives

φ(x, z) = φinc(x, z) +
1

2π

∫ ∞

−∞

P(l) sinhγ(h − d)(γ cosh γz + K sinh γz)

(γ sinh γh − K cosh γh)
eilx dl. (19)

There are poles on the real l-axis at l = ±α where γ = k – see (2). The contour of integration is taken to pass over

the pole at l = −α and under the pole at l = α in order to satisy the radiation condition that φ − φinc is outgoing.
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Specifically, as we let x → ±∞ in (19) we can deform the contour into either the upper-half or lower-half l-plane,

capturing the residues at the poles l = ±α resulting in

φ(x, z) ∼ φinc(x, z) +
ik sinh k(h − d)

2αhN0

P(α)φinc(x, z), x→ ∞, (20)

and

φ(x, z) ∼ φinc(x, z) +
ik sinh k(h − d)

2αhN0

P(−α)φinc(−x, z), x → −∞, (21)

where N0 =
1
2
(1 + sinh(2kh)/(2kh)). Comparing (20), (21) with (8) we see that

T − 1 =
ik sinh k(h − d)

2αhN0

P(α), and R =
ik sinh k(h − d)

2αhN0

P(−α). (22)

This allows us to write (19) as a real Cauchy principal-value integral plus contributions from the two poles each being

one half of the residues calculated in (20) and (21) and this leads to

φ(x, z) = 1
2
(T + 1)φinc(x, z) + 1

2
Rφinc(−x, z) +

1

2π

∫ ∞

−∞
− P(l) sinhγ(h − d)(γ cosh γz + K sinh γz)

(γ sinh γh − K cosh γh)
eilx dl. (23)

Next, we note that, for −d < z < 0,

sinh γ(h − d)(γ cosh γz + K sinh γz)

(γ sinh γh − K cosh γh)
∼ 1

2
e−|l|(z+d), |l| → ∞. (24)

We also note the integral representation of the logarithm (Gradshteyn & Ryzhik [17, §3.943]) for z + d > 0

log
√

(x − x′)2 + (z + d)2 = 1
2

∫ ∞

−∞

e−|l| − e−|l|(z+d)eil(x−x′)

|l| dl. (25)

Combining (24) and (25) with (23) after re-instating P(x) from (17) gives

φ(x, z) = 1
2
(T + 1)φinc(x, z) + 1

2
Rφinc(−x, z) +

1

2π

∂

∂z

∫ a

−a

P(x′) log
√

(x − x′)2 + (z + d)2 dx′

+
1

2π

∫ ∞

−∞
−

[sinh γ(h − d)(γ cosh γz + K sinh γz)

(γ sinh γh − K cosh γh)
− 1

2
e−|l|(z+d)

]
eilx

∫ a

−a

P(x′)e−ilx′ dx′dl (26)

for −d < z < 0. Despite looking complicated and cumbersome, we are now in a position to apply the condition (5),

and this gives

(T + 1) f+(x) + R f−(x) =
1

π

d2

dx2

∫ a

−a

P(x′) log |x − x′| dx′ +
1

2π

∫ ∞

−∞
− Eβ(l)e

ilx

∫ a

−a

P(x′)e−ilx′ dx′ dl (27)

for |x| < a, where

f±(x) ≡ ∂

∂z
φinc(±x,−d) = k sinh k(h − d)e±iαx (28)

and

Eβ(l) =
2γ sinh γ(h − d)(γ sinh γd − K cosh γd)

(γ sinh γh − K cosh γh)
− |l|. (29)

Note in (27) we have used (
∂2

∂x2
+
∂2

∂z2

)
log

√
(x − x′)2 + (z + d)2 = 0 (30)

to switch from z to x-derivatives (formally this must be done before the derivative condition is applied on z = −d.)
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It helps to employ operator notation here, so we define the integro-differential operatorK by

(KP)(x) ≡ 1

π

d2

dx2

∫ a

−a

P(x′) log |x − x′| dx′ +
1

2π

∫ ∞

−∞
− Eβ(l)e

ilx

∫ a

−a

P(x′)e−ilx′ dx′ dl (31)

and then let P±(x) satisfy

(KP±)(x) = f±(x), |x| < a (32)

whence, it follows, from (27), that

P(x) = (T + 1)P+(x) + RP−(x). (33)

Also, from (28), (22) and the definition (17),

T − 1 =
i

2αhN0

〈P, f+〉, and R =
i

2αhN0

〈P, f−〉 (34)

where we have used angled brackets to denote the inner product

〈u, v〉 =
∫ a

−a

u(x)v∗(x) dx. (35)

with the asterisk denoting complex conjugate. Using (33) in (34) results in

R = iµ(T + 1)S +,− + iµRS −,−

T = 1 + iµ(T + 1)S +,+ + iµRS −,+

 (36)

where we have defined µ = 1/(2αhN0) (real) and S ±,± = 〈P±, f±〉, the first ±’s on the left-hand side corresponding the

first on the right-hand side and so on. Solving (36) for R and T gives

(
T

R

)
= (I − iµS)−1(I + iµS)

(
1

0

)
, S =

(
S +,+ S −,+
S +,− S −,−

)
(37)

and I is the 2 × 2 identity matrix. Properties of the operator K allow it to be shown that S −,+ = S ∗+,−, S +,+ = S ∗+,+
and S −,− = S ∗−,− (and hence S +,+, S −,− are real). Thus S is Hermitian matrix. The structure of (37) implies the

conservation of energy relation |R|2 + |T |2 = 1 is automatically satisfied; this is evident from premultiplication of (37)

by the conjugate transpose vector (T ∗,R∗) using properties of S.

2.1. Infinite depth

The case of infinite depth can be treated in a similar manner and leads to exactly the same type of formulation but

with

Eβ(l) = γ − γ
(
γ + K

γ − K

)
e−2γd − |l| (38)

f±(x) = Ke±iαxe−Kd (39)

and the previous definition of µ is replaced with µ = K/α = sec θ. The infinite depth formulation can also be arrived

at by letting h→ ∞ in the finite-depth equations presented in §2, modulo a suitable rescaling of P(x) and f±(x).

2.2. Numerical method

For the purposes of determining R and T , it remains to solve (37) for P±(x) and compute the matrix S of inner

products. Such a formulation is well suited to the Galerkin method.

We write

P±(x) =

∞∑

n=0

α±n pn(x/a), |x| ≤ a (40)

6
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in terms of unknown coefficients αn where

pn(t) =
einπ/2

π(n + 1)
(1 − t2)1/2Un(t), (41)

and Un are second kind Chebychev polynomials satisfying the orthogonality relationship

∫ 1

−1

(1 − t2)1/2Un(t)Um(t) dt = 1
2
πδmn (42)

(e.g. Gradshteyn & Ryzhik [17, §7.34]). For practical purposes, the infinite series in (40) is truncated leading to an

approximation to P±(x). Other useful results that can be inferred from Gradshteyn & Ryzhik [17, §7.34/5] include

d2

dt2

∫ 1

−1

ln |t − t′|(1 − t′2)1/2Un(t′)dt′ = π(n + 1)Un(t), |t| ≤ 1 (43)

and ∫ 1

−1

eiσt(1 − t2)1/2Un(t) dt =
einπ/2(n + 1)π

σ
Jn+1(σ) (44)

the former of which demonstrates that the orthogonal polynomials Un are a natural choice, being eigenfunctions of

the most singular part of the integro-differential operator in (31).

The Galerkin procedure involves substituting (40) into (32), multiplying through by p∗m(x/a) and integrating over

−a < x < a. This results in the infinite system of equations for the unknown coefficients α±n :

α±m
2π(m + 1)

+

∞∑

n=0

α±n Km,n = F±m, m = 0, 1, 2, . . . (45)

where

Km,n =
1

2π

∫ ∞

−∞
−

Eβ(l)

l2
Jn+1(la)Jm+1(la) dl (46)

and

F±m = k sinh k(h − d)

∫ a

−a

e±iαx p∗m(x/a) dx = (±1)mk sinh k(h − d)
Jm+1(αa)

α
. (47)

Noting that Kmn = 0 if m + n implies a decoupling of (45) into its symmetric and antisymmetric parts for α±
2n

and

α±
2n+1

, thus

α±
2m+ν

2π(2m + 1 + ν)
+

∞∑

n=0

α±2n+νK2m+ν,2n+ν = F±2m+ν, m = 0, 1, 2, . . . (48)

for ν = 0, 1 where

K2m+ν,2n+ν =
1

π

∫ ∞

0

−
Eβ(l)

l2
J2n+1+ν(la)J2m+1+ν(la) dl. (49)

Note that (48) are real symmetric systems of equations and, since F−m = (−1)mF+m, it follows that a−m = (−1)ma+m and it

is therefore sufficient to find just the solution of (48) for a+m.

We also have

S ±,± = 〈P±, f±〉 =
∞∑

n=0

α±n F±n (50)

using (40), (47) and so

S +,+ = S −,− =
∞∑

n=0

α+2nF+2n +

∞∑

n=0

α+2n+1F+2n+1 (51)

whilst

S +,− = S −,+ =
∞∑

n=0

α+2nF+2n −
∞∑

n=0

α+2n+1F+2n+1 (52)

7



R. Porter / Applied Ocean Research 00 (2014) 1–24 8

are also real.

Before continuing this is a good point at which to make a remark about the integro-differential equation formu-

lation and its subsequent approximation. Earlier, efforts were made to remove the logarithmic singularity embedded

in the integral representation (22) before applying the final boundary condition. As a result the integro-differential

operatorK emerged in (30) having a singular component and a regular part. It was shown that the result (43) allowed

the singular part to be treated in such a way that it gave rise to the leading order term in the second-kind system of

equations in (45). However, had we not extracted the logarithmic singularity the subsequent integral equation would

have still been well-defined and we would have proceeded but with Eβ(l) replaced by Eβ(l) + |l|. Subsequently, a

first-kind system of equations would have resulted, replacing (45). However, an integral result (see (110) later) would

have allowed us to integrate the |l| component of Eβ(l) + |l| explicitly and the result of this evaluation would have

resulted in precisely (45). In short, it is possible (and actually much easier) to arrive at the same algebraic system of

equations without the need to identify and extract the logarithm from the integral representation of the potential. This

observation provides useful insight and helps later with circular plates where the identification of the singularity is not

made, but a second kind system still results, via the same mechanism described above.

2.3. Transparency in 2D

Transparency requires R = 0 and T = 1, implying that far from the plate the incident wave without a phase shift is

observed. The easiest way of seeing how to implement these conditions is to return to (22) which implies P(±α) = 0

and then this requires numerically that

∞∑

n=0

α+n F+n = 0 and

∞∑

n=0

(−1)nα+n F+n = 0 (53)

or, alternatively,
∞∑

n=0

α+2nF+2n = 0 and

∞∑

n=0

α+2n+1F+2n+1 = 0. (54)

It is also confirmed that T = 1 and R = 0 from (37) since (54) in (51), (52) implies S = 0. The simultaneous

satisfaction of the two real conditions (54) are sought as functions of plate parameters a/d, d/h and frequency Kh in

the work of McIver et al. [18].

2.4. Wave exciting forces and moments

A submerged fixed rigid plate is subject to a heave force Xh and a roll moment (about its centre, say) Xr due to the

incident waves. These are given by weighted integrals of the pressure difference across the plates, so that

Xh = −iωρ

∫ a

−a

P(x) dx, and Xr = −iωρ

∫ a

−a

P(x)x dx, (55)

respectively as functions of frequency. Using f0(x) to represent either the function 1 or the function x we have

Xh/r = −iωρ((T + 1)S +,0 + RS −,0) (56)

where S ±,0 = 〈P±, f0〉. In the case of heave f0 = U0(x/a) and it follows using (40)–(42) that S ±,0 =
1
2
aα+

0
. For

roll, f0 =
1
2
aU1(x/a) and then S ±,0 = ∓ 1

8
ia2α+

1
. Note that the quantities S ±,0 will also arise later in relation to wave

radiation problems. Thus we have

Xh = −iωρ 1
2
aα+0 (R + T + 1) and Xr = ωρ

1
8
a2α+1 (R − T − 1). (57)

8
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Figure 1. Modulus of the reflected wave amplitude as a function of Kh = ω2h/g for d/h = 0.1, β = 0 and a/d = 5. Solid curve N = 10; other

values of N shown against curves.

2.5. Results

First we describe the numerical method. The integrals defining Kmn in (48) are computed by Guassian quadrature

exploiting the rapid decay in the function Eβ(l) to truncate the infinite integral. When β = 0, the decay as l → ∞ of

Eβ is exponential with exponent −l min{d, h − d} whilst for oblique incidence the decay is algebraic and O(1/|l|). The

additional l3 decay in the integrand implies that the decay for oblique incidence is O(1/l4). The numerical integration

scheme is designed to compute Kmn efficiently to eight significant figures.

The only other numerical parameter in the approximation is the truncation to N, say, of the series expansion in

(40). We show in figures 1 and 2 the modulus of the reflection coefficient as a function of dimensionless frequency

parameter, Kh, for two plates both with d/h = 0.1, β = 0 and with a/d = 5 and a/d = 10 respectively. These figures

are chosen to replicate the results shown in McIver [1] figures 11 and 9 (respectively). The solid curves show the

results computed using N = 10 and the remaining curves show the approximations as N increases from zero, each

curve being cut short at a frequency where accuracy has been lost.

We see that the N = 0, or single term, approximation (see §2.2) is accurate for low values of Kh corresponding to

long wavelengths. The wavelength of waves above the plate are given by 2π/κ where κ is the wavenumber defined by

the submergence d via

K = κ tanh κd. (58)

If κa ≪ π (the wavelength over the plate is much greater than the length of the plate) we may expect the variation of

P±(x) over −a < x < a to be small and dominated by the square-root behaviour at the end points of the interval. As

the number of wavelengths over the plate increases, the number of terms needed to accurately approximate P(x) in

(40) also increases.

In figures 3(a,b) we show the variation of the dimensionless wave exciting heave force X̂h = |Xh|/(2ρωa cosh kh)

and roll moment X̂r = |Xr|/(4ρωa2 cosh kh) with κa/π in the long wavelength regime with wave frequency set by

kh/2π = 0.016, β = 0 and varying κa/π. This choice is made to coincide with the parameters used in figures 14(a,c) in

Patarapanich [19] who plotted long wavelength shallow water theory and compared with finite-element results. Our

accruate computations based on an exact treatment of the problem compare favourably with those based on the shallow

water approximation although there are expected noticeable quantitative differences, especially for larger plate lengths

where zeros in the force and moment occur at slightly different frequencies. The agreement between shallow water

and finite-element results suggested in Patarapanich [19] for d/h = 0.3 appear to be rather fortunate and agreement

would not have been so great for d/h = 0.1 for example.

Although not commented upon in Patarapanich [19], or any subsequent work that the author is aware of, the zeros

of heave force and roll moment imply, via the Haskind relations (see Mei [20]) zeros of wave radiation in the forced

harmonic motion of a plate in heave and roll. This is explored further in §3.

9
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3. Radiation of waves by forced motion

We envisage a two-dimensional problem (β = 0) in which the plate is forced to oscillate harmonically in time with

angular frequency ω and spatially along the plate with a prescribed vertical velocity − f0(x), say, for |x| < a, where

f0 ∈ C. For example, for a heaving plate f0(x) = 1, and a plate rolling about x = 0, f0(x) = x. For plates rolling about

the point x = c, f0(x) = c − x and represents an in-phase combination of heave and roll.

There is no incident wave in this problem and the radiation condition (8) is replaced by

φ(x, z) ∼
{

A+φinc(x, z), x→ ∞,
A−φinc(−x, z), x→ −∞. (59)

Otherwise, φ(x, z) satisfies (1) with β = 0 and (3), (4) with (5) replaced with

φz(x,−d±) = − f0(x), |x| < a. (60)

Fourier transforms are employed as before in the solution method but with the terms φinc relating to the incident wave

removed from the definitions (11), (12) of the Fourier transforms as φ is already purely radiating in this example.

Following the procedure outlined for the scattering problem in §2, the contribution from the poles now means that

(22) is replaced by

A+ =
ik sinh k(h − d)

2αhN0

P(α), and A− =
ik sinh k(h − d)

2αhN0

P(−α) (61)

and the integro-differential equation which results from applying (60) instead of (5) is

(KP)(x) = 2 f0(x) + A+ f+(x) + A− f−(x), |x| < a. (62)

We decompose P(x) writing

P(x) = 2P0(x) + A+P+(x) + A−P−(x) (63)

where P±(x) satisfy (32) in the scattering problem and where we also have P0(x) defined as the solution to

(KP0)(x) = f0(x). (64)

The result of using (63) in the two relations given by (61) and re-arranging for unknowns A± is

(
A+
A−

)
= 2iµ (I − iµS)−1

(
S 0,+

S 0,−

)
(65)

where S and µ = 1/(2khN0) are defined by (37) as part of the scattering problem under normal incidence and

S 0,± = 〈P0, f±〉 = 〈P±, f0〉∗ ≡ S ∗±,0. (66)

The second equality holds on account the self-adjointness of the operator K . It follows that in order to calculate A±
for a radiation problem, one only needs the solution P± of the scattering problem and use it to compute S 0,± using the

final equality in (66). According to the numerical procedure outlined in §2.3, (66) is represented by the summation

S ∗±,0 =
∞∑

n=0

α±n F0
n =

∞∑

n=0

α+2nF0
2n ±

∞∑

n=0

α+2n+1F0
2n+1 (67)

where

F0
m =

∫ a

−a

f0(x)p∗m(x) dx (68)

is, in general, complex. Alternatively, if we expand P0(x) as

P0(x) =

∞∑

n=0

α0
n pn(x/a) (69)

11
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in (64) and employ the Galerkin approximation then the set of complex coefficients α0
m are defined numerically by

solving

α0
2m+ν

2π(2m + 1 + ν)
+

∞∑

n=0

α0
2n+νK2m+ν,2n+ν = F0

2m+ν, m = 0, 1, 2, . . . (70)

for ν = 0, 1 from which

S 0,± =
∞∑

n=0

α0
nF±n =

∞∑

n=0

α0
2nF+2n ±

∞∑

n=0

α0
2n+1F+2n+1. (71)

For a heaving plate, f0(x) = 1 = U0(x/a) then a simple calculation from (68) using (41), (42) shows that F0
m =

1
2
aδm0,

whilst for roll, f0(x) = x = 1
2
aU1(x/a) and then F0

m = − 1
8
ia2δm1. For combined roll and heave to give roll about

x = ca, f0(x) = c − x gives F0
m =

1
2
acδm0 +

1
8
ia2δm1. For a more general plate motion, one would expand f0(x) in the

orthogonal basis Un(x/a).

3.1. Wave-free oscillations

Of particular interest are forced motions which radiate waves in one direction only or, perhaps, do not radiate

waves in either direction. The former is relevant to offshore wave energy where a simple time-reversal argument

illustrates that a forced motion radiating waves in one direction only can also be used to absorb 100% of the energy in

waves incident from that direction. Clearly, the forced oscillation must be unsymmetric about the centre of the plate

otherwise the amplitudes of radiated waves in the two directions are necessarily equal. From (65) for there to be wave-

free oscillations it is required that both S 0,± = 0, although if the forced motion is either symmetric or antisymmetric

then S 0,+ = ±S 0,− (respectively) and hence just one condition is required.

3.2. Added inertia and radiation damping coefficients

The added inertia, A, and radiation damping, B, coefficients (per unit length) of the plate are defined as the real

and imaginary parts of the integrated force/moment on the plate. In other words

iω(A+iB/ω) = iωρ

∫ a

−a

P(x) f0(x) dx = iωρ(A+〈P+, f0〉+A−〈P+, f0〉+2〈P0, f0〉) = iωρ(A+S +,0+A−S −,0+2S 0,0) (72)

where

S 0,0 = 〈P0, f0〉 =
∞∑

n=0

α0
n

(
F0

n

)∗
(73)

and this does require the solution of (70).

A simple reciprocity relation exists between the radiation damping coefficient and the far-field wave amplitudes

of the form B/(ρω) = 1
2
(|A+|2 + |A−|2)/µ which can be used as a check on numerical method. Likewise the Haskind

relation, which relates forces and moments due to incident waves on fixed structures to wave radiation in the direction

of the incident wave. Here that relation is expressed in the form (see §2.4) Xh/r/(ρω) = −A−/µ where f0(x) is 1 for

heave and x for roll.

3.3. Results

The reciprocal relations referred to in the paragraph above are satisfied exactly to within computational accuracy,

independently of the number of terms, N, taken in the truncation of the infinite system.

For a small plate away from the surface and the bottom of the fluid the added inertia coefficients for low frequency

oscillations should coincide with those for plates in an infinite fluid, which are ρπa2 in heave and 1
8
ρπa4 in roll.

Numerical experiments not reported here have confirmed this.

In figure 5 we consider a heaving plate of length a/d = 5 in water depth d/h = 10. Three curves are shown against

κa where κ is the local wavenumber of propagating waves above the plate – see (58). The solid curve represents the

wave radiated amplitudes |A±|/a whilst the dashed and dotted lines are the dimensionless added inertia and radiation

damping coefficients. Note the usual relation between the two curves around ‘resonance’, the height of the radiation

damping peak being approximately the same as the height of the jump in the added inertia, a typical feature explained

12
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Figure 5. The dimensionless heave added inertia A/(ρa2) (dashed), damping B/(ρωa2) (dotted) and wave radiation amplitudes |A± |/a (solid) as a

function of κa, the dimensionless wavenumber over the plate with a/d = 5, d/h = 0.1.
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Figure 6. The dimensionless roll added inertia A/(ρa4) (dashed), damping B/(ρωa4) (dotted) and wave radiation amplitudes |A±|/a (solid) as a

function of κa, the dimensionless wavenumber over the plate with a/d = 5, d/h = 0.1.

by the Kramers-Kronig relations. Here resonance is associated approximately with κa = π/2 so that there is approxi-

mately half a wavelength across the full extent of the plate, so that large motions lie at the centre of the plate and the

antinodes of the oscillation lie at the edges of the plate. Note that the added inertia curve dips below zero, another

common feature in hydrodynamics assoicated with bodies close to the free surface (McIver & Evans [? ]). There is

also a value of κa ≈ 3.850 where A± = 0, implying B = 0, also. This is just one example of the general result that

heaving plates possess frequencies of wave-free heaving oscillations.

In figure 6 we show the same set of results as in figure 5 with the same geometry but for the plate in roll motion

instead of heave. Similar features emerge. So, for example, resonance is observed in for the rolling plate at approxi-

mately twice the wavenumber implying it is associated with wavelengths above the plate approximately equal to the

plate. Now antinodes in this antisymmetric resonant oscillation lie at the centre of the plate and the two edges with

large out-of-phase motions one quarter and three quarters of the way along the plate. Also note that, like the forced

heave motion, the roll motion has zeros in the radiated wave amplitudes and damping, here at κa ≈ 5.086.

The wave-free oscillations in forced heave and roll motions numerically appear to exist for all plate sizes and

depths of submergence although they become harder (graphically) to distinguish from near zero radiation when the

plates become small or deeply submerged.

In the final example shown here, we consider in-phase combined roll and heave, equivalent to roll about a point

about an arbitrary point x = c. When c , 0, the symmetry is broken and now A+ , A−, in general, and there is

13
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Figure 7. The dimensionless wave radiation amplitudes |A+|/a (solid) and |A− |/a (dashed) as a function of κa, the dimensionless wavenumber over

the plate with a/d = 5, d/h = 0.1 for a plate rolling about x = c = a.
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Figure 8. The dimensionless wave radiation amplitudes |A+|/a (solid) and |A− |/a (dashed) as a function of κa, the dimensionless wavenumber over

the plate with a/d = 5, d/h = 0.1 for a plate rolling about x = c = 0.21a.

wave radiation to both plus and minus infinity. For example, we have again considered d/h = 0.1 and a/d = 5 in

figure 7 where the plate is rolling about the point x = c = a, the right-hand edge of the plate. One can see in the

figure the competing effects of the two plate resonances associated with the heaving and rolling components. The

figure confirms what is observed in other general configurations, that there are no frequencies of zero wave radiation

to infinity.

However, in figure 8 we have selected, by numerical experimentation, a point along the length of the plate at

c ≈ 0.210a where the rolling motion at a particular frequency κa ≈ 1.934 where A+ = 0 and the waves are radiated in

one direction only.

4. Scattering of waves by a thin submerged circular plate

We take Cartesian coordinates with z = 0 in the mean free surface and the fluid occupying z < 0. A thin circular

plate of radius a is submerged to a depth d below the free surface in water of depth h which may be infinite. Time-

harmonic incident waves propagate in the direction of positive x. Polar coordinates (r, θ) are defined for this problem

with x = r cos θ and y = r sin θ. The velocity potential φ(r, θ, z) describing the fluid motion satisfies

∇2φ = 0 (74)
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where, here, ∇2 represents the three-dimensional Laplacian, along with the same free surface and bottom conditions

(3), (4) as in the two-dimensional problem. The condition on the plate is that

∂

∂z
φ(r, θ,−d±) = 0, r < a, 0 ≤ θ < 2π. (75)

We write the jump in the potential across z = −d as

φ(r, θ,−d−) − φ(r, θ,−d+) =

{
0, r ≥ a

P(r, θ), r < a
(76)

in terms of an unknown function P(r, θ) which has the behaviour P(r, θ) ∼ C(θ)(a2 − r2)1/2 as r → a− in term of an

unknown function C(θ). The incident wave is described by the potential

φinc = eikxψ(z) ≡ ψ(z)

∞∑

n=0

ǫninJn(kr) cos nθ (77)

where ψ(z) is the depth variation given by (6), ǫn is 1 if n = 1 and 2 otherwise and k satisfies (2).

The radiation condition requires that

φ(r, θ, z) − φinc(r, θ, z) ∼
√

2

πkr
eikr−iπ/4A(θ)ψ(z), kr → ∞ (78)

where A(θ) is the unknown complex diffraction coefficient.

On account of the circular symmetry and the fact that the incident wave can be decomposed into its angular Fourier

modes we write

φ(r, θ, z) = φinc(x, z) +

∞∑

n=0

ǫninφn(r, z) cos nθ (79)

and

A(θ) =

∞∑

n=0

ǫnAn cos nθ (80)

(the factor in is suppressed for later algebraic convenience). Thus, φn(r, z) now satisfy, from (74)

(
1

r2

∂2

∂r2
+

1

r

∂

∂r
− n2

r2
+
∂2

∂z2

)
φn = 0 (81)

along with the free surface and bottom conditions (3), (4) whilst (75) is replaced with

∂φn

∂z
= −Jn(kr)ψ′(−d) = −kJn(kr) sinh k(h − d) 0 < r < a (82)

for the finite depth definition of ψ(z). We also decompose P(r, θ) into Fourier modes, writing

P(r, θ) =

∞∑

n=0

ǫninPn(r) cos nθ (83)

for r < a so that

φn(r,−d−) − φn(r,−d+) =

{
0, r ≥ a

Pn(r), r < a
(84)

so that Pn(r) ∼ Cn(a2 − r2)1/2 as r → a for some constants Cn.

We introduce the Hankel Tranform

φn(α, z) =

∫ ∞

0

rφn(r, z)Jn(αr) dr (85)
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with inverse

φn(r, z) =

∫ ∞

0

αφn(α, z)Jn(αr) dα. (86)

Taking Hankel transforms of (81) gives (
d2

dz2
− α2

)
φn = 0 (87)

whilst (3) and (4) gives (
d

dz
− K

)
φn = 0, z = 0 (88)

and
dφn

dz
= 0, z = −h. (89)

On account of φn(r, z) having a continuous z-derivative for all r, it follows that

d

dz
φn(α,−d−) =

d

dz
φn(α,−d+) (90)

whilst

φn(α,−d−) − φn(α,−d+) =

∫ a

0

rPn(r)Jn(αr) dr ≡ Pn(α). (91)

The problem posed above for φn(α, z) is almost identical to that considered in §2 for the two-dimensional plate. Thus,

the solution here is given by

φn(α, z) =



Pn(α) sinhα(h − d)(α coshαz + K sinhαz)

(α sinhαh − K coshαh)
, −d < z < 0

Pn(α) coshα(z + h)(−α sinhαd + K coshαd)

(α sinh γh − K coshαh)
, −h < z < −d.

(92)

The solution is defined by its inverse transform and by imposing the final condition (82) from one side will determine

the unknown Pn(r). Thus we have, for −d < z < 0, the solution

φn(r, z) =

∫ ∞

0

α
Pn(α) sinhα(h − d)(α coshαz + K sinhαz)

(α sinhαh − K coshαh)
Jn(αr) dα. (93)

The contour of integration is defined to go under the pole at α = k ensuring that waves are outgoing. Thus we find,

φn(r, z) ∼ iπk sinh k(h − d)Pn(k)

2hN0

H(1)
n (kr)ψ(z), kr → ∞ (94)

where H
(1)
n (kr) is the first kind Hankel function. Using the large argument asymptotics of this function,

H(1)
n (kr) ∼

√
2

πkr
ei(kr−π/4−nπ/2), kr → ∞

and comparing with the far-field form assumed for φn(r, z) shows that

An =
iπk sinh k(h − d)Pn(k)

2hN0

. (95)

Now we write (93) as a real principal-value integral

φn(r, z) =

∫ ∞

0

− α
Pn(α) sinhα(h − d)(α coshαz + K sinhαz)

(α sinhαh − K coshαh)
Jn(αr) dα + AnJn(kr)ψn(z). (96)
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Unlike the development in §2 here it is not clear how to extract the most singular part of the representation above

(in §2 we were able to identify a logarithm and, undoubtably, there is a singularity embedded in this representation

also). In fact this does not matter, and need not have mattered in §2, as the removal of the singularity will happen

‘algebraically’ in the numerical systems of equations. Although this does not seem entirely rigorous or elegant it is

an approach which simplifies the algebraic complexities associated with the removal of the singularity witness in the

simpler two-dimensional formulation of §2.

Thus, we proceed instead by applying condition (85) to give the integral equation

2(1 + An) fn(r) =

∫ ∞

0

− α(E0(α) + α)Jn(αr)

∫ a

0

Pn(s)Jn(αs)s ds dα (97)

for r < a, after reinstating the definition of Pn(α) from (91) where

fn(r) = k sinh k(h − d)Jn(kr) (98)

and E0(α) is defined in (29) of the two-dimensional problem with β = 0. We then define the scaled version of (97)

fn(r) =

∫ ∞

0

− α(E0(α) + α)Jn(αr)

∫ a

0

Qn(s)Jn(αs)s ds dα (99)

so that

Pn(r) = 2(1 + An)Qn(r). (100)

Then it follows from (95)

An =
iπ

hN0

(1 + An)〈Qn, fn〉 (101)

where, here, the angled brackets denote the inner product

〈Qn, fn〉 = k sinh k(h − d)

∫ a

0

rQn(r)Jn(kr) dr. (102)

The relation (101) can be rearranged to give An. Thus, we aim to approximate the solution Qn(s) to (99) and use it in

(101), (102) to find An and finally A(θ) from (80).

4.1. Numerical method

We approximate the solution, Qn(s), to this integral equation using the Galerkin method. This involves substituting

an expansion for the unknown function Qn(s) in a series of known functions. These should incorporate the known

square-root behaviour at the edge of the disc, r = a. We write

Qn(s) =

∞∑

m=0

α(n)
m Φ

(n)
m (s/a) (103)

where

Φ(n)
m (x) =

m!Γ(n + 1
2
)

√
2πΓ(m + n + 3

2
)
xnC

n+1/2

2m+1
(
√

1 − x2) (104)

and Cν
µ(x) is the Gegenbauer polynomial. In particular, the functions Φ

(n)
m (x) incorporate the correct square-root

behaviour at x = 1 and are orthogonal, satisfying

∫ 1

0

Φ(n)
m (x)Φ

(n)

l
(x)

x√
1 − x2

dx =



0, m , l

(2m + 2n + 1)!(m!)2

4n(2m + 1)!(2m + n + 3
2
)(Γ(m + n + 3

2
))2
, m = l

(105)

which can be established from the definition (104) and the orthogonality relation for Gegenbauer polynomials. The

numerical factors attached to Φ
(n)
m (x) are included to aid algebraic simplification – see (106) below.
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Then, according to in Martin [22, equn. (4.9)] (who quotes Tranter [23] and Krenk [24]) we have the result

∫ 1

0

Φ(n)
m (x)Jn(ξx)x dx =

Jn+2m+3/2(ξ)

ξ3/2
. (106)

It follows that, after substituting the expansion for Qn(s) into the integral equation, and then multiplying through by

rΦ
(n)

l
(r/a) and integrating over 0 < r < a, a process which characterises the application of the Galerkin method to the

integral equation, results in the infinite system of equations

∞∑

m=0

α(n)
m K

(n)

ml
= F

(n)

l
, l = 0, 1, . . . (107)

where

K
(n)

ml
=

∫ ∞

0

− (E0(α) + α)
Jn+2m+3/2(αa)Jn+2l+3/2(αa)

α2
dα (108)

and

F
(n)

l
= sinh k(h − d)

Jn+2l+3/2(ka)

(ka)1/2
. (109)

Both expressions above can be expressed alternatively in terms of spherical Bessel functions. Using a result from

Gradshteyn & Ryzhik [17, §6.538(2)],
∫ ∞

0

x−1Jν+2m+1(x)Jν+2l+1(x) dx =
δml

(4l + 2ν + 2)
(110)

we may convert the first kind system of equations (107) into the second kind system

α
(n)

l

(4l + 2n + 3)
+

∞∑

m=0

α(n)
m K̂

(n)

ml
= F

(n)

l
, l = 0, 1, . . . (111)

where

K̂
(n)

ml
=

∫ ∞

0

− E0(α)

α2
Jn+2m+3/2(αa)Jn+2l+3/2(αa) dα (112)

involving an integrand with exponential decay.

The inner product in (102) is converted, upon substitution of (106), to

〈Qn, fn〉 = a

∞∑

l=0

α
(n)

l
F

(n)

l
. (113)

The case of infinite depth can be considered most simply by explicitly taking the limits of h → ∞, in a manner

identical to that outlined in §2.

It is interesting to note there is very little difference between the systems (112) and (45). In particular we notice

the relation

K̂
(n+2)

ml
= K̂

(n)

m+1,l+1
(114)

which means the matrix elements only need to be computed for n = 0 and n = 1 and all subsequent n are given, using

(114) by K̂
(2n)

ml
= K̂

(0)

m+n,l+n
and K̂

(2n+1)

ml
= K̂

(1)

m+n,l+n
. Identical relations are noted in a similar problem and treatment by

Krenk & Schmidt [16].

If κa ≪ π we argue, as before, that a one term truncation of the infinite system (107) should provide a good

approximation to the solution and so

α
(n)

0
≈ F

(n)

0
/((2n + 3)−1 + K̂

(n)

00
) (115)

and then (113) is approximated by

〈Qn, fn〉 ≈
k−1 sinh2 k(h − d)

(
Jn+3/2(ka)

)2

(2n + 3)−1 +

∫ ∞

0

− E0(α)

α2

(
Jn+3/2(αa)

)2
dα

. (116)
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4.2. Scattering cross section, forces and moments

We define the scattering cross section as

σ =
1

2π

∫ 2π

0

|A(θ)|2 dθ =

∞∑

n=0

ǫn|An|2 (117)

following the use of (77). The so-called optical theorem (see Maruo [25]) states that

σ = −ℜ{A(0)} = −
∞∑

n=0

ǫnℜ{An} (118)

which provides an different way of calculating σ, although the definition (101) and the realness of 〈Qn, fn〉 implies

(117) and (118) are equivalent.

The heave exciting force on the disk is given by

Xh = −iωρ

∫ 2π

0

∫ a

0

P(r)rdr dθ = −2πiωρ

∫ a

0

P0(r)rdr = −4πiωρa2(1 + A0)

∞∑

m=0

α(0)
m

∫ 1

0

Φ(0)
m (t)t dt. (119)

We note that from the definition (104) that Φ
(0)

0
=
√

2/π(1 − t2)1/2 so

Xh = −iπ
√

2πωρa2(1 + A0)

∞∑

m=0

α(0)
m

∫ 1

0

Φ(0)
m (t)Φ

(0)

0
(t)

t

(1 − t2)1/2
dt = −iωρ 8

3

√
2πa2(1 + A0)α

(0)

0
(120)

after use of (105). A similar method applies to the roll moment, so that

Xr = −iωρ

∫ 2π

0

∫ a

0

P(r)(r cos θ)rdr dθ = 2πωρ

∫ a

0

P1(r) r2dr = 4πωρa3(1 + A1)

∞∑

m=0

α(1)
m

∫ 1

0

Φ(1)
m (t) t2 dt (121)

from the expansion of P(r) in (83), (100) and Now we have Φ
(1)
m (t) =

√
2/πt
√

1 − t2 and so

Xr =
1
2
π
√

2πωρa3(1 + A1)

∞∑

m=0

α(1)
m

∫ 1

0

Φ(1)
m (t)Φ

(1)

0
(t)

t

(1 − t2)1/2
dt = ωρ 8

15

√
2πa3(1 + A1)α

(1)

0
(122)

after using (105) once again.

4.3. Radiation problems

We also briefly consider the generation of waves by the submerged plate moving in either heave or roll (about

an axis coinciding with a diameter of the plate). The procedure we follow is similar to that used for scattering and

broadly follow the modifications made for radiation in the two-dimensional case. Thus here we give simply the final

expressions needed to compute the various quantities of interest.

We find that the added mass and radiation damping coefficients in vertical heave motion of unit amplitude,Ah, Bh

are given by

Ah

πρa3
+ i
Bh

πωρa3
=

8

3
√
π

(
Âh

0α
(0)

0
+ αh

0

)
(123)

where Âh
0

is given by

Âh
0

1 − iπµ

∞∑

m=0

α(0)
m F(0)

m

 = iπµα
(0)

0

2

3
√
π

(124)

and αh
0

satisfies

αh
l

(4l + 3)
+

∞∑

m=0

αh
mK̂

(0)

ml
=

2

3
√
π
δl0, l = 0, 1, . . . (125)
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Figure 9. The variation of scaled scattering cross-section Q (solid line) against Ka for a submerged disc in infinite depth with a/d = 2.5. The plus

symbols represent a one-term approximation to the solid line. Also shown are the first four modal components of Q ordered left to right.

The far-field radiated waves are given by the function Ah(θ) = Ah
0

where Ah
0
= aeKd Âh

0
.

In the case of roll, where the plate is given the vertical velocity distribution of r cos θ the added inertia and radiation

damping coefficients,Ar, Br are given by

Ar

πρa5
+ i

Br

πωρa5
=

8

15
√
π

(
Âr

1α
(1)

0
+ αr

0

)
(126)

where Âr
1

is given by

Âr
1

1 − iπµ

∞∑

m=0

α(1)
m F(1)

m

 = iπµα
(1)

0

4

15
√
π

(127)

and αr
0

satisfies

αr
l

(4l + 5)
+

∞∑

m=0

αr
mK̂

(1)

ml
=

4

15
√
π
δl0, l = 0, 1, . . . (128)

The far-field radiated waves are given by the function Ar(θ) = 2iAr
1

cos θ where Ar
1
= a2eKd Âr

1
.

The two systems of equations (125), (128) are the same as (111) for n = 0, 1 but with different right-hand side

terms.

4.4. Results

In order to compare with the results of Farina & Martin [12] we need to rescale the scattering cross-section and

have thus plotted Q = 4σ/Ka against Ka. An infinite depth version of the formulation has also been used (the finite

depth version presented above with a submergence of d/h = 0.05 gives almost identical results) and results are shown

in figure 9–11 for a/d = 2.5, 10 and 100/6 corresponding to figures 3, 6 and 5 (respectively) in Farina & Martin [12].

There is good agreement with the results of Farina & Martin [12] for Ka < 1.5 but significant differences develop

for larger values of Ka. Our results are fully resolved numerically and have converged to a high degree of accuracy.

Thus we have required no more than a truncation to 6 terms in the series for Pn(r) and 10 angular modes, and figures

9–11 illustrate this convergence by overlaying one, three and five term approximations to the fully converged results.

We can only suggest that the differences are due to computational inaccuracies for higher frequencies in the results of

Farina & Martin [12].

Spikes in the scattering cross-section are associated with resonances over the plate, as described by Miles [26] in

a related problem, excited by the modal components of the incident wave and with frequencies K = ω2/g = κ tanh κd

characterised by the first radial zero of Jm(κa) for m ≥ 0. For example, in figure 11 the first three spikes occur at

κa ≈ 2.18, 3.48, 4.66 just below the zeros 2.40, 3.83, 5.13 of the first zeros of Jm(κa). As a/d increases the values of

κa at which spikes appear get closer to the zeros of the Bessel functions and the spikes increasingly tall and narrow.
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Figure 10. The variation of scattering cross-section Q (solid line) against Ka for a submerged disc infinite with a/d = 10. The plus symbols

represent a three-term approximation. Also shown are the first four modal components of Q ordered left to right.
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Figure 11. The variation of scattering cross-section Q (solid line) against Ka for a submerged disc in infinite depth with a/d = 100/6. The plus

symbols represent a five-term approximation. Also shown are the first four modal components of Q ordered left to right.

We have also shown in figure 12 and 13 the vertical heave force and roll moment (respectively) on a submerged

disc in infinite depth for the same three sets of values of a/d used in earlier scattering cross-section figures. Now the

first n = 0 angular mode excites a large response in the heave force and the n = 1 angular mode similarly contributes

to a large response in the roll moment both of which are amplified as the submergence depth is reduced, or a/d is

increased. We note superficial similarities with the force and moment computations of section 2 for two-dimensional

plates which is not entirely unexpected, although it should be noted that in figures 3 and 4 each curve denoted a

different finite depth ratio and a fixed frequency with respect to the depth was selected.

Finally, in figures 12, 13 we have illustrated some typical results for the dimensionless heave added mass and

radiating damping coefficientsAh/(2ρa4) andBh/(2ωρa4) against frequency and overlaid a plot of the heave diffracted

wave force X̂h. As was noted previously in the two-dimensional problems of §2 and §3, the vanishing of the heave

damping coefficient coincides with a zero of the heave wave force. Increasing the ratio of a/d leads to an amplification

in the added mass and radiation damping associated with the resonant motion of the fluid over the plate.

5. Conclusion

The scattering of incident waves and radiation of waves by forced motion by thin horizontal plates in two and

three dimensions has been considered. The focus has been on the presentation of an efficient solution method based on
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Figure 12. The variation of heave force X̂h = |Xh |/(ρωa2) against κa/π on a submerged disc in infinite depth for a/d = 100/6 (solid line), a/d = 10

(dashed), a/d = 2.5 (dotted).
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Figure 13. The variation of roll moment X̂r = |Xr |/(ρωa3) against κa/π on a submerged disc in infinite depth for a/d = 100/6 (solid line), a/d = 10

(dashed), a/d = 2.5 (dotted).

Fourier/Hankel transforms. A Galerkin method applied to the solution of the integral equations which arise accurately

captures the behaviour of the fluid at the edges of the plate. The final systems of equations and expressions for

quantities of interest are very simple to compute accurately. It has been shown that only a few terms are needed in the

truncated series expansion and a one-term truncation provides an effective low-frequency approximation.

An added benefit of the method is that we have not had to consider the roots of the dispersion relation either above

or away from the plate. If the rigid impermeable plate were to be replaced by, for example, an elastic plate or a porous

plate for which dispersion relations are complicated and roots hard to find, then the method outlined in the paper will

apply.

Apart from algebraic complexity there is no fundamental difficulty in extending this transform approach to mul-

tiple horizontal plates. They would not have to lie in the same plane and they could overlap laterally. Certainly, in

the latter case of overlapping plates, a traditional ‘eigenfunction matching’ approach would end up in some amount

of difficulty.

Presently, the method is being extended in two directions. Firstly, by looking a finite and semi-infinite rectangular

plates and, secondly, by placing the plates in the free surface.
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Figure 14. The variation of dimensionless heave added mass,Ah/(2ρa4) (solid line), radiation damping Bh/(2ρωa4) (dashed line) and heave force

|Xh|/(ρωa2) against Ka for a submerged disc in infinite depth for a/d = 2.5.
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Figure 15. The variation of dimensionless heave added mass,Ah/(2ρa4) (solid line), radiation damping Bh/(2ρωa4) (dashed line) and heave force

|Xh|/(ρωa2) against Ka for a submerged disc in infinite depth for a/d = 10.
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