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ABSTRACT 8 

 9 

For fibre reinforced granular soils, the efficiency of the fibres is governed by the local fibre-grain 10 

interaction mechanism. This local interaction mechanism is evaluated, in this paper, by using a modified 11 

version of the shear-lag stress theory. While this theory provides a description of the stress-transfer 12 

mechanism at fibre-matrix interface level, it also generates the stress distribution along the fibre.  The 13 

proposed model explicitly accounts for the effects of the geometrical fibre and granular size 14 

characteristics, fibre stiffness, global stress level, soil density and the non-linearity of soil behaviour. 15 

An analytical expression for the ratio of strains in the fibre and in the composite, which is fundamental 16 

for any prediction of fibre contribution, is further derived.  A discussion on the effects of the controlling 17 

parameters is presented, while the scale-up of the problem at the composite level is then conducted by 18 

using a continuum constitutive model (like that proposed by Diambra et al., 2013) appropriately 19 

modified to account for the strain ratio between the fibre and the composite.  The model is validated 20 

against a series of triaxial compression tests on two different sands mixed with polypropylene fibres of 21 

different aspect ratios. 22 
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1 INTRODUCTION  1 

There is no doubt that the treatment of granular soils with discrete short fibre type inclusions can 2 

increase soil’s strength while also affecting the deformation characteristics of the material. The viability 3 

of the concept has been largely demonstrated through laboratory experiments on soil sample elements 4 

loaded under various testing conditions and for a wide range of fibre types.  The experimental results 5 

have confirmed that the efficiency of the fibre treatment is highly dependent on the fibre concentration, 6 

on testing conditions (e.g. stress and strain levels, stress path and loading direction) and on a large 7 

number of variables related equally to both fibre and sand matrix physical and dimensional 8 

characteristics (e.g. fibre and particle sizes and particle size distribution, particle shape and fibre surface, 9 

fibre/grain frictional properties, stiffness) as well as their spatial configuration (e.g. matrix packing and 10 

fibre orientation, fibre distribution). Among these variables, the geometrical characteristics, fibre 11 

length, fibre diameter, and the size of granular particles form a special set of inter-related parameters.  12 

Increasing the fibre aspect ratio (fibre length over fibre diameter) increases the fibre surface area which 13 

results on an enhancement of the fibre-matrix interaction efficiency (Gray and Al Refeai, 1986; Ranjan 14 

et al., 1996; Al Refeai, 1991; Consoli et al., 2007). While maintaining constant the fibre aspect ratio, 15 

the fibre reinforcement effect increases with the reduction of the particle size (Gray and Al-Refeai, 16 

1986; Maher and Gray, 1990; Ranjan et al., 1996; Michałowski and Čermák, 2003).  Michałowski and 17 

Čermák (2003) suggest that fibre length should be at least one order of magnitude higher than the grain 18 

size if the fibre-soil interaction mechanism is to be triggered. On the other hand, there seems to be an 19 

upper limit to the fibre length or fibre aspect ratio beyond which the fibre efficiency remains unchanged 20 

(Gray and Ohashi 1983, Al Refeai, 1991).  The only attempt to capture in an analytical form the 21 

combined effects of fibre and grain dimensions was conducted by Lirer et al. (2012) who, relying on 22 

some basic micromechanical considerations and analogy with the work of Zornberg (2002), proposed 23 

a relation for the limiting shear strength of the fibre-reinforced soil that incorporates the fibre aspect 24 

ratio and fibre length/particle size geometrical variables. The validity of the limiting shear strength 25 

expression has been challenged against a range of published test results on various soils and fibre type 26 

mixtures.  27 
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The present paper investigates the local fibre-soil matrix interaction mechanism using a modified shear 1 

lag theory.  While this theory provides a description of the stress-transfer mechanism at fibre-matrix 2 

interface level and consequently the stress distribution along the fibre, it can explicitly account for the 3 

effects of the geometrical fibre and granular size characteristics, including parameters such as the fibre 4 

stiffness, global stress level, soil density, and the non-linearity of the soil behaviour.  An analytical 5 

expression for the ratio of strains in the fibre and in the composite is further proposed through the 6 

integration of the stress distribution function and the account of the fibre constitutive model. The scale-7 

up of the problem at the composite level is then conducted by using a continuum constitutive model 8 

(like that proposed by Diambra et al., 2013) appropriately modified to account for the strain ratio 9 

between the fibre and the composite.  The model is validated against a series of triaxial compression 10 

tests on two different sands mixed with polypropylene fibres with different aspect ratios.  11 

2 TOWARDS AN EXAMINATION OF THE SOIL MATRIX – FIBRE 12 

INTERACTION MECHANISM 13 

2.1 Introduction  14 

A two-dimensional representation of an unstressed single fibre embedded in a continuum matrix is 15 

reported in Fig. 1a. For a pre-failure (i.e. the fibre/matrix friction resistance is not exceeded and/or the 16 

fibre has not broken yet) tensile loading applied parallel to the fibre length, since the fibre is generally 17 

stiffer than the matrix, shear distortion takes place as shown in Fig.1b (Hull and Clyne, 1996). Reference 18 

lines, initially straight and perpendicular to the fibre axis, are included to visualise the fibre-matrix 19 

deformation pattern. It is evident that the average strains of the two phases (reinforcement and matrix) 20 

do not coincide, and both shear stress and strain gradients radiate from the fibre-matrix interface. Based 21 

on equilibrium considerations and compatibility of stresses and strains between the phases, a modified 22 

shear lag theory (Cox, 1952) will be applied to assess the stress-transfer mechanism at the fibre-soil 23 

matrix interface level.  24 
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 1 

Fig.1 Two-dimensional representation of a single fibre-matrix system in (a) unstressed and (b) stressed configurations (after 2 

Hull and Clyne, 1996). 3 

2.2 The fibre-matrix interaction mechanism model 4 

The analysis of the fibre-matrix interaction mechanism is based on the model shown in Fig. 2a with a 5 

cylindrical fibre of radius rf and length lf embedded in a stress confined cylindrical volume of soil of 6 

radius R, also loaded under a tensile strain regime along the x-axis. The radius R of the cylinder can be 7 

derived to maintain an imposed given volumetric fibre concentration, μf , defined as volume of fibres 8 

over total composite volume, to give: 9 

𝑅

𝑟𝑓
= √

1

𝜇𝑓
 (1) 10 

Fig. 2a also shows the stresses acting on an element of the composite, while the radial and 11 

circumferential normal stresses are not represented for the sake of clarity.  12 
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 1 

Fig. 2 Geometric representation of (a) the fibre reinforced cylinder and  the general stress state of fibre and matrix elements; 2 

(b)  the idealised composite model where the matrix has been separated into a concentrated axial stress carrying are and a 3 

shear-stress carrying region, and the relative stress states of the three components. 4 
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Following the approach of Aveston and Kelly (1973) and Budiansky et al. (1986), the fibre-soil model 1 

is further modified into an equivalent system where the soil matrix can be separated into two distinct 2 

de-coupled parts: a concentrated pure axial-stress carrying area, and a pure shear stress-carrying volume 3 

(Fig. 2b). To satisfy the equivalence between the systems in Figs. 2a and 2b, the axially-stressed matrix 4 

must have a cross sectional area of π(R2- rf 
2) and must be located at a radial coordinate z=𝑅̅ with rf 5 

<𝑅̅<R. The pure shear stress-carrying volume extends between rf  and 𝑅̅. Aveston and Kelly (1973) 6 

suggested taking 𝑅̅ at the location of an average axial displacement of the matrix, while Budiansky et 7 

al. (1986) used a procedure based on the shearing energy contributions of the two equivalent systems. 8 

Most recently, Mahesh et al. (2004) stated that the distributions of the stresses and strains are quite 9 

insensitive to the precise value of  𝑅̅ (with exception of 𝑅̅/𝑟𝑓 ≈ 1) and simply suggested: 10 

 𝑅̅ =
(𝑟𝑓 +R)

2
 (2) 11 

which actually corresponds to the Aveston and Kelly (1973) solution if a linear variation of the 12 

displacement u is assumed along a cross section of the matrix. Combining Eqs. (1) and (2), the size  𝑅̅ 13 

of the shear matrix can be defined as: 14 

𝑅̅

𝑟𝑓
=
1

2
(1 + √

1

𝜇𝑓
)  (3) 15 

2.3 Constitutive relationships of mixture constituents 16 

The shear-lag theory is based on considerations about the overall equilibrium of the composite material 17 

and the compatibility of stresses and strains between the constituents.  Thus, individual constitutive 18 

relationships for the fibres and the granular soil matrix will be introduced.  19 

2.3.1 Fibre model 20 

Fibres are assumed to be linear elastic uni-dimensional elements resistant only to tensile loading. It is 21 

assumed that their compressive and bending resistances are negligible. The tensile elastic stiffness of 22 

the fibres is defined by Ef. Although the fibre has a finite length, lf, some recent research suggests that 23 

the interaction mechanism is actually active over a shorter fibre length: the effective length, lf
*. Discrete 24 
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Element Modelling (DEM) simulations of idealised fibre reinforced granular material conducted by 1 

Ibraim et al. (2006) and Maeda and Ibraim (2008) have shown that there could be fibres not fully 2 

stretched over their full length even if they appear oriented along a tensile strain direction. Lirer et al. 3 

(2011), based on De Gennes (1979), considered in their derivations an effective (or actively stretched) 4 

fibre length to be equal to the square root of the true fibre length. Based on back calculation from results 5 

of direct shear tests, Gray and Ohashi (1983) showed that the tensile strength of the fibres is not fully 6 

mobilised.  In addition, Michałowski and Čermák (2003) concluded that fibres need to be about an order 7 

of magnitude higher than the average grain size, D50, to efficiently activate the fibre-grain interaction 8 

mechanism. Based on these observations, the following function for the effective fibre length, lf
*, is 9 

conjectured:   10 

𝑙𝑓
∗

𝑙𝑓
= 𝑘

1

1+𝛼
 (4) 11 

with  12 

𝛼 = (𝑏
𝑙𝑓

𝐷50
)
−𝑚

 (5) 13 

where m and b are shape parameters.  While the choice of a function like this has the advantage of 14 

taking explicitly into account the fibre-grain scale effect, it approaches zero for low values of lf /D50 15 

(very short fibres or big particles) and it increases to an asymptotic value k for higher values of lf/D50 in 16 

agreement with the experimental observations of Gray and Ohashi (1983) and Al Refeai (1991).    A 17 

review of the latter results suggests that the upper asymptotic limit is reached when the ratio lf /D50 18 

exceeds a value of about 100. Thus an appropriate combination of b=0.08 and m=2 which satisfies 19 

these requirements has been adopted and the function (4) is shown in Fig.3.  Note that 1/b is the value 20 

of lf /D50 corresponding to a ratio lf
*/lf equal to k/2, while m controls the shape of the curve. The parameter 21 

k, which varies only between 0 and 1, should reflect the internal matrix fabric and fibre arrangement - 22 

difficult to quantify – and for this reason its value will result from a calibration process against 23 

experimental data.  24 

 25 
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 1 

Fig.3 Graphical representation of the assumed function or the ratio between effective and true fibre length from equation (4). 2 

2.3.2 Soil constitutive model 3 

The developments below refer to a soil element under simple shear. The one-dimensional elasto-plastic 4 

soil model proposed by Muir Wood (2009) (a simplification of the bounding surface, kinematic 5 

hardening, Severn-Trent sand model proposed by Gajo and Muir Wood (1999)), can capture the 6 

mechanical behaviour of granular soils over a wide range of densities and stress levels. The non-linear 7 

behaviour of soils can be represented using a hyperbolic mobilisation of the shear strength with the 8 

shear strain: 9 

𝜏 =
𝛾

𝛾+𝜁𝑠
𝜏𝑢 (6) 10 

where τ is the mobilised shear stress, τu is the available shear strength, γ is the shear strain and 𝜁𝑠 is a 11 

parameter that controls the shear stiffness. 𝜁𝑠 is linked to the initial shear stiffness G by the following 12 

relation: 13 

𝜁𝑠 =
𝜏𝑢

𝐺
 (7) 14 
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For granular soils, the available shear strength is directly proportional to the normal effective stress (σ’), 1 

but it is also affected by the density state of the soil: 2 

𝜏𝑢 = (𝑡𝑎𝑛𝜙′ + 𝜁𝑅(𝜐𝑢 − 𝜐))𝜎′   (8) 3 

where 𝜙′ is the critical state friction angle of the soil, 𝜐 is the actual specific volume, 𝜐𝑢 is the 4 

correspondent specific volume at failure (or large strains) and 𝜁𝑅 is a parameter which links the available 5 

strength to the density state of the soil. The specific volume at large strain 𝜐𝑢 is generally defined within 6 

the critical state framework and it is a common assumption to assume a straight linear relationship 7 

between volume and applied stress in the semi-logarithmic compression plane υ-ln 𝜎′: 8 

𝜐𝑢 = 𝛤 − 𝜆 ln (
𝜎′

𝜎′𝑟𝑒𝑓
) (9) 9 

where 𝛤 represents the value of 𝜐𝑢 for 𝜎′ = 𝜎′𝑟𝑒𝑓, λ is the slope of the linear relationship and 𝜎′𝑟𝑒𝑓 is 10 

an arbitrary reference pressure introduced to make equation (9) dimensionally correct. The substitution 11 

of equation (9) into equation (8) leads to the following complete definition of the available shear 12 

strength: 13 

𝜏𝑢 = (𝑡𝑎𝑛𝜙′ + 𝜁𝑅 (𝛤 − 𝜆 ln 
𝜎′

𝜎′𝑟𝑒𝑓
− 𝜐))𝜎′ (10) 14 

3 EXAMINATION OF THE SOIL – FIBRE INTERACTION MECHANISM  15 

3.1 Mobilised fibre stress and fibre-composite strain ratio 16 

Considering the stresses within the pure shear-stress carrying region of the assumed composite model 17 

(Fig. 2b), for any fixed value of x, it is possible to equate shear forces in annuli of matrix with thickness 18 

z and obtain the following expression for the shear stress: 19 

𝜏(𝑧) = 𝜏𝑖 (
𝑟𝑓

𝑧
)          (11) 20 

where τi is the shear stress at the fibre-soil matrix interface (Fig. 2b). 21 
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Rearrangement of equation (6) leads to the following relationship between the shear strain 𝛾(𝑧) and 1 

shear stress, (z): 2 

𝛾(𝑧) =
𝜕𝑢

𝜕𝑧
(𝑧) =

𝜏(𝑧)𝜁𝑠

𝜏𝑢−𝜏(𝑧)
  (12) 3 

where u is the axial displacement of the soil matrix as schematically shown in Fig.1. Equation (11) can 4 

be substituted into equation (12) to obtain: 5 

𝜕𝑢

𝜕𝑧
(𝑧) =

𝜏𝑖(
𝑟𝑓

𝑧
)𝜁𝑠

𝜏𝑢−𝜏𝑖(
𝑟𝑓

𝑧
)
  (13) 6 

For any fixed value of x, the difference between the displacement u at the location of the axial-stress 7 

carrying area (𝑢𝑅̅) and that at the fibre/soil interface (𝑢𝑟𝑓) is given through integration by: 8 

∫ 𝑑𝑢
𝑢𝑅̅
𝑢𝑟𝑓

= ∫
𝜏𝑖𝑟𝑓 𝜁𝑠

𝑧(𝜏𝑢−𝜏𝑖
𝑟𝑓

𝑧
)

𝑅̅

𝑟𝑓
 𝑑𝑧     (14) 9 

and following its integration, the relationship below is obtained: 10 

𝑢𝑅̅ − 𝑢𝑟𝑓 = 𝜏𝑖
𝑟𝑓𝜁𝑠

𝜏𝑢
 ln (

𝜏𝑢
𝑅̅

𝑟𝑓
−𝜏𝑖

𝜏𝑢−𝜏𝑖
)     (15) 11 

At this stage, it is necessary to rearrange equation (15) in order to derive an explicit form of 𝜏𝑖. While 12 

the maximum mobilised interface shear stress 𝜏𝑖  is normally lower than the available shear strength, 𝜏𝑢, 13 

of the soil with 0 < 𝜏𝑖 < 𝑎𝜏𝑢, (and a<1), it is possible to reasonably approximate the right hand side 14 

term in equation (15) by averaging its tangent for  𝜏𝑖 =0 and 𝜏𝑖 = 𝑎𝜏𝑢, to give the following linear 15 

expression solely in  𝜏𝑖:   16 

𝜏𝑖
𝑟𝑓𝜁𝑠

𝜏𝑢
ln (

𝜏𝑢
𝑅̅

𝑟𝑓
−𝜏𝑖

𝜏𝑢−𝜏𝑖
) ≈ 𝜏𝑖

𝑟𝑓𝜁𝑠

2𝜏𝑢
(ln(

𝑅̅

𝑟𝑓
−𝑎

1−𝑎
)+ 𝑎(

𝑅̅

𝑟𝑓
−1

(
𝑅̅

𝑟𝑓
−𝑎)(1−𝑎)

)) (16) 17 
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Zornberg (2002), using the results of fibre pull-out tests for a range of soils, suggested a value of a 1 

around 0.8. Substitution of equation (16) in equation (15) and the subsequent rearrangement leads to an 2 

explicit expression for the shear stress at the fibre-soil matrix interface, 𝜏𝑖: 3 

𝜏𝑖 =
(𝑢𝑅̅−𝑢𝑟𝑓)𝜏𝑢

𝑟𝑓𝜁𝑠 

(

 
 
ln(

𝑅̅
𝑟𝑓
−𝑎

1−𝑎
)+𝑎(

𝑅̅
𝑟𝑓
−1

(
𝑅̅
𝑟𝑓
−𝑎)(1−𝑎)

)

)

 
 

 (17) 4 

Attention can now be directed to an element of the fibre such as the one shown in Fig. 2b, where 5 

consideration of its equilibrium leads to: 6 

𝜕𝜎𝑓

𝜕𝑥
= −2

𝜏𝑖

𝑟𝑓
 (18) 7 

The account for equation (17), and the following derivation of both terms of equation (18) in ∂x, leads 8 

to: 9 

𝜕2𝜎𝑓

𝜕𝑥2
= −

2

𝑟𝑓
2

(
𝜕𝑢𝑅̅
𝜕𝑥
−
𝜕𝑢𝑟𝑓

𝜕𝑥
)𝜏𝑢

𝜁𝑠 

(

 
 
ln(

𝑅̅
𝑟𝑓
−𝑎

1−𝑎
)+𝑎(

𝑅̅
𝑟𝑓
−1

(
𝑅̅
𝑟𝑓
−𝑎)(1−𝑎)

)

)

 
 

  (19) 10 

Since the fibres are considered purely elastic elements, the elasticity theory gives: 11 

𝜕𝑢𝑟𝑓

𝜕𝑥
=
𝜎𝑓

𝐸𝑓
 (20) 12 

while at the far field location (i.e. at the pure axial-stress carrying area):  13 

𝜕𝑢𝑅̅
𝜕𝑥
= 𝜀 (21) 14 

where 𝜀 is the far-field strain of the matrix ideally not affected by fibre-interaction. 15 

Substitution of equations (20) and (21) into (19) leads to the following differential equation: 16 

𝜕2𝜎𝑓

𝜕𝑥2
=

𝑛2

𝑟𝑓
2 (𝜎𝑓 − 𝐸𝑓𝜀)  (22) 17 
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with: 1 

𝑛 =

√

2𝜏𝑢

𝜁𝑠𝐸𝑓 

(

 
 
ln(

𝑅̅
𝑟𝑓
−𝑎

1−𝑎
)+𝑎(

𝑅̅
𝑟𝑓
−1

(
𝑅̅
𝑟𝑓
−𝑎)(1−𝑎)

)

)

 
 

 (23) 2 

The solution of the differential equation (22) can provide the expression of the stress distribution along 3 

the fibre: 4 

𝜎𝑓(𝑥) = 𝐸𝑓𝜀 + 𝐵𝑠𝑖𝑛ℎ (
𝑛𝑥

𝑟𝑓
) + 𝐷𝑐𝑜𝑠ℎ (

𝑛𝑥

𝑟𝑓
) (24) 5 

where B and D are two constants from the double integration necessary to solve equation (22). 6 

If it is now considered that tensile stresses are developed only along the effective fibre length, lf
*, the 7 

constants B and D in equation (24) can be removed by imposing the condition of zero mobilised tensile 8 

stress, 𝜎𝑓(𝑥) = 0 , at x=± lf
*/2, to give: 9 

𝜎𝑓(𝑥) = 𝐸𝑓𝜀 (1 −
𝑐𝑜𝑠ℎ(

𝑛𝑥

𝑟𝑓
)

𝑐𝑜𝑠ℎ(𝑛𝑠∗)
) (26) 10 

where s* is the effective fibre aspect ratio (lf
*/2rf). Taking into account that the ratio between the 11 

effective and true fibre aspect ratios (s* and s respectively) is equal to the ratio between the effective 12 

and true fibre lengths:  13 

𝑠

𝑠

∗
=
𝑙𝑓
∗

𝑙𝑓
 (27) 14 

the average fibre tensile stress can be derived thus:   15 

𝜎𝑓̅̅̅ =
2

𝑙𝑓
∫ 𝐸𝑓𝜀 (1 −

𝑐𝑜𝑠ℎ(
𝑛𝑥

𝑟𝑓
)

𝑐𝑜𝑠ℎ(𝑛𝑠∗)
)𝑑𝑥

𝑙𝑓
∗/2

0
= 𝐸𝑓𝜀 (

𝑠∗

𝑠
−
𝑡𝑎𝑛ℎ (𝑛𝑠∗)

𝑛𝑠
) (28) 16 

where the last term in brackets can be defined as: 17 
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𝑓𝑏 = (
𝑠∗

𝑠
−
tanh (𝑛𝑠∗)

𝑛𝑠
) (29) 1 

The average fibre tensile strain (𝜀𝑓̅) is equal to 𝜎𝑓̅̅̅/𝐸𝑓. As a result, the rearrangement of equation (28) 2 

shows that the factor fb is the ratio between the average strain in fibre (𝜀𝑓̅) and that in the composite (): 3 

𝑓𝑏 =
𝜀̅𝑓

𝜀
 (30) 4 

 and it varies between 0 and 1. For a given imposed strain of the composite, the latter condition (fb =1) 5 

sets the maximum theoretical value of the mobilised fibre tensile stress: 6 

𝜎𝑓 𝑚𝑎𝑥 = 𝐸𝑓𝜀 (31) 7 

in which case the fb factor can also be seen as the ratio between the average mobilised stress in the fibre 8 

and this maximum theoretical value (σfmax). An equivalent factor was successfully considered in 9 

constitutive models by Machado et al. (2002) and Diambra et al. (2013) through the use of a simple 10 

model constant. In this work, a much more complex formulation of this factor is proposed, taking 11 

explicitly into account the fibre length and diameter, soil grain size, fibre and soil stiffnesses, the fibre 12 

content and the confinement stress (through the function n,  equation (23) ).  13 

3.2 Analysis of the mobilised fibre stress and fb factor  14 

The fibre stress distribution (equation (26)) and the sensitivity of the fb factor (equation  (29)), are 15 

analysed against the following key variables: 16 

 Fibre length (lf  between 1 and 100 mm) 17 

 Grain size (D50  between 0.063 and 2 mm average diameter) 18 

 Fibre stiffness (Ef  between 9 and 9000MPa) 19 

 Confining stress level (σ’z from 10 to 1000kPa) 20 

The analysis is conducted for a fixed fibre content, wf, of 0.3%, by dry mass of sand and a fibre diameter 21 

of 0.1mm. A summary of the variables alongside the assumed soil model constants (𝜙′, λ, 𝛤, 𝜁𝑅 , 𝜁𝑠), 22 

fibre model constants (Ef, k), and soil specific volume, υ, are given in Table 1.  23 
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Table 1. Summary of fibre and soil properties, model constants and stress level condition used in the parametric 1 
investigation  2 

Sand matrix properties 
D50 0.063; 0.2; 0.63; 2 mm 

υ 2 

Soil model constants 

ϕ'  35° 

λ 0.031 

Γ 2.13 

ζs 0.005 

ζR 0.5 

Fibres properties 

lf 1; 10; 50; 100 mm 

df 0.1 mm 

wf 0.3% 

Fibre model constants 
Ef 90; 900; 9000; 90000 MPa 

k 1 

Composite confining stress  σ'z 1; 10; 100;1000 kPa 

 3 

3.2.1 Fibre length and grain size dimensional group effects 4 

The distribution of the mobilised fibre tensile stress against the position along the fibre, both normalised 5 

respectively by the maximum theoretical tensile stress σfmax (equation (31)) and the effective fibre 6 

length, lf
*, is shown in Fig. 4. The simulations are performed for fixed fibre stiffness Ef = 900MPa and 7 

confining stress 'z = 100 kPa. The fibre length effect for a fixed mean grain size D50=0.063mm is 8 

shown in Fig. 4a. As expected, for all the simulations the tensile stresses are null at the fibre ends and 9 

gradually increase towards the central region, where a maximum is reached. It is clear that, above a 10 

certain fibre length, the tensile stress in the central region of the fibre effectively approaches the 11 

maximum allowable value (σfmax) which signifies full fibre soil interaction. However, the effect of lf on 12 

the fibre stress distribution is directly related to two non-dimensional groups: the fibre aspect ratio, s, 13 

and fibre length to mean grain size ratio, lf/D50, and the results in this Fig. 4a cannot discriminate their 14 

individual contribution. However, the effect of the lf/D50 ratio can be singled out in Fig. 4b which shows 15 

a series of simulation results performed for a range of grain sizes and for fixed fibre length (lf) and 16 

aspect ratio (s). The mobilised tensile stress remains extremely low for large grains (low lf/D50 ratios) 17 

but gradually increases with the decreasing of the particle size and, as the grain size becomes smaller 18 

and smaller, it appears to converge to a limiting curve that corresponds to the case when the effective 19 
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fibre aspect ratio (s*) equals k times the real fibre aspect ratio (k ∙s, see equations 4 and 27).  As shown 1 

in Figure 4b, the effective fibre aspect ratio s* for the cases of smaller grain size diameters, s*=94 and 2 

s*= 99, is very close to product k∙s = 100, with s=100 and k=1 for this parametric exercise, which 3 

signifies an efficient use of fibre dimensions. This is strongly noticeable if the variation of the strain 4 

ratio, fb, is plotted with the fibre length to grain size ratio (lf/D50) (Fig. 5a). Data for s=100 extracted 5 

from Fig 4b are also indicated by the use of their corresponding markers. It seems that, as also 6 

previously suggested by Michałowski and Čermák (2003), the length of the fibres needs to be at least 7 

10 times the average grain size to ensure some development of the fibre soil interaction mechanism. On 8 

the other hand, the trend of fb with the aspect ratio shown in Fig.5b suggests that the onset of the 9 

interaction is expected to occur for values of the aspect ratio between 10 and 100 depending on the soil 10 

grain size, but higher values would be recommended to ensure an efficient interaction. 11 

 12 

Fig. 4 Influence of (a) fibre length and (b) mean grain size on fibre normalised 13 
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 1 

Fig.5 Variation of the efficiency factor fb (a) with lf /D50 and different fixed s values and (b) with aspect ratio s for different lf 2 

/D50 ratios. 3 

3.2.2 Fibre stiffness 4 

Fig 6a shows the normalised stress distribution along the fibre length for a range of fibre stiffnesses as 5 

given in Table 1, for a confining stress 'z = 100 kPa, and fixed fibre length lf=10mm and mean grain 6 

size D50=0.63mm. Increasing the stiffness of the fibres apparently has an adverse effect on the 7 

normalised stress, suggesting a less effective interaction mechanism between the fibre and the soil with 8 

a decreasing value of the bracket term in equation (26). However, this may be a misleading observation 9 

because the effective mobilised stress in the fibre σf is actually the direct product between this bracket 10 

term and Ef, and, for typical applications, the fibre stiffness still retains a dominant weight. The variation 11 

of the fb factor with the fibre stiffness normalised by the soil shear stiffness (G=14 MPa) derived from 12 

equation (7) is shown in Fig.6b for a range of lf /D50 ratios and fixed fibre aspect ratio s. The fb factor  13 

increases with the lf /D50 ratio, but for a given lf /D50 it retains its value up to a fibre stiffness of the same 14 

order of magnitude as soil shear stiffness.  Unavoidably, the mobilised strain in the fibre decays with 15 

the increase in the contrast between the fibre and soil stiffness. Referring to previous Fig.1, higher fibre 16 

stiffness would induce larger shear distortions in the matrix and a larger mismatch of the strain fields 17 

between the constituents. 18 
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 1 

Fig.6 (a) Influence of fibre stiffness Ef on the normalised stress distribution along the fibre and (b) trend of fb versus Ef/G for 2 

a range of lf /D50 ratios.  3 

3.2.3 Stress level 4 

Fig. 7a shows the normalised stress distribution along the fibre length for a range of confining stress 5 

levels (Table 1),  and fixed fibre length lf=10mm, mean grain size D50=0.063mm and Ef =9000 MPa.  6 

The normalised stress distribution is highly affected by the stress level as experimentally observed by 7 

Diambra et al. (2010) among others. An increase in the stress level corresponds to an increase in the 8 

soil shear stiffness and, in accord with current developments, a decrease of the ratio Ef/G induces larger 9 

strains in the fibre for a given strain the composite, as also shown in Fig. 6b. The  fb factor increases 10 

with the stress level (Fig. 7b) but, as expected, slender fibres mobilise higher strains for a fixed 11 

confinement stress level. One aspect that may occur in the case of fibre reinforced soils is the low level 12 

of confinement expected, in which case the mobilisation of strains and stresses in the fibre must be 13 

controlled by other factors like fibre aspect ratio and fibre length to mean grain size ratio, lf/D50. 14 

10
-2

10
0

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

E
f
/G

f b

-1 -0.5 0 0.5 1
0

0.25

0.5

0.75

1

2x/l
*

f


f/

fm
a

x

 

 

l
f
=10 mm  s=10 mm  l

f
 /D

50
=16  '

z
=100 kPa

E
f
=90 MPa

E
f
=900 MPa

E
f
=9000 MPa

E
f
=90000 MPa

lf / D50=159

lf / D50=50

lf / D50=16

lf / D50=5

(a) (b)



18 

 

 1 

Fig.7 (a) Influence of stress level on the normalised stress distribution along the effective fibre length and (b) trend of fb versus 2 

stress level for a range of fibre aspect ratios. 3 

4 IMPLEMENTATION IN A CONSTITUTIVE MODEL 4 

The implementation of the proposed developments into a constitutive model is further explored here. 5 

The account for the effects of the fibre and grain sizes and stress level on the fibre–soil strain transfer 6 

mechanism is controlled through the introduction of the proposed expression for the factor fb (equation 7 

(29)).  The adopted baseline model is that proposed by Diambra et al. (2013) and some of its key features 8 

are presented below. The modelling framework, based on the superimposition of the effects of the fibre 9 

and the sand matrix, accounts for fibre orientation and introduces failure mechanisms such as fibre-10 

matrix slippage (or pull-out) and fibre breakage through capping and/or removing the fibre contribution 11 

if some pre-imposed controlling conditions like fibre/matrix interface friction resistance or fibre tensile 12 

strength are reached. From the force equilibrium of a fibre reinforced element, the following 13 

relationship between incremental stresses in the composite and in the constituent phases was 14 

determined:  15 

𝛔̇∗ = 𝜇𝑚𝛔̇
′ + 𝜇̇𝑚𝛔

′ + 𝜇𝑓 𝛔̇̅𝑓 + 𝜇̇𝑓𝛔̅𝑓 (32) 16 

where 𝛔∗ is the incremental stress state of the composite, 𝛔′ is the stress state of the sand and 𝛔̅𝑓 is the 17 

overall stress contribution of the fibre phases, while 𝜇𝑚 and 𝜇𝑓 are the volumetric concentrations of the 18 
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sand matrix and fibres respectively. Bold quantities represent vectors, while the dotted symbol denotes 1 

incremental quantities.   2 

The relationship in equation (32) can be expanded to consider appropriate constitutive models for the 3 

sand and the fibres. Thus, introducing the stiffness matrices [𝑴𝒎] and [𝑴𝒇] , it is possible to obtain: 4 

𝛔̇∗ = 𝜇𝑚[𝑴𝒎]𝜺̇𝒎 + 𝜇̇𝑚𝛔
′ + 𝜇𝑓[𝑴𝒇]𝜺̇̅𝒇 + 𝜇̇𝑓𝛔̅𝑓 (33) 5 

where 𝜺̇𝒎 and 𝜺̇̅𝒇 are the incremental strain tensors for the sand and fibre phases respectively. Under 6 

the assumption that the overall deformation undergone by the fibre phase during loading is negligible 7 

compared with that undergone by the sand matrix, it is possible to assume that (Diambra et al., 2013): 8 

𝜺̇ ≈ 𝜇𝑚𝜺̇𝒎 (34)
 9 

While, according to the previous developments, the following relationship for the strain in the fibres 10 

can be assumed: 11 

𝛆̇̅𝑓 = 𝑓𝑏𝛆̇ (35) 12 

The overall incremental stress-strain relationship for the composite material becomes: 13 

𝛔̇∗ = [𝑴𝒎]𝜺̇ + 𝜇𝑓[𝑴𝒇]𝑓𝑏𝜺̇ + 𝜇̇𝑚𝛔
′ + 𝜇̇𝑓𝛔̅𝑓 (36) 14 

There is complete freedom in choosing the constitutive model for the sand matrix and thus the stiffness 15 

matrix [𝑴𝒎]. However, following Diambra et al. (2013), the Severn-Trent sand model (Gajo and Muir 16 

Wood, 1999) has been adopted. 17 

On the other hand, the fibres have been considered as elastic elements which react only in extension. 18 

The stiffness matrix [𝑴𝒇] accounts for the response of the overall fibre phase, and it should account for 19 

the distribution of fibre orientation. A smearing procedure has been proposed by Diambra et al. (2013) 20 

and Diambra and Ibraim (2013) and the stiffness matrix for elastic fibre can be written as follows: 21 

[𝑴𝒇] =
𝐸𝑓𝜋

𝜐𝑓
[𝑴𝜽] (37) 22 
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where [𝑴𝜽] accounts for the distribution of fibre orientation within the soil matrix , and the definition 1 

of this term is provided by Eqs. (23), (25) and (26) in Diambra et al. (2013). The parameter υf is a model 2 

constant defining the specific volume of the fibre phase. 3 

It is finally possible to demonstrate that the incremental variation of the volumetric concentrations can 4 

be linked to the strain in composite by: 5 

𝜇̇𝑚 = −𝜇𝑓𝑡𝑟(𝜺̇)     ,        𝜇̇𝑓 = 𝜇𝑓𝑡𝑟(𝜺̇) (38) 6 

and the unique incremental stress-strain relationship for the composite material thus becomes: 7 

𝛔̇∗ = ([𝑴𝒎] + 𝜇𝑓
𝐸𝑓𝜋

𝜐𝑓
[𝑴𝜽]𝑓𝑏) 𝜺̇ + 𝜇𝑓(𝛔̅𝑓 − 𝛔

′)𝑡𝑟(𝜺̇) (39) 8 

5  SIMULATION OF ELEMENT TEST RESULTS AND DISCUSSION 9 

5.1 Materials, specimen preparation and experimental programme  10 

In order to challenge the proposed modelling developments, a number of triaxial laboratory tests on two 11 

types of sands (Hostun RF sand and Leighton Buzzard sand Fraction B) reinforced with discrete flexible 12 

polypropylene fibres have been carried out. The two types of sand are characterised by different mean 13 

grain sizes (D50=0.32 and 0.85 mm), while the fibres have been cut at four different lengths (lf=6 mm, 14 

12 mm, 23 mm and 35 mm) to investigate the effect of both fibre length and grain size geometrical 15 

variables on the fibre-sand interaction mechanism. Further details of the fibres and sand used in this 16 

investigation are given in Table 2.  17 

 18 

 19 

 20 

 21 
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Table 2.   Properties of the Hostun RF (S28) and Leighton Buzzard sands and the polypropylene fibres used in this 1 

investigation.  2 

    

Hostun 

RF (S28) 

sand 

Leighton 

Buzzard sand     
Fibres 

D50 Mean grain size 0.32 0.85     lf Length 6-12-23-35 mm 

Cu Coeff. uniformity 1.62 1.38     df Diameter 0.1 mm 

Cg Coeff. gradation 1 1.09     σften Tensile strength 225 MPa 

emax Max void ratio 1 0.802     Gf Specific gravity 0.91 

emin Min void ratio 0.62 0.506     Ef Elastic modulus 900 MPa 

Gs Specific gravity 2.65 2.65           

 3 

 4 

Table 3 - List of triaxial tests used for model validation 5 

Test name lf (mm) σc  (kPa) e q20 (kPa) φ' 20 (°) 

H100FL0 0 100 0.909 301.2 36.6 

H100FL6 6 100 0.917 353.4 39.0 

H100FL12 12 100 0.900 451.1 42.6 

H100FL23 23 100 0.900 489.3 44.6 

H100FL35 35 100 0.912 517.2 45.4 

H200FL0 0 200 0.914 543.0 35.1 

H200FL6 6 200 0.903 603.2 36.7 

H200FL12 12 200 0.900 670.6 38.6 

H200FL23 23 200 0.900 748.2 40.5 

H100FL35 35 200 0.914 803.3 41.6 

LB100FL0 0 100 0.735 317.6 37.3 

LB100FL6 6 100 0.744 329.7 38.4 

LB100FL12 12 100 0.752 359.3 39.5 

LB100FL23 23 100 0.748 438.2 42.5 

LB100FL35 35 100 0.739 488.5 44.4 

LB200FL0 0 200 0.740 532.7 34.5 

LB200FL6 6 200 0.744 577.3 36.0 

LB200FL12 12 200 0.744 639.1 37.6 

LB200FL23 23 200 0.744 715.6 39.8 

LB200FL35 35 200 0.739 755.3 40.7 

 6 

The cylindrical specimens to be tested in the triaxial apparatus have been prepared using the moist 7 

tamping technique (Ladd, 1978) and employing three layers of equal height. A detailed description of 8 
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the sample fabrication procedure can be found in Diambra et al. (2010). Samples of 70 mm diameter 1 

and 70 mm height were tested using enlarged lubricated ends for trying to preserve the homogeneous 2 

cylindrical shape even at the largest possible axial strains, about 20%. Additional details of the testing 3 

procedure, apparatus and loading conditions can also be found in Ibraim et al. (2011). The conventional 4 

triaxial compression tests were performed on fully consolidated loose specimens (relative density 5 

Dr≈20-25%) under constant confining cell pressures of 100 and 200 kPa. A unique fibre content 6 

wf=0.3% was adopted for the reinforced specimens. Tests on unreinforced sand samples were also 7 

performed. A list of the performed tests is provided in Table 3 where the cell confining pressure (σc), 8 

void ratio after consolidation (e), deviatoric strength (q20), and friction angle (φ'20) at 20% axial strain 9 

are reported. Note that the void ratio considers the fibres as part of solids. In the test name, the first 10 

letters LB or H refer to Leighton Buzzard or Hostun sand respectively.  11 

5.2 Model parameters 12 

The model parameters adopted in this simulation exercise are summarised in Table 4. The parameters 13 

relative to the sand matrices have been calibrated on the unreinforced sample results. There are two 14 

parameters which require to be calibrated for the fibre phase: the specific volume υf of the fibres which 15 

have been assumed here to be equal to 3.27 as resulted after calibration in Diambra et al. (2013) and the 16 

value k on the definition of the maximum effective length in equation (4). This parameter has been 17 

calibrated to have a reasonable match of the stress–strain behaviour for the longer fibre. Finally, it is 18 

also necessary to define a distribution of fibre orientation. Diambra et al. (2007) and Ibraim et al. (2012) 19 

have demonstrated that the employed moist tamping technique for sample preparation induces a rather 20 

preferred horizontal bedding orientation of fibres and that the distribution of fibre orientation in the 21 

investigated specimens can be represented by the following function: 22 

𝜌(𝜃) = (𝐴𝜃 + 𝐵𝜃|𝑐𝑜𝑠
𝑛𝜃  𝜃|) (40) 23 

where Aθ = 0, nθ = 5 and Bθ = 0.324 are constant coefficients which have been experimentally 24 

determined and θ is the inclination from an horizontal plane. The link between equation (40) and the 25 

stiffness matrix [Mθ] is given by equation (23) in Diambra et al. (2013).  26 
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Table 4. Summary of assumed model parameters for the simulation exercise 1 

Sand matrix 

Parameter Description 

Value for Hostun 

Sand 

Value for 

Leigthon Buzzard 

Sand 

C 
Ratio of elastic shear modulus to dynamic shear 

modulus  
0.4 0.4 

ν Poisson’ s ratio 0.1 0.1 

ϕ’ Critical-state friction angle 34° 35° 

Γ 
Intercept for critical-state line on υm- ln p’ plane at 

p’=1 kPa 
2.13 2.08 

λ Slope of the critical-state line on υm- ln p’ plane 0.031 0.031 

kr 
Link between changes in state parameter and 

current strength 
1.5 1.5 

B 
Parameter controlling hyperbolic stiffness 

relationship 
0.0025 0.0025 

Ry Ratio of size of yield and strength surfaces 0.1 0.1 

A Multiplier in flow rule 0.75 0.75 

kd State parameter contribution in flow rule 1.5 1.5 

Sand-fibre interaction 

Parameter Description 

Value for Hostun 

Sand 

Value for 

Leigthon Buzzard 

Sand 

k 
Maximum ratio between effective and actual fibre 

length 
0.6 0.5 

Fibres 

Parameter Description Value 

Ef Elastic modulus 900 

υf Specific volume of the fibres 3.27 

5.3 Model simulations and discussion 2 

The comparison between the model simulations and the experimental results in terms of deviatoric 3 

stress-strain and volumetric behaviour for the triaxial tests performed at 100 kPa of cell confining 4 

pressure are reported in the following Figs. 8 and 9 for Hostun sand and Leighton Buzzard sand 5 
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respectively. The deviatoric stress-strain trends suggest that the model captures well the general trend 1 

of increasing fibre effectiveness with increasing length. On the volumetric plane, the model captures 2 

the increased dilation experimentally observed for reinforced specimens. While the experimental results 3 

do not show any particular volumetric trend with the fibre length, because small variation in the 4 

fabrication void ratio may have a quite considerable effect on the volumetric response, the model depicts 5 

a decreased dilation with increasing fibre length, naturally owed to the increased confinement effect 6 

associated with longer fibres. 7 

 8 

Fig. 8 Triaxial test results and model simulations for Hostun sand unreinforced and reinforced (0.3% fibre content) 9 

specimens, tested under 100 cell confining pressures  (legend indicates the fibre length). 10 
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 1 

Fig. 9 Triaxial test results and model simulations for Leighton Buzzard sand unreinforced and reinforced (0.3% fibre 2 

content) specimens, tested under 100 kPa cell confining pressures  (legend indicates the fibre length). 3 

In order to estimate the real capabilities of the proposed developments, the comparison between model 4 

simulations and experimental results is analysed in terms of the additional deviatoric strength of the 5 

reinforced samples. For a fixed strain level, the term Δq can be defined as: 6 

𝛥𝑞 = 𝑞𝑟 − 𝑞𝑢 (41) 7 

where qr and qu are the deviatoric stresses for a reinforced and the respective unreinforced specimens 8 

tested under the same conditions. In this way, it is possible to remove some of the inaccuracies related 9 

to simulation of the reference unreinforced sand behaviour and analyse the predicted contribution of the 10 

fibres. The comparisons are shown in Fig. 10 for both sands and both employed confining pressures. It 11 

is clear that the model simulation predicts well the magnitude of increased strength with the increase of 12 

the length of the fibres. This is due to the increase in mobilised fibre stress and strain ratio factor fb 13 

which was observed with both increase in aspect ratio and increase of the lf/D50 ratio, reported in the 14 
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previous Fig. 5. On the other hand, while the predicted additional fibre strength contribution appears to 1 

increase linearly with the deviatoric strain, the experimental results show a more curvilinear trend with 2 

even a decrease in deviatoric strength in the initial phase of loading. This trend is more visible for the 3 

coarser sand. Knowing that fibres need strain to start mobilising any tensile stress, a delayed fibre 4 

reinforcement effect is fully expected. 5 

 6 

Fig. 10 Comparisons between net deviatoric contributions for reinforced (0.3% fibre content) specimens of Hostun and 7 

Leighton Buzzard sands, under two testing confining pressures (legend indicates the fibre length).  8 
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capture the complex behaviour of fibre reinforced soil. The measured increase in deviatoric strength is 11 

not linearly proportional to the fibre content but has a somewhat “s” shape which is well depicted by 12 

the model.  Comparison between Fig.11a and 11b also suggests that the fibre contribution is a bit larger 13 

for the finer soil, as demonstrated by the parametric study on the efficiency factor with lf /D50 reported 14 
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earlier (Fig. 5).  Finally, Fig. 11 also shows that the model is able to predict the increase in the net fibre 1 

contribution with increased stress level, which is due to the enhanced fibre-soil interaction shown 2 

previously in Fig.7. 3 

 4 

Fig.11 Comparisons of trends of net deviatoric contributions versus length of fibres for reinforced (0.3% fibre content) 5 

specimens of Hostun and Leighton Buzzard sands, under two testing confining pressures (legend indicates the cell confining 6 

pressure). 7 

6 CONCLUSIONS  8 

A description of the local fibre-soil stress-transfer mechanism for fibre-reinforced granular soils based 9 

on a modified shear lag theory is presented.  The theory allows for the development of an analytical 10 

expression of the stress distribution along the fibre, which can explicitly account for the effects of the 11 

geometrical fibre and granular size characteristics, including also the fibre stiffness, global stress level, 12 

soil density, and the non-linearity of the soil behaviour. The integration of the stress distribution 13 

function also allows the derivation of the factor fb which represents the strain ratio between the fibre 14 

and the composite  and takes explicitly into account the same range of parameters. The parametric study 15 

that follows provides valuable insight into the internal interaction mechanism. The following 16 

conclusions can be drawn:  17 

 The fibre length plays a major role in the interaction process, but the actual fibre length needs 18 

to be at least 10 times the average grain size to ensure a triggering of the interaction mechanism.   19 
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 Finer granular soils generate much more effective interactions, whereas, depending on the grain 1 

size, the onset of the interaction mechanism requires fibre aspect ratios between 10 and 100. 2 

For a given soil, the analysis provides a tool for an effective control for an efficient use of fibre 3 

dimensions.  4 

 The fb factor decreased with the increase of the fibre stiffness, but the mobilised fibre stress 5 

remains important and should still govern the overall strength increase.  6 

 For a given fibre stiffness and composite strain, the increase in the soil stiffness induced by an 7 

increase in the soil confinement results in an increase of the factor fb and thus in larger stress 8 

mobilised in the fibres.  9 

The scale-up of the problem at the composite level is then conducted by using a continuum constitutive 10 

model (Diambra et al., 2013) modified to account for the strain ratio between the fibre and the 11 

composite, factor fb.  The model is assessed against a series of triaxial compression tests on two different 12 

sands mixed with polypropylene fibres of different aspect ratios. The validity of the proposed 13 

developments, which include the key assumption on the effective fibre length, is clearly emphasised.  14 

The proposed research work on fibre-reinforced sand soils, while fundamental in nature, provides not 15 

only a detailed analysis of the role played by various parameters, but also a tool that can be used 16 

efficiently in the design processes of such complex materials.  17 
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