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Some don’t like it hot 1 

Daniela Schmidt 2 

University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK 3 

The oceans are experiencing vast environmental changes that are predicted to 4 

accelerate in the future (Stocker et al., 2013). Warming, acidification, deoxygenation, and 5 

increased stratification act on a global scale, while other factors such as eutrophication, 6 

the effect of runoff changes of the carbonate system, and pollution act more locally. It is 7 

very hard to predict if these drivers will act synergistically, antagonistically, or additively 8 

on marine organisms (Pörtner et al., 2014). While individual drivers can be tested in 9 

laboratory experiments (see Pörtner et al. [2014] for a recent assessment), most of these 10 

experiments are too short with little acclimation or adaptation. Species interact (Munday 11 

et al., 2009; Sanford et al., 2014) and evolve (Collins and Bell, 2004; Lohbeck et al., 12 

2012), which is proving to be highly challenging to test in laboratory settings or 13 

mesocosms. 14 

The geological record provides an archive of the integrated effects of climate 15 

change and ocean acidification on marine ecosystems (Hönisch et al., 2012). The 16 

Paleocene–Eocene Thermal Maximum (PETM), ca. 56 Ma, is a key interval for such 17 

comparisons as the effects of the climate perturbation can be found all over the globe and 18 

in all ecosystems (see McInerney and Wing [2011] and Sluijs et al. [2007] for a review). 19 

A substantial negative carbon isotope excursion suggests the addition of between 2000–20 

6000 Gt of carbon to the atmosphere (Cui et al., 2011; Dickens, 2003). The global surface 21 

ocean warmed on average by 4–5 °C and the subsurface ocean by 5–6 °C (Dunkley Jones 22 

et al., 2013). A global shoaling of the carbonate compensation depth (Zachos et al., 23 
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2005), combined with recent modeling (Ridgwell and Schmidt, 2010) and boron isotope 24 

analysis (Penman et al., 2014) propose ocean acidification in both the surface and the 25 

deep ocean. Ecosystem changes have been widely documented (Foster et al., 2013; Gibbs 26 

et al., 2006; Scheibner et al., 2005; Thomas, 2007; Webb et al., 2009) showing amongst 27 

others migration toward higher latitudes, changes in ecosystem composition, extinction 28 

amongst deep sea species, and calcification responses. 29 

The usefulness of the geological record in improving our understanding of 30 

impacts of future climate changes and ocean acidification, though, depends on accurate 31 

regional climate reconstructions which allow a differentiated assessment of the impact on 32 

marine biota. Two papers in this issue of Geology, by Aze et al. (2014, p. 739) and 33 

Frieling et al. (2014, p. 767), increase our knowledge in two critical areas: the Indian 34 

Ocean (19°S) and the subpolar West Siberian Seaway (WSS, ~55°N) with the first PETM 35 

temperature reconstructions for these regions. Their novel tropical peak PETM values, 36 

which depending on calibration and if average or maximum values are considered, range 37 

from 32 °C to 43 °C with a warming of 3 °C above background. Similarly, warming is 38 

documented by Frieling et al. by ~7 °C to 27 °C in the WSS combined with seasonal 39 

anoxia. 40 

Both of these papers contain provocative novel ideas. For example, a complete 41 

lack of temperature differences between the Arctic and the West Siberian Seaway 42 

provides new targets for climate models. These papers also point to the challenges 43 

working in comparative shallower water near coastal sections. Shallow water sites are 44 

often subjected to reworking and unconformities, both of which make identifying 45 
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baselines of pre-event climate variability and hence the relative amplitude of the warming 46 

very difficult. 47 

More importantly, though, both records point at our limitations to calculating 48 

absolute temperatures for deep- time records. Using oxygen isotopes as in Aze et al. 49 

meets the limits of our knowledge as seawater 18O is not well constrained, resulting in a 50 

several-degree uncertainty in temperature reconstructions (Tindall et al., 2010) as large as 51 

the climate signal in the event. This is especially true in settings with strong evaporation 52 

near the coast and likely a high variability in the carbonate system, by analogy to modern 53 

shelf seas (Artioli et al., 2014). Additional effects such as unknown calibration equations 54 

for extinct species and the effect of the surface-water acidification on isotope 55 

incorporation just add to the problem (Spero et al., 1997). Given the very recent 56 

quantification of the surface-water pH values prior to the PETM and the change within 57 

(Penman et al., 2014), the most likely average sea-surface temperature for the PETM in 58 

Tanzania was between 33.9 °C and 35.9 °C, which agrees well with temperature ranges 59 

in model simulations (Huber and Caballero, 2011; Tindall et al., 2010) for pre-PETM 60 

background values combined with the 3 °C warming found by Aze et al. 61 

So if we take these data on face value, what are the consequences for biology and 62 

what does this tell us about the future? These papers highlight the migration of 63 

phytoplankton to follow their niche and suggest that the extreme warmth led to an 64 

absence of calcifiers. Intriguingly, though, this abiotic zone appears several tens of 65 

thousands of years after the onset of the extreme temperatures and the acidification and is 66 

associated with changes in lithology and follows on from a gap in the record. This 67 

potentially slow response contradicts everything we know about the ecosystem response 68 
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to decadal temperature variability for example the North Atlantic Oscillation (Beaugrand 69 

et al., 2009; Beaugrand et al., 2002) or in the California upwelling system (Chavez et al., 70 

2003; Chavez et al., 1999). Aze et al. explain the abiotic zone by comparing to the 71 

temperature adaptation of modern foraminifers. One would expect, though, that 72 

Paleogene foraminifers who have evolved in a 15 °C warmer environment than today 73 

(Huber and Caballero, 2011) were generally adapted to these warmer temperatures. As so 74 

often, new papers ask more questions than they answer, such as why are these abiotic 75 

zones not found at other open ocean sites nearer the equator? If the high-end temperatures 76 

are reasonable estimates, these might point to physiological limits at which enzymes start 77 

denaturalising. Given the high metabolic rates in response to these hot temperatures, the 78 

supply of food supply to sustain the organisms is a pressing question and might have 79 

played a role in a regional exclusion. More work is needed, though, to move from 80 

assessments of past climates to predictive models for policy makers of the impact of 81 

future climate change on marine ecosystems such as the cascading effects of these 82 

potential abiotic zones in the food webs. 83 
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